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In the case of the first approximation of I. Vekua’s version of the elastic shell
theory the general system consists of six second order differential equations.
This system is split into two autonomous systems. One of them has the form

(A+2u)§ (h%?) + gy <h3‘?1> A;; (h“?f)
+u§y h?’(?;f h%?’ — 3uhvy +Y; =0,

() e () ()|
+A§; <h3%;} ha;; — 3uhvs + Ys = 0,
,u;x <haalf> + u;; (h%;) + 3/1/15 (hvy) + 3uh§ (hvo)
+Y; =0,

(The second one was investigated ealier and this article is a continuation of
the paper [2]), where vy, vy and us are unknown functions and, namely, they
are so called first (v1,v9) and zero (u3) moments of the displacement vector; A
and p > 0 are Lame’s constants; Y7, Ys and Y3 are the first (Y7,Y3) and zero
(Y3) Fourier-Legendre moments of the given volume force, 2h is the thickness
of the shell. The system is considered on the so called middle surface w of
the shell, which is actually the orthogonal projection of the shell on the plane
Oxy.

In this paper we study the case when the middle surface w is a plane
bounded domain with a smooth boundary dw € C!, where

Ow :FOUFl,

Fo={(x,0): a<z<b,a,b€ R, a<b},
Iy ={(z,9): (2,y) € Ow, y = 0},
LoNTy = {(a,0); (b,0)}.
Let the thickness 2h be given by the function

h=h(y)=y™, m>0.
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Let D(w) be a set of infinitely differentiable compactly supported functions
on w. We introduce the following bilinear form on [D(w)]?:

(9u1 (9’[)1 8u2 8'112 6u1 3u2 87}1 81)2
/y [am or "oy oy T (ay+ax> (ay*axﬂ“

m | [ Ous Ovs Jus dus
+/y [(6:5 + SU1> (3:13 + 31)1) + <8y + 3U2> (ay + 37}2)1 dr, (2)

w

where u = (uy, ug, u3), v = (v1, vo,v3) € [D(w)]>.
According to the Korn’ weighted inequality [see [2], p.35] it is easy to show
that (2) is a scalar product on [D(w)]?. If we complete [D(w)]? by the scalar

0
product (2) we obtain the Hilbert space M ,,(w) with the norm

au 2 8u 2 8U 8U 2
2 1 2 1 2
m R d

w@u 2 ou 2
m 3 3
‘|“w/y [(8:1: + 3161) + <8y + 3u2> ] dr,

0
where u = (u1, us, u3) € M m(w).
Let

(3)

L27(U7n70'7n70'71n)(w) = L270'm (UJ) X LQyUm (CL)) X L2,U}n (UJ),

where Ly, (w) is a Hilbert space of measurable functions ¢ such, that the
norm

191 22,0, () = (/ Um(y)tﬁ?(fv,y)dT)

w

is finite,

Yy om#
Um(y) = {

Y, >0, m=1,

1 _ 4—m
Om =Y .

0
We say that v = (vy,v9,u3) € M n(w) is a generalized solution of the

system (1) if

81}1 5’w1 (%1 871)1 8112 (9w1
B = 3m 2) — —— Zr2r
(v, ) /{y [()\—i_ 2 dr Ox T 8y Oy +)\8y Ay

w

+ Ovs O +y" %w + 3pvw
u@x By ) Max 1 HU1 Wy
8112 8w2 (%2 8w2 82)1 8w2 61}1 8102
dmo| 222 2 A+ 2 A——
Y l“ax TR AR L i wi e Qy]
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+y™ %w+3vw+18u3%+1878 +vag+ ang d
) M@y 2 HU2Wo Ma o 3M8y8 M28y Mlax T

1
= / <Y1w1 + Yowy + 3Y3wg) dr

for all w = (wy, wq, w3) € [D(w)]>.
Theorem. IfY = (Y1,Y5,Y3) € L2( . )(w) then the system (1)

03m,03m;03,,

0
has a unique generalized solution v = (vy,va,u3) € M sm(w) and there holds

the estimate
[vlls.3m < clYlr,

o ol ’
93m:93m93,,

where ¢ is a positive constant independent of Y and v.

0
Proof. Let us show that the form B(v w) is coercive on M 3, (w). First

we estimate B(v,v) for v = (v1,v9,u3) € M 3m(w)
v\’ A, \Ovdur aw v,
2
/y { (A+ M( ) < ) (9y8x 8x8y
61)2 (9?)1 81)2 8?]1 8@2
(9 1 8U3 1 6u3 8
a U2+3ﬂv2+3ﬂ<ax> = ( ) +ﬂ28y}d7'
vy v A A oy O\’
3m 1 2 1 1 2
— -t 72 9 it z72 our T2
/y [( +ay>+“(<ax> (a)) “(ay+ax>]dT
2 S 2
+2 u/y (—1—32}1) + (ay‘°’+3v2> ]dT
ov oy \ > ov vy \ >
> 3m | [ M1 o2 o 92
o (G) = () (e 52) |
2 S 2
+5/y [(—1—31}1) ¥ (a;’+3v2> ]df,

where 0 < d < §M-
Hence,

8
How

B(v, v) > 01||U||§,3m-
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Let us estimate |B(v,w)|, where v = (v1,v9,u3), w = (wy,ws,w3) €
]\04 3m(w).
5w = | [y oGS (G G2 (G4 52)
ggwmmgyﬂgyw
o [ Bt g
+3v285;3 + uywy + 9U2w2] drl = /y3m [ (42 )88?11 E)aw1
(%Uyl + ?;f) (8521 + agjf) A%Q;%W + A+ 2@%2285;2

v Ovy & Ous Ows
)\axay]dJr / K + 30 ><8x +3w1>

8%3 8w3
+ (ay -+ 3U2> (ay + 3w2>‘| dr|.

Hence, if we use the Holder inequality, we obtain

|B(v, w)| < eaf|vlls,3mlw]]33m-

It is evident that (see [2], Lemmal, p.28)

/Y wdT

Thus, we have shown, that B(v,w) is coercive and bounded, and the func-

<aallwlson Ve,
m>e m >~ 3m,

0
tional [ Y -wdr is bounded on M 3, (w). Now, the Lax-Milgram theorem (see,

e.g. [3]) completes the proof.(]
In what follows we make some ramarks concerning the theorem.

0
At first we remark, that Yu € M 3, (w)
u|1"1 = 0,

and
0

0 0 0
M sm(w) D H 23m(w) X H 23m(w) X H 13(w)

0
(Definition and properties of space H 2,,(w) one can see in the paper [2]).
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0
Let v = (v1,v2,u3) € M 3m(w) be a generalized solution of system (1).
If0<m<%,then

Ul|6w - UQ'&U - u3|8w =0

in the sense of the trace.

Consequently in this case v must be given on the whole boundary if we

consider boundary conditions in displacements.
If%<m<1,then

v1lr, = v2lr, =0, uslaw = 0.

v1 and vy do not have traces on 'y, in general. In this case v; and v must be
given only on I'y, and ug must be given on the whole boundary.
If m > 1, then

U1|F1 = UQ|F1 = U3|r1 =0

and vy, vo and ug do not have traces on I'y, in general. Therefore, we must
give vy, vy and ug only on I'y, and have them free from boundary conditions
on I'y.
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