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We consider an Exotic European Option in the case of Black-Scholes financial market model,
whose payoff function is a certain combination of payoff functions of the Binary and Asian
options and investigate the hedging problem. To achieve this aim, the Clark-Ocone stochastic
integral representation formula for the corresponding path-dependent Wiener functional with
the explicit form of integrand is given also, which is based on the generalization of the Clark-
Ocone’s formula, obtained by us earlier.
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1. Introduction

The payoff functions of derivative securities with more complicated forms than
standard European or American call and put options are known as Exotic Options.
One of the Exotic Options of this kind is the so-called Binary Option. It is an option
with discontinuous payoff function. The simplest examples of the Binary Options
are call and put options “cash or nothing”. The payoff function of the call option
has the form BCr = Ql(s,~k}, and for the put option BCr = QIs, <y, where
K is the strike price at the time of execution 7. The Binary Option “an asset
or nothing” is also commonly used. There are the same conditions as in “cash or
nothing” option, but the difference is that the owner of the call option receives
price of the asset St instead of amount (). The Standard European Call Option
(St — K)™) is equivalent to a long position (the bought asset) in the “asset or
nothing” option and short position (the sold asset) in the “cash or nothing” option,
when Q = K.

Moreover, so-called Asian Options are also type of Exotic Option. The payoff
function of this option depends on average value of the price of an asset during
the certain period of option life time. The payoff function of the Asian Option by
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definition has the following representation: Cit = (Ag(Tp, T) — K)*, where

T
1
AMMH:T_%/&ﬁ
To

is arithmetic mean of the prices of asset on the time interval [Ty, T], K is a strike
and S = (S¢) (0 <t <T)is a geometrical Brownian motion. The main difficulty
in pricing and hedging the Asian Option is that the random variable Ag(7p,T)
is not lognormal distributed and therefore, it is rather difficult to obtain explicit
formulas of pricing of this option.

Beginning with the works of Harrison and Pliska ([1], [2]) which showed that
the stochastic integral representation theorem of Wiener functional (also known as
martingale representation theorem) and the Girsanov change of probability mea-
sure are the “keys” to understanding option pricing in the celebrated Black and
Scholes model, these methodologies have been applied with considerable success
to questions of various problems of modern financial mathematics. Instrumental
in obtaining these representations is an extension of the familar Clark formula
([3]-[5]). The purpose of this paper is to derive the representation formula for the
optimal portfolios associated with option pricing for some Exotic Type European
Option with stochastically nonsmooth payoff function.

Let Wy (t € [0,T]) be a standard Wiener process and let 3} be a natural filtra-
tion generated by this Wiener process. If F is a square integrable S}V -measurable
random variable, then there exists a unique {3}"}-adapted square integrable in
L5([0,T]) random process 1, such that (see [3])

T
F:EF+/’MMW
0

Karatzas and Ocone showed in [6] how to use the Ocone-Haussmann-Clark formula
in financial mathematics, in particular, for constructing hedging strategies in the
complete financial markets driven by a Wiener process. Since that time interest
to Malliavin calculus has been significantly increasing. Therefore developing of
the theory has intensively begun together with looking for the new sphere of its
applications ([7]-[9]). Among them the applications in mathematical statistics are
especially important (regularity of density, hypothesis testing).

At the same time, finding explicit expression for v is a very difficult problem.
In this direction, one general result is known, called Ocone-Clark formula (see
[5]), according to which vy = E(DyF|3}"), where D; is the so called Malliavin
stochastic derivative. But, on the one hand, here the stochastically smoothness of
considered functional is required and on the other hand, even in case of smoothness,
calculations of Malliavin derivative and conditional mathematical expectation are
rather difficult.

Absolutely different method for finding vy was offered by Shyriaev, Yor and
Graversen ([10], [11]). This method is based on using Ito’s (generalized) formula and
Levy’s theorem for Levy’s martingale m; = E(F|3]") associated to F. Our earlier
approach (see Jaoshvili, Purtukhia [12]) within the classical Ito’s calculus allows
to construct vy explicitly by using both the standard Lo theory and the theory
of weighted Sobolev spaces, in the case when the functional F' has not stochastic
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derivative (in particular, the class of functionals considered by us includes, for
example, the functional F' = Iy, -, which is not stochastically differentiable).

We have developed some methods of obtaining the stochastic integral represen-
tation of nonsmooth (in the Malliavin sense) Wiener functionals and their appli-
cations to the problems of hedging of European Options ([12]-[17]). In particular,
in [13] we consider the path-dependent Wiener functional

F=Wr—K)" I{ nin w,<c}

0<t<T

which isn’t stochastically smooth. For this functional the stochastic integral rep-
resentation formula with an explicit form of integrand is obtained. Note that this
functional is a typical example of payoff function for so called European barrier!
and lookback? Options. Hence, obtained there stochastic integral representation
formula could be used for calculating the explicit hedging portfolio of such barrier
and lookback option.

It turned out that the requirement of smoothness of functional can be weakened
by the requirement of smoothness only of its conditional mathematical expecta-
tion ([14]). In particular, we (with prof. O. Glonti) generalized the Clark-Ocone
formula in case, when the functional is not stochastically smooth, but its con-
ditional mathematical expectation is stochastically differentiable. The method of
finding this integrand under this condition was established. It is well-known that
if random variable is stochastically differentiable in the Malliavin sense, then its
conditional mathematical expectation is differentiable too ([18]). In particular, if
F € Dy, then E(F|SY) € Dy and DyE(F|SY)] = E(DF|SY )1 (t). On the
other hand, it is possible that conditional expectation can be smooth even if the
random variable is not stochastically smooth ([14]). For example, it is well-known
that Ij,, <. ¢ D21 (indicator of event A is Malliavin differentiable if and only if
probability P(A) is equal to zero or one ([18])), but for all t € [0,T) :

c—W,
E[I{WTgc}BXV] = <\/T7—;> € Dy;.

On the other hand, of course, there are also nonsmooth functionals whose con-
ditional mathematical expectation is not stochastically differentiable too. In par-
ticular, we consider in [16] the functional of the integral type fOT us(w)ds with the
nonsmooth integrand ugs(w). It is well-known that if us(w) is not differentiable in
the Malliavin sense, then the Lebesgue average (with respect to ds) is not differen-
tiable in the Malliavin sense either (see [16], Theorem 2). On the other hand, in this
case even the conditional mathematical expectation of the mentioned functional is
not smooth, because we have:

2y " w)dslal] = [ ustrts+ | " Bfus(w)|317 s,

IThe barrier option is either nullified, activated or exercised when the underlying asset price breaches a
barrier during the life of the option.

2The payoff of a lookback option depends on the minimum or maximum price of the underlying asset attained
during certain period of the life of the option.
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where the first summand is not differentiable, but the second summand is differen-
tiable in the Malliavin sense (if us(-) € Dy for almost all s and u.(w) is Lebesgue

integrable for a.a. w, then j;T us(w)ds € Da 1 (see [19])). It should be noted that
such type of integral functionals have been considered in our previous works ([15]-
[17]). In [17] the method of hedging of option based on the using the local time of
the risky asset price S was developed, but this approach isn’t applicable here. So,
firstly, we derived the Clark stochastic integral representation of local time. Then
using the relation between payoff of option and local time (the Trotter-Meyer The-
orem), based on the stochastic type Fubini theorem, we obtain the Clark integral
representation for the integral type payoff function fOT Iia<s,<b) S2dt of European
option. Finally, we solved the corresponding hedging problem in the case of Black-
Scholes model with zero interest rate. In [15] the method for hedging of European
Option with payoff function fOT Ite,<s,<c,1dt in the case of Bachelier market model
was elaborated.

In the present work we consider an Exotic Option which is a certain combination
of the Binary and Asian Options. The hedging problem for this type of options is
investigated. In particular, we study the European Option with payoff function
fOT Stl{c,<5,<c,1dt, where St is a geometrical Brownian motion and ¢; < ¢z are
some real numbers. For this purpose the Clark stochastic integral representation
for such a payoff function with the explicit form of integrand is obtained.

2. Auxiliary results

Let the standard Wiener process W = (W;), t € [0,T] on the probability space
(2,3, P) be given, and let (3}V), t € [0,T], be the natural filtration generated by
the Wiener process W.

Let p(u,t,W,, A) be the transition probability of the Wiener process W, i.e.
PWy € A[W,] = p(u,t,W,, A), where 0 < u < t, A is a Borel subset of R and

p(u7 t? z, A) =

1 _ 2
I S / exp { - M}dy
V27t —u) Ja 2(t — u)
For the computation of conditional mathematical expectation below we use the
following statement:

Proposition 2.1: For any bounded or positive measurable function f we have
the relation

E[f(W,)[W,] = /R F@)plut, Wardy) (P — a.s.).

We will denote (see, [18]) domain of stochastic (Malliavin) derivative operator D
by Do 1. That means, D 7 is equal to the adherence of the class of smooth random
variables S ! with respect to the norm

IHere S denotes the class of a random variables which has the form F = f(Wy,,...,Wy,,), f € Cpe(R™), ti €
[0,T], n > 1, where Cp°(R"™) is the set of all infinitely continuously differentiable functions f : R" — R
such that f and all of its partial derivatives have polynomial growth. In addition, we will note here if F' € S,
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[1F|l210 = [F|Ly) + IDFl L,0:02(0,1))) -

The following rule of stochastic differentiation of the composite function is valid

Proposition 2.2: Let ¢ : R™ — R! be a continuously differentiable function
with bounded partial derivatives. Suppose that F = (F', ..., F™) is a random vector
whose components belong to the space Dy 1. Then ¢(F) € Dy, and

Dyp(F) = Z awizﬁ(F)Dth.
=1

(see, [18], Proposition 1.2.5.).

Theorem 2.3: Suppose that g, = E[F|3}V] is Malliavin differentiable (g(-) €
Dy 1) for almost all t € [0,T"). Then we have the stochastic integral representation

T
gT:F:EF+/ v dW, (P —a.s.),
0

where
Uy 1= %E[Dugtlﬁm in the Ly([0,T] x ©)
(see, [14], Theorem 1]).
Denote
Sy = exp{oW; + (u — 0?/2)t}.

Theorem 2.4: For any real number ¢ > 0 and 7 € (0,T] the random variable
Sr1is, <) has the following stochastic integral representation

Inc— pur — o%7/2 Inc—vr—oW,

) - [ e

Srlis <oy = eXP{MT}‘15< )qu

T

+a/ {exp{Q,uTﬁ-QU;/Vu—02u}¢<lnc—l/7 ;J?@_;U%T—u)ﬂdwu’ )

0

where v = pu — 0%/2, @ is the standard normal distribution function and ¢ is its
density function.

then
DiF =Y *8”((Wtu~~-,th))f[o,ti](t)~
i=1 o
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Proof: According to Proposition 2.1, using the standard technique of integra-
tion (in particular, highlighting the full square in the argument of the exponential
function) and the well-known property of the normal distribution and its density
function, it is not difficult to see that

gz— = E[STI{STSC}‘St] = E[exp{aWT + VT}I{WTS(1H07VT)/J}|%1‘»]

. 1 T (CC — Wt)2
= s t)/ Lto<(inc—vr)/o} €XP{OT + VT } exp { BT C—y }dx

(Inc—vT)/o

22 = 2[Wi + o(r — t)]w + W2 — 2ur(T — t) }daz

1
T 2 - ) _Z eXp{_ 2(r — 1)

-
27(1 —t)

(Inc—vr)/o [ —W,—oa(r =) = Wy +o(r—t)]2+ W2 —2vr(r — 1) d
X / exp{— 2(r—1) } '

—0o0

2uT + 20W, + 0% (1 — t)
=exp { 2 J

(Inc—vT) /o

1 [z — W — o(r — t)]?
=D exp{ -y

eXp{Q,uT—i-Qth—a2t}¢<lnc—yr—aWt—02(T—t)>. @)

2 oVT =t
Therefore, according to Proposition 2.2, the random variable g/ =

E[S;Itg,<c3|S¢] is Malliavin differentiable, i.e. gf € Dy for all t € [0,T). Hence,
due to Theorem 2.4, we have the following stochastic integral representation:

S Iis. <o = B[S Ips. <] + / vudWo (P —a.s.), (3)
0
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where

vu =l BID,g7|SY] in the Lo((0.7] x 9. @

It is obvious that

(lnc— Ut — o1/2

NG

Farther, due to Proposition 2.2, from relation (2) we can write

)- ()

E[S:I{s <] = 95 = exp{ur}®

2ut + 20Wy —JZt}QB(lnc— vr — oWy — o?(1 — t)

5 P )I[O,t] (w)

Dygi = oexp {

1 {2u7+20Wt—02t} (h’lC—I/T—O‘Wt—O'z(T—t)
exp ¥

5 P )1 0, (w)

— exp {M}{M(t, W) - \/%Jg(t, W) Mg (w). (6)

Using Proposition 2.1, we obtain

lnc—m'—aWt—a2(7'—t))‘%u}

(1,7, W3] = B exploWi} e

Inc—vr—ox—o?(r _t)> exp {Ux— (I_W}dCC

o
= \/m_é ?( =1 20— )

Therefore, according to the relation

0, y<O0;
. Yy
hrn<I>< ) =4¢0.5, y=0;
tTT T —1
4 1, y>0,

using the Lebesgue dominated convergence theorem and the standard technique of
integration, we conclude that

) 2ur — ot
ltlTr?E{eXp {#}Ujl(tﬂ'; Wt)I[o,t}(u)‘%u}

oexp{vr} - W.)?

= = _ @ = W)
- \/m I{ln c—vr—ox>0} €XP {O'x 2(7_ — u) }dmI[OJ] (u)
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oexp{vr oW, +c(t —u
N 2%?7:{—1}1)@( {2W+2( )}

(Inc—vT) /o

g / o { - qu<7— - S) ok pdalio(a)

—00

2ut + 20W,, — o?u Inc—vr — oWy — 0%(1 — u)
:aexp{ }@(
2 P

On the other hand, due to Proposition 2.1, we have

)I[o,f] (u). (7)

lnC—VT—O'Wt—O'Z(T—t)>|

EL(t, 7, W)[Su] := Elexp{oWi}o( o

lnc—VT—UﬂU—UQ(T_t)>exp{aa:— (x_w}dl’

i 1 i
B m_{o@( VTt

Inc—vr —ox —o(t—t)]? (v —W,)?—20(t—u)x }da:

i |
- wlt—*ué o {- 20°(r 1) ) 2t =)

B 1 a?(t —u) + W2(r —t)
- Qm/t—ueXp{ T 2 —t(t-u) }
T (r — w)a? + 2t — u) — Wy — o(t — uw)](r — )
< few - 27— 1)t — ) jda,
where
a=o(r—t)— IHC%Z/T.

Farther, using again the standard technique of integration and the well-known
property of the normal distribution density function, we easily ascertain that

1

E[Jy(t, 7, W)|Su] = i a
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00 22— 2(lnc vr)(t—u)+o(r—t)W, CL‘+ l=u 2 + T— tw2
X exp{ — olr=u) }dw
2(7’ t)(t—u)

[ (In c—m—)(t—u)—i—a(T—t)Wu]Q

o(r—u)
NI }dx

exp

27rﬂ /

t—u 2+ T— tW2 [(1nc—1/'r)(t—u)+a('r—t)Wu]2

_T-u o(t—u)
<exp { NG }
(T—=t)(t —u)

27n/t—u T—U

o (r —t)(W, — 71“;’”)2 —(r—uw)(nc—v7)? + 02 (1 — u)az}

xexp{ - 202(r —u)(7 — 1)

1 T—t (W, — )2 4 (7 —w)[o?(r — t) — 2(Inc — v7)]
exp{ a 2(t —u) }

Inc—v7\2 2

1=t p{_(Wuz(:__zL) }exp{lnc—uT—%(T_t)}

T—1 2

= exp{lnc—yT—%(T—t)}cp<

T—U

Inec—vr —aWu)
o\T—u '

Therefore, we can conclude that

. 2ut — o2t 1 .
ltlTr?E[exp{ 5 }mb(t,ﬂ Wt)I[o,t](U)’\fu]

B 1 (lnc—m'—aWu)
v o\T—u

2

X ltlTIE {exp {W}exp{lnc VT — %(7’ — t)}I[M](u)}
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1 Inc—vr—oW,
m@( o= ) exp{v7}exp{lnc —v7}j - (u)

B c (lnC—V’T—O’Wu
TVt o/

Combining now relations (4), (6), (7) and (8), we obtain that

V0.1 (w). (8)

c <lnc—uT—aWu

P e )I[O,r] (u)

2ut 4+ 20W,, — O'QU}@(IDC— vt — oW, — o?(1 — u)
2 oVT —u

The last relation together with (3), (4) and (5) complete the proof of the theorem.
]

+oexp { ) Lo 7 (u).

Corollary 2.5: In the case p = 0%/2 for any real number ¢ > 0 and 7 € (0,7
the random variable SrI(g <.y has the following stochastic integral representation

Inc—o Inc— oW,

aﬁ%)‘o/wc_ﬁ@( oVT —u

Srlig. <cy = exp{027/2}q5< )qu

T

+U/ [exp{2aWu —1—;2(7- — ) }@(lnc — U:VUT__Uz(T — u))}qu. ()

0

Theorem 2.6: For any real positive numbers ¢; < ca the integral type functional
fOT Stlfc <5, <c,1dt admits the following stochastic integral representation

T T
0/ Silie <oyt = [ 0/ exp{,ut}@(lnc_ Zi/_i ot/ Q)dt} : (10)
i r 1 t W,
c nc—uvt— oW, ca
U g
’ ’ 2ut + 20W,, — ou Inc— vt — oW, — o?(t —u) c2
+UO/{[/exp{ 5 }@( o )dt} czq}qu
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Proof: Integrating both parts of relation (1) with respect to dr, using the stochas-
tic type Fubini theorem (see [20], Corollary of Lemma IV.2.4), it is not difficult to
see that the following stochastic integral representation is fulfilled

T

T

h’lC- 7'—0'27' 2
[ Srtiass.cortr = [[explunta(MEE T 0y
0

0

T

Inc—vr — O'Wu>

O/To/mw o )T (1)

T

T
+U//exp{2u7'+20'wu—U2U}¢<IHC—VT—O'WU—O'2<T—u)>qud7_
00

2 oVT —u

T

T
Inc— m- o%7r/2 c Inc—vr — oWy,
:/exp{;n}@( e / dq- / /mgp( P )dT}qu
0 u

0

T
2;17' +20W,, — o?u Inc—vr — oW, — (1 — u)
+a/ /exp 5 }@( T >dt}qu.
0 u

On the other hand, we have

T
/Stl{cl<gt<02}dt = /StI{St<02}dt - /Stf{st@l}dt
0 0 0
This relation together with (11) completes the proof of the theorem. O

3. Main results
Let a Wiener process w = (wy), t € [0,7] on the probability space (2,3, P) be
given, and let (3}V), t € [0,T] be the natural filtration generated by the Wiener

process W. Consider the Black-Scholes model with risk-free asset price evolution
described by

dBt = TBtdt, B() = 1, (12)
where r > 0 is the interest rate and risky asset price evolution

dS’t = /LStdt + O'Stth, SO = ]., (13)
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where p € R is appreciation rate and o > 0 is volatility coefficient.
Denote

-7 1/pu—r\2
o= ean{ =W o (7))

and let Pr be the measure on (£, W) such that
dPr = ZrdP.

From Girsanov’s Theorem it follows that under this measure (martingale risk
neutral measure)

u—r

Wt:Wt—F t

is the standard Wiener process and
dS; = rSydt + oS, dW,, So =1,
or
Sy = exp{oW, + (r — 0% /2)t}. (14)

Consider now the problem of “replication” the European Option of Exotic type
with the payoff of integral type

T
F:/ Ite,<5,<c,) Sedl, (15)
0

where ¢; and co are some positive constants, ¢; < co. It means that one needs to
find a trading strategy (0, v:), t € [0,T], such that the capital process

Xy = 0By + 75, Xr=F, (16)
under the self-financing condition
dX; = BrdBy + ydSy. (17)
From relations (1.3), (1.5) and (1.6) we obtain

T T

F=Xr=Xo+ /T(ﬁtBt + ’YtSt)dt + /O”}/tStth. (18)
0 0

Our goal to find the trading strategy (3,7) = (B¢, %), t € [0,T].

Taking r and W instead of w and W respectively in Theorem 2.6, we can obtain
the next result.
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Theorem 3.1: In the scheme (12), (13), for any real positive numbers c¢; < ca,

the following stochastic integral representation for the functional F from (15) is
true

T T
0/ Silfe,<sicenydt = | 0/ exp{rt}d(E = Ztﬁ ot/ 2] . (19)
’ ’ 1 vt — W
c nc—vt—o
U et
rerf 2t + 20W, — o%u Inc— vt — oW, — o%(t —u) ¢
+ﬁ/{[!?mp{ S G T L N (L

where v =1 — 02 /2.
If the interest rate is zero we obtain the next result.

Corollary 3.2: Ifr =0, then we have the following stochastic integral represen-
tation

T T 2
/Stf{c1<st<C2}dt /45 lnc—a t/2>dt} e=c
9 0
n T c lnc+02t/2—0W pone
_!{{/ i S = LU W L

T T —
2W— 1 2/2 — oW, — o%(t — u) c —~
+00/ /exp o JU}@(nc—i-at U\/;f_iu o“(t—u )dt} C_CI}qu

u

The result of Theorem 3.1 gives us a possibility to find the component v; of

the hedging strategy m = (8;,v), t € [0,T], which is defined by integrand of
representation (19) and is equal to

T
lnc—l/v oW, c
d 20
USt /\/ SO oV — U ) U} ( )
t
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C2

2 o\VU — U

CcC=C1

+‘51Yt[t/TeXp{2rv+20Wu U2u}@<lncﬁv — oW, —o2(v fu))dv}

Now, using the result of Theorem 3.1, we can find the capital process

T

X, = E[F|3V] = [ / exp{rv}@(lnc_:}ﬁJQU/ 2>dv] : (21)
0
Forr Inc—v—oW,
C NC—vVv—0oWy C2 —~
‘(/H/m@( ovo Jaol| _, Jdu+o
[ o (g e ooy
0 u

where the symbol E denotes the mathematical expectation under the measure P.
The second component 3; of hedging strategy m can be found as follows

1

=g

(Xt — 7S5t). (22)

Therefore, the hedging strategy m = (5, V), t € [0,T] in the problem of "repli-
cation” of Exotic type European Option with payoff F' given by (15) in case of
Black-Scholes financial market model, is defined by relations (20), (21) and (22)

and the price C of this option

T

G- [/exp{rt}@(lnc_7:\/_%0%/2)(14
0

C2

C=C1

Corollary 3.3: In the case r = 02/2, the hedging strategy @ = (B¢,v;) and the
price of the considered option are defined correspondingly by the following relations

C2

T —~
-5 | el )l

CcC=C1

T N N
+;[/6XP{20WU+202(U_1L) }@(lnc—ar/\q;l%aj(v—u))dv} 22:61’
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= —(Xy — 1S
Bt B, (Xt —725t),
T | 9
~ nc—rt—o“t/2 c2
C = {/exp{rt}@( / >dt}
U\/i C=Cy
0
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