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Abstract. The variational and difference methods are used respectively for
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1. Statement of the problem

Let us consider the equation

1 L
Ut (T, 1) FUpgpe (T, 1) — humtt(x,t)—ﬁ@\ +/ u?(z,t) d:p)um(:p,t):(), (1)
0
O<zxz< L, 0<t<T,

with the initial boundary condition

u(:c,O) :u()(x)? ut(xa()) *ul(x)a
uw(0,t) =u(L,t) =0, up(0,t) = uze(L,t) =0, (2)
O0<z<L, 0<t<T,

where b > 0, A\ > 0, L, T and u°(t), u* () are the given constants and functions,
u(z,t) is the function we want to define.

The equation (1), which describes the oscillation of a beam by the Timo-
shenko theory, is considered in [1], [3] and [7]. In the present paper we introduce
an approximate algorithm for the problem (1),(2) and study the accuracy of
its iteration part. Note that the problem of construction of numerical meth-
ods through estimation of algorithm errors was investigated in [5] for other
nonlinear Timoshenko beam equations.
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2. Algorithm
a. Galerkin method

An approximate solution will be sought for in the form of a finite sum
s
n(2,1) = ni(t) Sin — ) 3
Up(z, 1) Zu()smLz (3)

where, according to the Galerkin method, the coefficients u,;(t) are a solution
of the system of ordinary differential equations

<1+h (%)2) un(t)

A+ (%)Zii (‘%) u,%j(t)] (%)tam(t):o, i=1,2,...,n, (4)

j=

+

with the initial condition

Ui (0) = af, u,;(0)=aqa;j, i=1,2,...,n, (5)
where ;
5 .
G€IZ/0 up(a:)sin%xd:c, i=1,2,...,n, p=0,1.

b. Difference scheme

Let us introduce the functions

s
Yni(t) = (1),  2ni(t) = T Uni(t), (6)
i=1,2,...n,

and rewrite the system (4),(5) in the new notation as

. 2 . 2 n .
v v 1 v
1+h(|— " (t A — Z 2 (O 2= (¢t
( + (L) )ym()+ +(L> +4;zm(> 7 zuilt) = 0,
(7)
, v
(1) = — ynilt),
440 = Tyt
1 T oo
Yni(0) = a;, zm(O):fai, i=1,2,...,n. (8)
The problem (7),(8) will be solved by the difference method. On a time
interval [0,7] we introduce a net with step 7 = % and nodes t,, = mr,

m=0,1,..., M.
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At the m-th layer, i.e., for t = t,,, the approximate values y,;(t) and z,;(t)
are denoted by y and 2].
We make use of the Crank-Nicolson scheme

_ 2 n m\2 m—1\2
<1+h(L)> = A+(L> 72 5

j=1
(A A !
w_m =0 9
L 2 ) ( )
m __ 1 . .
an ZTL’L T y’m + y’fL’L , — 17 2, . M7
T L 2
1=1,2, ,n,
with the condition
o zgi:%ag, i=1,2,...n. (10)

c. Iteration method

We will solve the system (9),(10) layer-by-layer.

Assuming that the solution has been obtained on the (m — 1)th layer, to
find it on the mth layer we will apply the Jacobi iteration method [4]. For the
sake of simplicity we will neglect the error of the final iteration approximation
on the (m — 1)th layer. This means that for fixed m the counting will be
carried out by the formulas

. 2 m m—1
s Ynik+1 — Yni
1 h _ it L B

+ {)\ + (W 1 (2y; k:+1)2 + (zﬁ'il)z

) "1 5 (11.1)
1 - n]k: + (Z 1) Z7T zm k+1 + ZZZ !
- -0
;
m m—1 . m m—1
Znik+1 ~ Fni 0T Ynigrr T Yna
- =7 5 ) (11.2)
m=1,2,....M, k=01,..., i=1,2,...,n
where y,~ L and 2z I are the known values, i = 1,2,...,n, and
1 0o _im o .
Jp— . . = — . p— 1 2 “ .. .
ynl CL’L Y ZTLZ L aZ Y 1 Y 7 ) n
After expressing ym 1 in (11.2) through =", 2%~ and 2%,

—1
[ zm —m
m m—1 ni,k+1 ni
Yy =yl g g Ikl i 12
ni,k+1 ni i - ) ( )
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and substituting (12) into (11.1), we come to the expression

2 L . ZZ; - Z;nifl 2 1 z:g 2 + zzfl 2
- —+ h E ’k"'l— A + T 4= ( 7k—f—l) ( )
T \im L T L 4 2

L 2

—% (1 +h (%>2> ym~t=0. (13)

Hence it follows that for each k the iteration process means the realization
of only one formula (13). After obtaining the final iteration approximation
2% r1, We substitute this value into (12) to find an approximation for y7,
1=1,2,....n

By the expression (13) we conclude that we have to solve a cubic equation
with respect to 27}, ., at the (k + 1)th iteration step for each i. This equation
is written in the form

m—1 m—1
2 : nj k + (an ) :| T znz k41 + Zni
;

(Zﬁ,kﬂ) + a;(2p; k+1) +bizyi g1 0 =0, (14)
where
a; = Z;?;g*l’ bl - dZ + (Z;Z 1>2 + € (15)
= (=di+ (zp ) +ei) 2t = 7di Ty
and
32 L\? m—1y2
Ee () oo () B
JF#i
(16)

Let us apply Cardano’s formula [2] to the equation (14) and the relations
(15),(16). Recall that the a priori real root of the equation

w4 aw? +bw+c=0

is equal to
2 s 2\ s
- —1)r2 il
w-geylerg (eg) |
p=1
where
2 b 2a¢®  ab n
7’ = —— _— —_———
3 ’ 27 3
Thus we get
Zm—l 2
m ni 1
Rpik+l — 3 + Z(_l)p+ Oips (17)
p=1
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where

Qr (18)

(19)

S s2 3
o= B Y v _t
Tir [( ) 2+<4+27>

r, = dl + %(22;71)2 + ey,
% zm-1 (—Qdi + %(zﬂf—l)Z + ei) —7d; %’ ymt
The considered algorithm of solution of the problem (1), (2) should be
understood as the counting carried out by the formula (17). Having 2], and
taking (6) and (3) into consideration, we construct the approximated value of
the function u(z,t) for t = t,, as the sum

and

"L i
= ™M g — . 20
E e Zpi S 7 x (20)

=1

3. Iteration method error

Under the iteration method error Auy', we will understand the difference be-
tween (20) and the sum

n .

L . oam

Z p 2z, sin %
i=1

which would give an approximate value of the function u(x,t) for t = t,, if the

difference scheme (9), (10) were solved exactly. Thus

m . L m my\ . i
Ay (w) = 30 e — ) sin L 1)
i=1

Our aim consists in estimating the error A (z).
Let us represent the system (17) as

m _ m m m
ikl — wi(’znl,k? Zn2,ks 7Znn,k) (22)
and consider the Jacobi matrix

_ 0 !
() o

ik /=1

By virtue of (17)-(19) and (22) the diagonal terms of the matrix J are
equal to zero, while for the nondiagonal terms we have

m 2

i “nj,k 1 m—1 m-1, 1 o
9 - 5 ZT[QZM +(=1)" | sizi +§Ti

nj,k p=1 P
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By (18) and (19)

+
S
N

1
2 3\ 2 3 3
Ti 3 3 Si T i, A
Ui,lo—i,Q = —, Ui,Z — O_i,l = Si? Z + 2—7 = . (25)

From (24) and (25) follows

64,01 4 1 ( 2 Ty -1
= 5 amen (oh - 5 + o)
R g “nik? i1 3 o7
2 r? -1

Now we apply the first relation of (25) to the estimate a P+ 02p > 2(0;10:2)P,
p=1,2. We get

P
021+02p>2<3> .

Using this inequality, (19) and (16), from (26) we obtain
4
" (BT’Z Zni ‘ + = 2 ’87«|) ‘zn],k’

1 L\ Z
247— <h+(lﬂ')) ‘+2 Z ‘8 ng,k|7 (27)

dp;
ozm

where

4% =3 [ot (ne (B)7) +d Gl

S =38 (V4 (%) + 3+ T (G + G |l
i#i

5t =321 (h+(£)") 2y

We again apply (19) and (16) and also the inequalities +—§) < o+ for £ >0,

a >0 and 4ab < (a + b)? for arbitrary a and b. The results is as follows

(1)| _

S, 1

|;2 <H (h+ (Bl

|5 A
r2 < 192 <h+( ) > [t
(3

: -1
Bl < (v () e
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Using these relations in (27) we come to a conclusion that
-1
13 L\?
< - 2 h _ m—l
= (96T ( - (m) ) o
1 N2\ L
o T
o <A+ (7) ) Tl ) el (28)

n
We will need a vector norm equal to ||v||; = > |v;| and the corresponding
i=1

i

n
norm for the matrices ||U||; = max > |uy|, where v = (v;)iy, U = (uy)7 -
1<j<m ;1

By (23) and (27) we get

~1
13 2 - L ? m—1
”J1|| < ( I;l]aX |ZTLj kz|> (%T 2; (h+ (E) ) |Zm'

1=

+%T§<A+ (%>2>_1 - |) (20)

By the principle of compressed mapping let us assume that the condition
[J]l1 < ¢ is fulfilled for 0 < ¢ <1 and (2];,),, k= 0,1,..., belonging to the
domain

n n
1
{wdi e B 3l = 2ol < 3= D letia = kol -
=1 =1

As seen from (28), for this it suffices that the restriction
1
T< — [—5 + (B + 4047)%] (30)
2a
be fulfilled for the step 7. Here

= 1 . 6 w— 7 N
o= sl b= > g
2 (B 13 2 3T (7 £

n

96 1 -1
VZEQ[ZO n20|+ q|zml Zm',0|>] :

i=1

If this restriction is fulfilled, then the system (9),(10) has a unique solution

the iteration process (17) converges, hm Zpik = Zniy 0= 1,2,.00m

ynz ) TL’L Y ni’

and the convergence rate is defined by the 1nequahty

n
Z |Z:Zk Zi] < 1
i=1

ni, 1 ni,O | .
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Using this relation in (21), we come to a conclusion that if the condition
(30) is fulfilled, then for the L?(0, L)-norm of the iteration method error we

have the estimate
L2(0,L)_ ( ) \/ 2 1 Z| ml n10|

dP "
| Ave()
p=01, m=12.. M k=12,....

The question of accuracy of the Galerkin method for the problem (1),(2) is
studied in [6].
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