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LIMIT THEOREMS FOR DISCOUNTED SUMS OF RANDOM VECTORS
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Abstract. Weak convergence to normality is shown for normalized discounted
sum of a sequence of i.i.d. random vectors from Rm,m ≥ 1, for the case where
discount matrix is chosen among a finite number of ones from the certain class
of m×m matrices, at random according to a realization of another sequence
of random variables. When m = 1 and discount factor varies periodically a
rate of convergence is considered.
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We deal here with limit theorems which may be applicable in actuarial and
financial modelling.

1. Consider a sequence X0, X1, . . . of i.i.d. m-dimensional random vectors
on a probability space (Ω, F, P ) such that EX0 = 0, E∥X0∥2 = σ2 < ∞,
cov(X0) = R.

When 0 < A < 1 and m = 1 the Abel sum

ηA :=
∞∑
j=0

AjXj (1)

may be interpreted as the present value of the consecutive paymentsX0, X1, . . .
with the discount factor A and (1) is often referred to as a discounted sum.

Gerber proved in [2] that the probability distribution of the normalized
sum

ζA := (1− A2)1/2ηA (2)

converges weakly to the normal distribution N(0, σ2) when A → 1−. See the
sources referred to in [6] to have a brief view on the history and some recent
advances in investigation of discounted sums (1). We refer here only to [7] as
a source in which an approach via partial sums of (1) is emphasized.

In the case m > 1 and an m×m-matrix valued A which we call a discount
matrix the random vector ηA is defined still by (1), where now A0 = I, Aj+1 =
AAj, j ≥ 1, and I stands for the identity m ×m-matrix, may be interpreted
as vector of different payments or have a lot of other interpretations.
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In [6] for a fixed symmetric and positive definite m × m matrix R and
c, 1 ≤ c < ∞, the set of nonsingular m×m matrices

A(R, c) := {A : ∥A∥ < 1, A = A⊤, AR = RA, ∥I − A∥ ≤ c(1− ∥A∥)} (3)

is introduced and for the normalized sum

ζA := (I − A2)1/2ηA (4)

the following assertion is proved.

Theorem A If for fixed R and c, 1 ≤ c < ∞, A takes its values in the set of
m ×m-matrices A(R, c) and A → I in the sense that ∥I − A∥ → 0, then the
probability distribution of the normalized sum ζA introduced by (4) converges
weakly to the normal distribution N(0, R).

This theorem covers the case of positive scalar matrices A = aI (with
0 < a < 1 and c = 1) and diagonal ones with at least two different diagonal
elements both tending to 1 from the left.

When several discount matrices are chosen periodically (e.g., when monthly
discount factors depend on seasons), we have the following assertion for nor-
malized sums (6) below(emphasizing by (7) the scalar normalization in most
transparent case of the above-mentioned scalar matrices; see [3]).

Theorem B If s ≥ 1 and Bi ∈ A(R, c), the set defined by (3), Bi → I in the
sense that ∥I −Bi∥ → 0, i = 1, . . . , s, then for the discounted sum

ηB := ηB1,...,Bs :=
∞∑
j=0

Aj
jXj, Aj = Bi, j ≡ (i− 1) mod s, i = 1, . . . , s, (5)

the probability distribution of the normalized sum

ζB := ζB1,...,Bs :=
[ s∑

i=1

B
2(i−1)
i (I −B2s

i )−1
]−1/2

ηB (6)

converges weakly to the normal distribution N(0, R).
In the special case of scalar matrices Bi = biI, bi → 1−, i = 1, . . . , s, and

ηb := ηb1,...,bs given by (5), the assertion holds for

ζb := ζb1,...,bs :=
[ s∑

i=1

b
2(i−1)
i (1− b2si )−1

]−1/2

ηb. (7)

If periodicity of the discount matrices is the same as in Theorem B but
powers are assigned to all Bis as to B1 in ηB, we obtain the following assertion,
where [·] stands for the integer part of a real number.
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Theorem B∗. If s ≥ 1 and Bi ∈ A(R, c), the set defined by (3), Bi → I
in the sense that ∥I −Bi∥ → 0, i = 1, . . . , s, then for the discounted sum

η∗B := η∗B1,...,Bs
:=

∞∑
j=0

A
[j/s]
j Xj,

Aj = Bi, j ≡ (i− 1) mod s, i = 1, . . . , s,

(5∗)

the probability distribution of the normalized sum

ζ∗B := ζ∗B1,...,Bs
:=

[ s∑
i=1

(I −B2s
i )−1

]−1/2

η∗B (6∗)

converges weakly to the normal distribution N(0, R).
In the special case of scalar matrices Bi = biI, bi → 1−, i = 1, . . . , s,and

η∗b := η∗b1,...,bs given by (5∗), the assertion holds for

ζ∗b = ζ∗b1,...,bs =
[ s∑

i=1

(1− b2si )−1
]−1/2

η∗b . (7∗)

Though an analog of Berry–Esseen’s bound for a discounted sum of i.i.d.
random variables due to Gerber [2] could be extended to the case of periodically
varying discount factor, using a result by Paditz [4], we try to give a short
derivation of an estimate of the rate of convergence directly from [2].

Let G be a random variable with standard normal distribution N(0, 1)
and corresponding distribution function N(u), u ∈ R. For finite ρ = E|X0|3
Gerber proved that for Kolmogorov distance between σ−1ζA defined by (2) for
m = 1 and G the following inequality holds

d(σ−1ζA, G) = sup
u∈R

|P{σ−1ζA < u} −N(u)| < c
ρ

σ3
(1− A)1/2 (8)

with an absolute constant c.
We have the following representation of discounted sum with periodically

variable discount factor (cf. (5)) as a weighted sum of s independent discounted
sums with a constant discount factor

ηb = ηb1,...,bs =:
s∑

i=1

bi−1
i η(i)bsi , η(i)A :=

∞∑
k=0

AkXsk+i−1, i = 1, . . . , s. (9)

For two discount factors (9) leads to

σ−1ζb1,b2 =
ηb1,b2√
D(ηb1,b2)

= σ−1[(1− b41)
−1 + b22(1− b42)

−1]−1/2{η(1)b21 + b2η(2)b22}
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= σ−1[γ1(1− b41)
1/2η(1)b21 + γ2(1− b42)

1/2η(2)b22 ], (10)

where positive γ1 and γ2 are such that γ2
1 + γ2

2 = 1. There exist independent
standard normal random variables G1 and G2 such that G = γ1G1 + γ2G2 (in
distribution).

Using the standard properties of Kolmogorov distance, from (8),(9) and
(10) we obtain

d(σ−1ζb1,b2 , G) = sup
u∈R

|P{σ−1ζb1,b2 < u} −N(u)|

< c
ρ

σ3
[(1− b21)

1/2 + (1− b22)
1/2].

Similar argument for s > 2 leads to the estimate

d(σ−1ζb1,...,bs , G) = sup
u∈R

|P{σ−1ζb1,...,bs < u} −N(u)|

< c
ρ

σ3
[(1− bs1)

1/2 + · · ·+ (1− bss)
1/2]

< c
√
s
ρ

σ3
[(1− b1)

1/2 + · · ·+ (1− bs)
1/2].

It is evident that the same expressions involving square roots can serve as
estimates of the convergence rate to normality for ζ∗b1,...,bs from (7∗) with

η∗b := η∗b1,...,bs =:
s∑

i=1

η(i)bsi (9∗)

and η(i)A for m = 1 from (9):

d(σ−1ζ∗b1,...,bs , G) = sup
u∈R

|P{σ−1ζ∗b1,...,bs < u} −N(u)|

< c
ρ

σ3
[(1− bs1)

1/2 + · · ·+ (1− bss)
1/2]

< c
√
s
ρ

σ3
[(1− b1)

1/2 + · · ·+ (1− bs)
1/2].

2. Let us consider a stationary two-component sequence (ξj, Xj), j =
0, 1, . . . , where ξj takes its values in {1, . . . , s} and Xj ∈ Rm; denote

ξ = (ξ0, ξ1, . . . ), ξ0n = (ξ0, . . . , ξn),

X = (X0, X1, . . . ), X0n = (X0, . . . , Xn).

Definition. X is a sequence of conditionally independent random vectors
controlled by a sequence ξ if for any natural n the conditional distribution
PX0n|ξ0n of X0n given ξ0n is the direct product of conditional distributions of
Xj given only the corresponding ξj, j = 0, . . . , n, i.e.,

PX0n|ξ0n = Pξ0 × · · · × Pξn ,
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where Pi is the conditional distribution of X0 given {ξ0 = i}, i = 1, . . . , s (see,
e.g., [1],[5]).

Let πi = P{ξ0 = i}, i = 1, . . . , s, be a common distribution of ξjs.
For s = 1 X becomes a sequence of i.i.d. random variables with P1 as a

common distribution.
An equivalent definition of the conditionally independent random vectors

X controlled by the sequence ξ is independence of components of X given any
realization of ξ and equality PXj |ξ = Pξj for any j = 0, 1, . . . .

Before formulation of the main result of this note let us introduce some
extra notation and give an explanation how the discounted sum is generated.
We begin with IE for the indicator of an event E and

νji := I(ξj=i),

s∑
i=1

νji = 1, i = 1, . . . s, j = 0, 1, . . . .

Denote by νj(i) =
∑j

k=0 νki the frequency of the value i within the first
j + 1 variables ξk, i = 1, . . . , s, j = 0, 1, . . . . For every j we have

s∑
i=1

νj(i) = j + 1, j = 0, 1, . . . . (11)

While the (j + 1)st matrix, say Tj, which transforms the (j + 1)st vector
Xj is obtained from the previous one by the constant factor A from the set of
matrices A(R, c) when the choice is deterministic setting T0 = I for the initial
vector (thus we have had for that case Tj = Aj, j = 0, 1, . . . ), by the random
choice according to the stationary control sequence ξ, when we choose a factor
among the matrices B1, . . . , Bs belonging to the same set A(R, c) with the
probability distribution (π1, . . . , πs) and a resulting factor would be presented
as follows

Bξj = B
νj1
1 · · ·Bνjs

s , j = 1, 2, . . . , (12)

and as a sequence of transformations we obtain

T0 = I, Tj = Πj Bξk , j = 1, 2, . . . . (13)

Let us now consider the case of discounting organized similarly to the case
considered in Theorem B*.

Theorem 1 Let a stationary sequence (Xj, ξj), j = 0, 1, . . . , be such that X
is conditionally independent sequence of m-dimensional random vectors con-
trolled by an ergodic sequence ξ = (ξ0, ξ1, . . . ) each member of which takes its
values from the set {1, . . . , s} and conditional distribution Pi has zero mean and
covariance matrix R, i = 1, . . . , s,. Each moment j when the control sequence
takes the value i and this proceeds νj(i)th time the corresponding vector Xj is

to be transformed by the matrix B
νj(i)−1
i with Bi ∈ A(R, c), i = 1, . . . , s (for

k=1
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each j we have (11)). As Bi → I in the sense that ∥I −Bi∥ → 0, i = 1, . . . , s,
then given the control sequence ξ the conditional probability distribution of the
random vector

ζ∗B1,...,Bs
(ξ) =

[ s∑
i=1

(I −B2
i )

−1

]−1/2 s∑
i=1

∞∑
j=0

I(ξj=i)B
νj(i)−1
i Xj (14)

converges almost surely to the normal distribution N(0, R).

Sketch of the proof. For m = 1, this assertion follows from [4]. As for
general case, let us behave according to [7]. Due to ergodicity of the control
sequence the relative frequency of the event {ξj = i} among the first n + 1
values of j being equal to νn(i)/(n+1) tends P -almost surely as n → ∞ to πi >
0, i = 1, . . . , s. This means, that if we restrict ourselves by the (n+1)th partial
sum of (14) each subsum with the fixed i has a number of items growing to
infinity and thus as corresponding Xjs are independent, due to Theorem A we
have asymptotic normality N(0, R) for each subsum normalized by (I−B2

i )
1/2,

i = 1, . . . , s. As the subsums are conditionally independent due to [3], under the
normalization given in (14) the total limiting law remains the same N(0, R).
As the limit distribution does not depend on ξ by taking an expectation (see,
e.g., [1]) one can easily pass to a limit relation for absolute distribution.
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