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The paper is devoted to obtaining the first basic relation, which is obtained from the second
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1. Introduction

In the course of the equation of mathematical physics and in the course of partial
differential equations, three types of equations are mainly considered. Equations of
parabolic, hyperbolic and elliptic types [1]-[2]. For the equation of parabolic and
hyperbolic types, the Cauchy problem and the mixed problem are considered, and
for the equation of elliptic type the boundary problem [3]-[4] is considered.
Later, boundary problems were considered for equations of parabolic and hy-

perbolic type [5]-[6], in spite of the fact that the boundary value problem for an
equation of hyperbolic type is not correct.
Finally, we should note that the boundary value problem with nonlocal boundary

conditions was considered for solving mixed and composite types, as well as for
integro-differential and loaded equations [7] - [9].
Recently, boundary problems have appeared for the study of the elliptic first-

order type of the so-called Cauchy-Riemann equations [10]-[12].
In this paper we consider the boundary value problem for a two-dimensional

fourth-order equation, related to the process of motion of a compressible exponen-
tially stratified fluid. Using the analog of the second Green’s formula, all linearly
independent necessary conditions are determined, the definition of which belongs
to the authors of this article.
Using these necessary conditions, we obtain an analytical form of the solution of

the boundary problem under consideration, which makes it possible to determine
the approximate solution.
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2. Formulation of the problem

Consider the following boundary value problem:

1

c2
∂4u(x)

∂x41
− ∂4u(x)

∂x21∂x
2
2

+ b2
∂2u(x)

∂x21
− ω2

0

∂2u(x)

∂x22
= 0, x = (x1, x2) ∈ D ⊂ R2, (1)

∑
0≤j1+j2≤3

α
(1)
kj1,j2

(x1)
∂j1+j2u (x)

∂xj11 ∂x
j2
2

∣∣∣∣∣
x2=γ1(x1)

+ α
(2)
kj1,j2

(x1)
∂j1+j2u (x)

∂xj11 ∂x
j2
2

∣∣∣∣∣
x2=γ2(x1)



= αk (x1) , k = 1, 4, x1 = [a1, b1], (2)

where c, b ω0 is a constant number, D is bounded convex in the direction x2 flat

are, boundary Γ = ∂D is the Lyapunov line, α
(s)
kj1,j2

(x1) and αk (x1), if k =

1, 4, 0 ≤ j1 + j2 ≤ 3, s = 1, 2 and x1 = [a1, b1], are continuous functions, and the
boundary conditions (2) are linearly independent. When designing an area D on
the direction x1, parallel to x2 boundary Γ is divided into two parts, Γ1 and Γ2,
with equations x2 = γk (x1) , k = 1, 2, x1 = [a1, b1].

Figure 1.

As is known, the fundamental solution of equation (1) has the form:

∫
Γ

U(x− ξ) = −e (x1 − ξ1) e (x2 − ξ2)

cb2
sinb (x2 − ξ2) sincb (x1 − ξ1)

−e (x1 − ξ1)

2cb2
e(x2 − ξ2 + c (x1 − ξ1)) (cosb (x2 − ξ2 + c (x1 − ξ1)) − 1)
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+
e (x1 − ξ1)

2cb2
e (x2 − ξ2 − c (x1 − ξ1)) (cosb (x2 − ξ2 − c (x1 − ξ1)) − 1) . (3)

Let’s create the second Green formula. To do this, we multiply equation (1) by the
fundamental solution (3), integrate over the domain D. Applying the Ostragradskii-
Gauss formula, we have:
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(4)

where ν is an outer normal to the boundary Γ of the field of D, dx in the main, in
the relation (4) means either dΓ.
The first obtained basic relation (4) consists of two parts, the first part of which

is any solution of equation (1) defined in the field D, and the second one connecting
with the boundary Γ are the first necessary conditions.
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Separating these conditions, we have:

1

2
u (ξ1, γ1(ξ1)) =

1
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bce (x1 − ξ1) e (γ1 (x1)− γ1 (ξ1)− c (x1 − ξ1))

2

×sinb (γ1 (x1)− γ1 (ξ1)− c (x1 − ξ1)) ] dx1
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+
1
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×sinb (γ2 (x1)− γ1 (ξ1)+ c (x1 − ξ1))

−ce (x1 − ξ1) δ (γ2 (x1)− γ1 (ξ1)− c (x1 − ξ1))

2

+
bce (x1 − ξ1) e (γ2 (x1)− γ1 (ξ1)− c (x1 − ξ1))

2

sinb (γ2 (x1)− γ1 (ξ1)− c (x1 − ξ1)) ] dx1. (5)

Where through e(t) denotes the Heaviside symmetric unit function, and through
δ(t) denotes the Dirac delta function. Similarly to (5), from (4) we obtain the
second necessary condition for u (ξ1, γ2(ξ1)).
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+
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+
1
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As seen from (5), some terms mutually cancel out or turn into zero.
If γ2 (x1) − γ1 (ξ1) ̸= 0 if x1, ξ1 ∈ (a1, b1) then in (5) there is no delta Dirac

function.
Thus, the following theorem is established.

Theorem 2.1 : Let D be bounded, convex toward to x2 a plane flat with the
boundary of the Lyapunov Γ line, c, b and ω0 are positive constant numbers, then
each solution of equation (1) defined in the field D satisfies the necessary conditions
obtained from the basic relation (4).
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