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Abstract. We consider the Neumann problem for a degenerate differential-
operator equation of higher order. We establish some embedding theorems in
weighted Sobolev space W' and show existence and uniqueness of the gen-
eralized solution of the Neumann problem. We also give a description of the
domain of definition and of the spectrum for the corresponding operator.
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1. Introduction

In present paper we consider the Neumann problem for the operator equation
Pu=(=1)"D(t*D")u + t*Au = f, (1)

where t € (0,0), « > 0, D, = d/dt, f € Ly_o((0,b),H) and A is a linear
operator in Hilbert space H and has a complete system {¢y}72, of the eigen-
functions, which form a Riesz’s basis in H. Note that the operator A in general
is an unbounded operator in H.

Our approach, similar to that used in [3], for the case m = 1 and in [11]
for m = 2, is based on the consideration of the one-dimensional equation (1),
i.e. when A is the operator of multiplication by a number a, a € C, Au = au
(see [4]).

In Section 2 we define the weighted Sobolev space W/, describe the behav-
ior of the functions from this space close to t = 0 (see [7], [8], [13]). We give the
desciption of the domain of the definition D(B) of the operator B and prove
that for 1 — a ¢ oB (0B is the spectrum of the operator B) the generalized
solution of the Neumann problem for the one-dimensional equation (1) exists
and is unique for every f € Ly _,.

In Section 3 under some conditions on the spectrum of the operator A we
prove unique solvability of the operator equation (1) for every
f € Ly _»((0,b), H) and give the description of the spectrum for the corre-
sponding operator P = t~*P.
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2. The One-dimensional Case
2.1. The space W[
Denote by W the completion of C™[0,b] in the norm

b
lulle = [ (™ @) + *uto)?) dr )
0
For the proofs of the Propositions 1, 2 and Remark 3 see [2] and [13].

Proposition 1 For every u € W' close to t = 0 we have
(O < (B; + Cit 77 fulfv (3)

where « # 1,3,....2m —1, 7 =0,1,....m—1. Fora =2n+1, n =
0,1,...,m—11n (3) the factor t*™=2717 js to be replaced by t>"~2172"=2|Int|,
17=0,1,....m—n—1.

From Proposition 1 it follows that in the case o < 1 (weak degeneracy)
u(0) exist for all j = 0,1,...,m — 1, while for @ > 1 (strong degeneracy)
not all u(0) exist. More precisely, for 1 < a < 2m — 1 the derivatives at zero
u9(0) exist only for j =0,1,...,5s,, where s, =m —1—[%}] (here [q] is the
integer part of a number a) and for a > 2m —1 all u9(0), j =0,1,...,m—1,
in general may be infinite.

Proposition 2 The embedding
W™ C Ly (4)
1s compact for every a > 0.
Remark 3 The embedding
W™ C Lyg (5)
1s compact for every a > 2m — 1 and > o — 2m.

Observe that in the case f = o — 2m and o < 2m — 1 the embedding (5)
fails (see [8]). For a < 2m—1 we only have the embedding W* C Ly .,y > —1.
However, for & > 2m — 1 we have the embedding W* C L o2, which can be
proved by using of the Hardy inequality (see [6] and [8]) and this embedding
is not compact. Indeed, it is easy to verify, that for the bounded in W
sequence up(t) = n2t "2 (Int)"2 2(t), where o € C™[0,b], (t) = 1
for t € [0,5],0 < ¢ < min{1,b} and ¢(t) = 0 for ¢ € [¢,b] doesn’t exist the
convergent in Ly o, subsequence (see [5], [12]).
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2.2 One—dimensional Equation

Now we consider the Neumann problem for the special case a = 1 of the
one-dimensional equation (1)

Bu = (—1)m(tau(m))(m) +tu=f, f€Ly_,. (6)

Definition 4 A function w € W is called a generalized solution of the
Neumann problem for the equation (6) if for every v € W2 we have

(tau(m)> U(m)) + (t%u,v) = (f,v), (7)
where (-, +) is the scalar product in L2(0,b).

Proposition 5 The generalized solution of the Neumann problem for the
equation (6) exists and is unique for every f € Loy _,.

The uniqueness of the generalized solution immediately follows from Definition
4. To prove the existence we note that the linear functional {f(v) = (f,v) is
continuous in W)" because

@) <Nl —al 0l L0 < SN zo a0l Wz

and use Riesz’s lemma on the representation of continuous functionals.
If the generalized solution is classical then from (7) after integration by
parts we get

m—1

(=)™ (Eu™) ) )+ 37 (=1) () () DT D) |+ (Eu,v) = (£, 0).

Jj=0

Since the function v € W2" is arbitrarily we conclude that the function u(t)
fulfills the following conditions (see [10])

tum™ )|, _ = "), =0, j=0,1,...,m—1 (8)

=0 t=b

For a« = 0 the conditions (8) are usual Neumann conditions, which are of
Sturm type and, therefore, regular (see [9]).

Definition 6 We say that w € W2* belongs to D(B), if the equality (7) is
satisfied for some f € Ly _,. In this case we will write Bu = f.

According to Definition 6 we have an operator
B D(B) C W;n C L27a — L27_a .

If u € W we know that u()(0),j = 0,1,...,m — 1 exist only for a < 2m —
2j —1 (see Proposition 1). But for the generalized solution of the equation (7)
we can improve it and give the following description of u € D(B).
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Proposition 7 The domain of definition of the operator B consists of the
functions uw € W™ for which u'%(0) are finite for 0 < a < 2m — 2j and
2m — 1 < a < 4m — 2j — 1. The value u(0) is finite for 0 < a < 2m + 1.
The values u'(0) cannot be specified arbitrarily, but are determined by the

right-hand side of (7).

Proof. To describe the domain of definitions D(B) of the operator B first
note, that t*u € Ly _, since u € Ly,. Hence it is enough to study the be-
haviour of the solutions for the equation (—1)™(tu(™)™) = f f € L, , near
to the point ¢ = 0. Let o« > 2m — 1. For the solution u(t) of this equation we

have
ol [e=omman o

where P, 1(t) = ap + ait + -+ + @, 1™ is the polynomial of the degree
m — 1. Since u € W™ we have that P,,_1(t) = 0. Hence we can write

u™ () = t7P,,_(t) +

(-1
(m —1)!

2m—1—«

t
) (8) =\ [ =yt e < el
0

therefore, integrating u(™ () (m — j)-times, j = 0,1,...,m — 1, we get for
some polynomial @,,—;—1 of the degree m — j — 1

<

@ ()] = Qum_j1(t) + 1 I /O (t — 7)==y () dr| <

(m—j—1

<G+l e T =G e T

Let now 2m—2j—1 < a <2m—2j5+1,7 =1,2,...,m—1. Then in the equality
(9 ay=a1 =...=am_j—1 = 0since u € W*. The second term in (9) we have
already estimated and it exists for & < 2m — 1. Now it is enough to estimate
only first term after integrating u(™ () (m — j)-times. The main term after
integration remains c,, ;#*™~%~% therefore for the existence of u\9)(0) we get
the condition 2m — 25 —a > 0, i.e., a < 2m — 2j. Note that for other values of
a the existence of the values u?)(0) is proved in Proposition 1 (see [13]). Note
also that the conditions in Proposition 7 are exact, i.e., if we take for example
a = 2m — 27, then the statement is false, the value u(j)(O) in general doesn’t
exist. [

To get an operator in the same space we set g(t) = ¢~ f(t). It is evident
that g(t) belongs to Ly o and || f||1, _. = ||9]|1.... Therefore, we get an operator
B=t"*B:DB)=D(B)C W C Lyy — Lyo with Bu=g.

Proposition 8 The operator B : Ly, — Lo, 15 positive and selfadjoint.
Moreover, the inverse operator B™' : Ly, — Lo, is compact.

Proof. The self-adjointness of the symmetric operator B (symmetry and
positivity of the operator B follow from the Definition 6) is a consequence of
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the existence of the generalized solution for every f € Lo _, (see [4]). Now
using (2) and the equality (7) with v = u we get

lulliy = (f 1) < N Fllze o llullze. < 119l llullwg

and, therefore, we have
Null oo < [Bul|L,,- (10)

The compactness of the operator B! : Ly, — Lo, now follows from the
inequality (10) and Proposition 2. [J

Corollary 9 The operator B has a discrete spectrum, and the system of
the corresponding eigenfunctions is dense in Lo, .

This follows from the connection of the spectra of the operators B and B!
and from the properties of compact selfadjoint operators (see [4]).

Note that if A is an eigenvalue and u(t) a corresponding eigenfunction of
the operator B then we have

(=17 + 1 = M. (1)

It follows then from the inequality (10) and Definition 6 that A > 1. Note that
the number A = 1 is an eigenvalue for the operator B with the multiplicity m
since every polynomial of order m — 1 is an eigenfunction. Therefore, for the
solvability of the equation

(_1)m(tau(m))(m) =f fe Ly o, (12)
we get the following result:

Proposition 10 The generalized solution of the Neumann problem for the
equation (12) exists if and only if (f, Py—1(t)) = 0 for any polynomial P,,_1(t)
of order m — 1.

Here we have used both (g, Ppn_1(t))a = (f, Pn_1(t)) since t*g(t) = f(¢)
( (-,+)a is the scalar product in Ly, ) and the definition of the operator B.
Note that the generalized solution of the Neumann problem for the equation
(12) is unique up to an arbitrary additive polynomial of order m — 1.

Now we can consider the general case of the one-dimensional equation (1)

Pu=(—1)"(t*u"™) "™ +at®u=f, f€ Ly_a, (13)

because the number 1 — a can be regarded as a spectral parameter for the
operator B. Therefore, we can state that if 1 —a ¢ oB then the equation (13)
is uniquely solvable for every f € Ly _,.
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3. The Operator Equation
In this section we consider the operator version of the equation (1)
Pu=(-1)"D*(t*D" ) u+t*Au=f, f€ Ls_o((0,b),H), a>0. (14)

Suppose that the operator A : H — H has a complete system of eigenfunctions
{op}2y, Avr = appr, k € N, forming a Riesz’s basis in H (see [4]), i.e., for
every x € H we have v = Y 7 2y, and there are some positive constants
c; and ¢y such that

oo oo
a Y lal <2l < e ) lanl (15)
k=1 k=1

Hence for every u € Ly ((0,b), H), f € La_o((0,b), H) we have

uw=>Y u(t)pr, f= filt)er, keN (16)
k=1 k=1

Therefore, the operator equation (14) can be decomposed into an infinite chain
of ordinary differential equations

Pkuk = (—1)m(tau](€m))(m) + akto‘uk = fk, fk S Lgﬂ_a, k e N. (17)

For the equations (17) we can define the generalized solutions wuy(t), k € N, of
the Neumann problem (see Section 2).

Definition 11 A function u € Ly 4((0,b), H) is called a generalized solu-
tion of the Neumann problem for the equation (14) if the functions ug(t), k € N,

in the representation (16) are generalized solutions of the Neumann problem
for the equations (17).

Proposition 12 The operator equation (14) is uniquely solvable for every
€ Ly _o((0,b), H) if and only if the equations (17) are uniquely solvable for
every fr € Lo _o, k € N, and the inequalities

unllLon < cllfellzz . (18)
are satisfied uniformly with respect to k € N.

For the proof of Proposition 12 see [4].
Let the numbers A\ =1 < A < -+ < A\ < -+, A\ = +00 when k£ — o0,
are the eigenvalues of the operator B (see Section 2). Suppose that

p(l —ag, A\p) >¢, k,meN, (19)

where € > 0 and p is the distance in the complex plane.



Volume 14, 2010 7

Theorem 13 Under the condition (19) the generalized solution of the Neu-
mann problem for the operator equation (14) exists and is unique for every
f € Ly _o((0,0),H).

First note that under the condition (19) the equations (17) are uniquely
solvable for every fi € La_,, k € N and the inequalities (18) are satisfied.
Now the proof of Theorem 13 follows from Proposition 12.

Let g=1t"f, f € Ly_»((0,b), H). Then g € L,((0,b), H) and we define

an operator
P=t°P:D(P) = D(P)CLya((0,b), H) = Ly ((0,b), H),

with Pu = g in Ly ,((0,b), H). It follows from the condition (19) that for the
generalized solution of the Neumann problem we have

| Ly (08),1) < |G| L0 (0.8),00)- (20)

The operator P~ : Ly ,((0,b), H) — L24((0,0), H) in general is not compact
in contrast to Proposition 8 (it will be compact only in the case when the
space H is finite-dimensional). If the operator A : H — H is selfadjoint we
can describe the spectrum of the operator P.

Proposition 14 The spectrum of the operator P is equal to the closure of
the direct sum of the spectra cB and o(A — 1), i.e.,

oP=0B+c(A—1)={\+ X —1: )\ €0B, \, € 0A}.
The proof of Proposition 14 immediately follows from the equality
P=B®Ig+I,, @ (A-1)

(here ® means the tensor product of the operators). Note that here we use
the assertion, that if A\ € ¢T for the selfadjoint operator 71" in some separable
Hilbert space T : X — X, then there is some sequence z, € D(T),n €
N, ||z,|| = 1 such that (T — Nz, — 0,n — oo (see [1], [14]).

References

[1] J. M. Berezanski, Expansion in Eigenfunctions of Selfadjoint Operators, Transl.
Math. Monographs 17, American Mathematical Soc., Providence, 1968.

[2] V. I. Burenkov, Sobolev Spaces on Domains, Teubner, 1999.

[3] A. A. Dezin, Degenerate operator equations, Math. USSR Sbornik, 43, no. 3 (1982),
287-298.

[4] A. A. Dezin, Partial Differential Equations (An Introduction to a General Theory of
Linear Boundary Value Problems), Springer, 1987.

[5] P. A. Djarov, Compactness of embeddings in some spaces with power weight, Izvestya
VUZ-ov, Matematika, 8 (1988), 82-85 (Russian).

[6] G. H. Hardy, J. E. Littlewood, G.Polya, Inequalities, Cambridge Univ. Press, Cam-
bridge, 1964.



8 Bulletin of TICMI

[7] L. D. Kudryavtzev, On a variational method of determination of generalized so-
lution of differential equations in the function spaces with power weight, Differentsial’nye
Uravneniya , 19, no. 10 (1983), 1723-1740 (Russian).

[8] L. D. Kudryavtzev, On equivalent norms in the weight spaces, Trudy Mat. Inst.
Steklov., 170 (1984), 161-190 (Russian).

[9] M. A. Neumark, Lineare Differentialoperatoren, Akademie Verlag, Berlin, 1965.

[10] R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Elec-
tronic Journal of Differential Equations, Monograph 01, 1994.

[11] L. Tepoyan, Degenerate fourth—order diffeential-operator equations, Differentsial’nye
Uravneniya , 23, no. 8 (1987), 1366-1376 (Russian); English Transl. in Amer. Math. Soc.,
no. 8 (1988).

[12] L. Tepoyan, On a degenerate differential-operator equation of higher order, J. Con-
temp. Math. Anal. 34 (1999), no. 5, 48-56 (2000); translated from Izv. Nats. Akad. Nauk
Armenii Mat. 34 (1999), no. 5, 26-33 (Russian. English, Russian summary).

[13] L. Tepoyan, The mixed problem for a degenerate operator equation, Bulletin of
TICMI (Thilisi International Centre of Mathematics and Informatics), 12 (2008), 15-29.

[14] J. Weidmann, Lineare Operatoren in Hilbertrdumen, Teil 1, Grundlagen, Teubner
Verlag, Stuttgart, 2000.

Received 15.01.2010; revised 16.05.2010; accepted 22.09.2010



