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ON TWO-DIMENSIONAL ANALOGUES FOR SHELL-LIKE BODIE

T. Meunargia

I. Vekua Institute of Applied Mathematics
I. Javakhishvili Tbilisi State University

The paper deals with the question of reduction of the three-dimensional
problem of the geometrical and physical nonlinear theory of elasticity to the
two-dimensional one, for shell-like elastic bodies.

I. Let R and
∗
R denote the radius-vectors before and after deformation of

the bodies Ω and
∗
Ω respectively, moreover

∗
R(x1, x2, x3) = R(x1, x2, x3) + U(x1, x2, x3),

∂j
∗
R =

∗
R j = ∂jR + ∂jU = Rj + ∂jU

(

∂j =
∂

∂xj

)

,

where U is the displacement vector, (x1, x2, x3) are the curvilinear coordinates
in the space.

The equation of equilibrium has the form [1]

1
√

∗g

∂
√

∗g ∗
σ i

∂xi
+

∗
Φ = 0

where
∗g is the discriminant of the metric tensor of the domain

∗
Ω,

∗
σ i are

,,contravariant stress vectors“,
∗
Φ is an external force.

Under repeating indices summation is meant unless otherwise stated. The
Latin letters take the values 1,2,3, while the Greek letters take the values 1,2.

The equilibrium equation can be written as

1
√

g
∂
√

gσi

∂xi
+ Φ = 0, σi = σij(Rj + ∂jU),

where g is the discriminant of the metric tensor of the domain Ω, σij are
contravariant components of the stress tensor,

σi =

√

√

√

√

∗g
g
∗
σ i, Φ =

√

√

√

√

∗g
g

∗
Φ .

The stress-strain relation has the form

σij = (Eijmn + Eijmnpqεpq)εmn,
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where Eijmn and Eijmnpq are tensors of elasticity of the fourth and sixth rank,
respectively, εij are covariant components of the strain tensor, moreover

Eijmn = λgijgmn + µ(gimgjn + gingjm),

Eijmnpq = η1gijgmngpq + η2gij(gmpgnq + gmqgnp)+

+η3gmn(gipgjq + giqgjp) + η4gpq(gimgjn + gingjm),

εmn =
1
2
(Rm∂nU + Rn∂mU + ∂mU∂nU),

λ and µ are Lame’s constants of elasticity, and η1, η2, η3, η4 are modules of
elasticity of the second order for isotropic elastic bodies, gij = RiRj are con-
travariant components of the metric tensor, Ri and Ri are co and contravariant
base vectors.

II. 1. We consider the coordinate system of lines of curvature, which is
connected normally to the midsurface S of the shell Ω, i.e.

R(x1, x2, x3) = r(x1, x2) + x3n(x1, x2),

where r and n are radius-vectors and a normal of the S, x3 is the thickness
coordinate −h ≤ x3 ≤ h, h = const is the semi-thickness.

The dependence between covariant and contravariant base vectors of the
shell Ω and the midsurface S, are expressed as follows

Rα = (1− kαx3)rα, Rα =
rα

1− kαx3
, R3 = R3 = n, (α = 1, 2)

(on α no summation!)
where k1 and k2 are main curvatures of the midsurface S, i.e.

Ri = (1− kix3)ri, Ri =
ri

1− kix3
, gij =

aij

(1− kix3)(1− kjx3)
,

√
g =

√
a(1− k1x3)(1− k2x3), a = a11a22 − a2

12,

aij = rirj =











aαβ, i = α, j = β;
0, i = 3, j = β, or i = α, j = 3;
1, i = j = 3,

aαβ = rαrβ, aα3 = a3β = 0, a33 = 0, k3 = 0

(on i, j, α, β no summation!).
For the tensor εij we obtain

εij =
1
2
(1− kix3)(1− kjx3)

(

rj
∂iU

1− kix3
+ ri

∂jU
1− kjx3

+
∂iU

1− kix3

∂jU
1− kjx3

)

,
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(on i, j no summation!) i.e.

εαβ =
1
2
(1− kαx3)(1− kβx3)(rβ

∂αU
1− kαx3

+ rα
∂βU

1− kβx3
+

∂αU
1− kαx3

∂βU
1− kβx3

) =

= (1− kαx3)(1− kβx3)eαβ,

εα3 =
1
2
(1− kαx3)(n

∂αU
1− kαx3

+ rα∂3U + ∂3U
∂αU

1− kαx3
) =

= (1− kαx3)eα3,

ε33 = n∂3U +
1
2
(∂3U)2 = e33.

2. Now, we assume the validity of the representations:

∂1U = (1− k1x3)∂1V (x1, x2),

∂2U = (1− k2x3)∂2V (x1, x2),

∂3U = ̂V (x1, x2),

where V and ̂V are the two-dimensional vectors of x1, x2.
Taking into consideration the condition

∂1∂2U = ∂2∂1U ⇒ ∂2(k1∂1V ) = ∂1(k2∂2V ),

∂3∂1U = ∂1∂3U ⇒ ∂1
̂V = −k1∂1V,

∂3∂2U = ∂2∂3U ⇒ ∂2
̂V = −k2∂2V,

for V (x1, x2) we obtain the following equation

(k1 − k2)
∂2V

∂x1∂x2
+

∂k1

∂x2

∂V
∂x1

− ∂k2

∂x1

∂V
∂x2

= 0.

Now, from the system of Gauss equations

∂k1

∂x2
= (k2 − k1)

∂ ln
√

a11

∂x2
,

∂k2

∂x1
= (k1 − k2)

∂ ln
√

a22

∂x1
,

we have

(k1 − k2)
[

∂2V
∂x1∂x2

−
∂ ln

√
a11

∂x2

∂V
∂x1

−
∂ ln

√
a22

∂x1

∂V
∂x2

]

= 0.

The general solution of this equation has the form [2]

V (x1, x2) = u(x1)+v(x2)−
x1
∫

x0
1

u(t)
∂R(t, x0

2, x1, x2)
∂t

dt−
x2
∫

x0
2

v(τ)
∂R(x0

1, t, x1, x2)
∂τ

dτ.
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where R(t, τ, x1, x2) is a Riemann function, u(x1) and v(x2) are arbitrary vec-
tors.

For the vector U(x1, x2, x3) we obtain

U(x1, x2, x3) =
x2
∫

x0
1

[1− x3k1(x1, x2)]
∂V (x1, x2)

∂x1
dx1 +

+
x2
∫

x0
2

[1− x3k2(x0
1, x2)]

∂V (x0
1, x2)

∂x2
dx2 +

+ (x3 − x0
3) ̂V (x0

1, x
0
2) + U(x0

1, x
0
2, x

0
3),

and

̂V = −
x1
∫

x0
1

k1(x1, x2)
∂V
∂x1

dx2 −
x2
∫

x0
2

k2(x0
1, x2)

∂V (x0
1, x2)

∂x2
dx2 + ̂V (x0

1, x
0
2).

Now for emn we have the following two-dimensional expressions:

eαβ =
1
2
(rα∂βV + rβ∂αV + ∂αV ∂βV ),

eα3 =
1
2
(n∂αV + rαV ̂V + ̂V ∂αV ),

e33 = n ̂V +
1
2

̂V 2.

The ,,contravariant stress vector“ σi has the form

σi = (1− kjx3)σij(rj + ∂jv) =
T i

1− kix3

(on i no summation!), where

T i = (M ijmn + M ijmnpqepq)emn(rj + ∂jV ),

∂jV =
{

∂αV, j = α,
̂V , j = 3.

Here
M ijmn = λaijamn + µ(aimajn + ainajm)

M ijmnpq = η1aijamnapq + η2aij(apmanq + amqanp)+

+η3amn(aipajq + aiqajp) + η4apq(aimajn + ainajm).

At last, we obtain the following two-dimensional equation of equilibrium:

1√
a

(

∂
√

a(1− k2x3)T 1

∂x1
+

∂
√

a(1− k1x3)T 2

∂x2

)

+



Volume 6, 2002 5

+
∂(1− k1x3)(1− k2x3)

∂x3
T 3 + (1− k1x3)(1− k2x3)Φ = 0,

where
T α = (Mαβmn + Mαβmnpqepq)emn(rβ + ∂βV )+

+(Mα3mn + Mα3mnpqepq)emn(n + ̂V ),

T 3 = (M3βmn + M3βmnpqepq)emn(rβ + ∂βV )+

+(M33mn + M33mnpqepq)emn(n + ̂V ).

3. Let us consider the boundary condition for the stresses.

The stress vector σ∗
l
acting onto area with the mormal

∗
(l) has the form

σ
(
∗
l)

=
∗
σ i ∗l i (

∗
l i =

∗
l
∗
R i).

The normal
∗
l after deformation can be defined as

∗
l =

∗s 1 ×
∗s 2

| ∗s 1 ×
∗s 2|

,

where
∗s 1 and

∗s 2 are unit tangent vectors of the boundary surface ∂
∗
Ω ,with

the surface element
d
∗
S = | ∗s 1 ×

∗s 2|d
∗s 1

∗s 2.

Then we have

∗
l =

1

| ∗s 1 ×
∗s 2|





d
∗
R

d
∗s 1

× d
∗
R

d
∗s 2



 =
1

| ∗s 1 ×
∗s 2|





d
∗
R

ds1
× d

∗
R

ds2





ds1

d
∗s 1

ds2

d
∗s 2

=

=
∗
R i ×

∗
R j

dxi

ds1

dxj

ds2

ds1ds2

d
∗
S

=
√

∗g ∈ijk
∗
R k dxi

ds1

dxj

ds2

ds1ds2

d
∗
S

=

=

√

√

√

√

∗g
g
√

g ∈ijk
∗
R k dxi

ds1

dxj

ds2

ds1ds2

d
∗
S

=

√

√

√

√

∗g
g
(Ri ×Rj)Rk

∗
Rk dxi

ds1

dxj

ds2

ds1ds2

d
∗
S

=

=

√

√

√

√

∗g
g
(s1 × s2)Rk

∗
R k ds1ds2

d
∗
S

=

√

√

√

√

∗g
g

s1 × s2

|s1 × s2|
Rk

∗
R k |s1 × s2|ds1ds2

d
∗
S

⇒

⇒
∗
l =

√

√

√

√

∗g
g
(lRk)

∗
R k dS

d
∗
S

⇒

⇒
∗
l i =

∗
l
∗
R i =

√

√

√

√

∗g
g
li

dS

d
∗
S

(li = lRi),
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where l =
s1 × s2

|s1 × s2|
is the normal of the boundary surface before deformation,

dS is the element of this surface,

dS = |s1 × s2|ds1ds2,

∈ijk are the Levi-Civita symbols.
Now the strees vector can be written as

∗
σ

(
∗
l)

=
∗σ
∗
l i =

√

√

√

√

∗g
g

∗
σili

dS

d
∗
S

= σili
dS

d
∗
S

,

i.e.,
∗
σ

(
∗
l)

d
∗
S

dS
= σili = σαlα + σ3l3,

where
lα = lRα, l3 = ln.

On the surfaces x3 = ±h we have l = n and so

σ(n)(x1, x2,±h) = σ3(x1, x2,±h).

The stress vector σ
(
∗
l)

acting on the lateral surface d ̂S = dŝdx3 with the

normal ̂l has the form
σ(̂l) = σα(̂lRα).

The normal ̂l before deformation can be defined as:

̂l =
dR
dŝ

× n,

where
dR
dŝ

= ŝ =
dR
ds

ds
dŝ

=
d(r + x3n)

ds
ds
dŝ

=
(

s + x3
dn
ds

)

ds
dŝ

⇒

⇒ ŝ = [(1− k3x3)s + τsx3l]
ds
dŝ

.

Therefore,
̂l = [(1− k3ks)l − x3τss]

ds
dŝ

,

(̂l × ŝ = n, l × s = n).

where ̂l, ŝ and l, s are the unit vectors of the tangential normal and tangent
of the lateral curve of the surfaces x3 = const and x3 = 0 (midsurface),
respectively, ks and τs are the normal curvature and geodesic torsion of the
midsurface, dŝ and ds are linear elements of the surfaces x3 = const and x3 = 0,
respectively, moreover

dŝ =
√

1− 2x3ks + x2
3(k2

s + τ 2
s )ds ⇒
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⇒ dŝ =

√

√

√

√a11(1− k1x3)2

(

dx1

ds

)2

+ a22(1− k2x3)2

(

dx2

ds

)2

ds.

On the other hand, we have [3]

̂l =
dR
dŝ

× n =
dR
ds

× n
ds
dŝ

= Rα × n
dxα

ds
ds
dŝ

=
√

g ∈α3β Rβ dxα

ds
ds
dŝ

=

=
√g

a
√

a ∈α3β Rβ dxα

ds
ds
dŝ

=
√g

a
(rα × n)rβRβ dxα

ds
ds
dŝ

=

=
√g

a
(s× n)rβRβ ds

dŝ
=

√g
a
(lrβ)Rβ ds

dŝ
⇒

⇒ ̂lRβ = ̂lβ =
√g

a
lβ

ds
dŝ

.

Therefore,

σ(̂l) = σα̂lα =
√g

a
σαlα

ds
dŝ
⇒

⇒ σ(̂l)

ds
dŝ

= (1− k1x3)(1− k2x3)(σ1l1 + σ2l2) ⇒

σ(̂l)

ds
dŝ

= (1− k2x3)T 1l1 + (1− k1x3)T 2l2.

Thus, we obtain the following system of two-dimensional equations of the
geometrically and physically non-linear theory for shell-like elastic bodies:

a) Equilibrium equations

1√
a

(

∂
√

a(1− k2x3)T 1

∂x1
+

∂
√

a(1− k1x3)T 1

∂x2

)

− 2(H −Kx3)T 3 + F = 0

(

2H = k1 + k2, K = k1k2, (1− k1x3)(1− k2x3)Φ = F =
(0)
F +x3

(1)
F

)

;

b) Stress-strain relation

T i(x1, x2) = (M iβmn + M iβmnpqepq)emn(rβ + ∂βV )+

+(M i3mn + M i3mnpqepq)emn(n + ̂V ),

where
eαβ =

1
2
(rα∂βV + rβ∂αV + ∂αV ∂βV ),

eα3 =
1
2
(n∂αV + n ̂V + ̂V ∂αV ),

e33 = n ̂V +
1
2

̂V 2.

III. Special cases
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1. Spherical shell (k1 = k2 = − 1
R

)
The vector of displacement U for the spherical shell has the form

U(x1, x2, x3) =
(

1 +
x3

R

)

V (x1, x2) ⇒

⇒















∂αU =
(

1 +
x3

R

)

∂αV (α = 1, 2),

∂3U =
1
R

V.

The equation of equilibrium can be written as:

1√
a

∂
√

aTα

∂xα
+

2
R

T 3 + F = 0,

where

T i(x1, x2) = (M ijmn + M ijmnpqepq)emn(rj + ∂jV ) (∂3V =
1
R

V ),

emn(x1, x2) =
1
2
(rm∂nV + rn∂mV + ∂mV ∂nV ),

F (x1, x2) =
(

1 +
x3

R

)

Φ.

The stress vector has the form

σ(l) =
(

1 +
x3

R

)

Tαlα
ds
dŝ

= Tαlα = T(l),

(

dŝ =
(

1 +
x3

R

)

ds
)

.

2. Cylindrical shell (k1 = − 1
R , k2 = 0)

The vector of displacement for the cylindrical shell has the form

U(x1, x2, x3) =
(

1 +
x3

R

)

u(x1) + v(x2).

Then


































∂1v =
(

1 +
x3

R

) du(x1)
dx1

∂2v =
dv(x2)
dx2

∂3v =
1
R

u(x1)

The equilibrium equation looks like:

1√
a

∂
√

aT 1

∂x1
+

1
R

T 3 = 0,
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1√
a

∂
√

aT 2

∂x2
+ Φ = 0 (Φ = Φ(x1, x2)),

where

T i = (M i1mn + M i1mnpqepq)emn

(

r1 +
du(x1)
dx1

)

+(M i2mn + M i2mnpqepq)emn

(

r2 +
dv(x2)
dx2

)

+(M i3mn + M i3mnpqepq)emn

(

n +
1
R

u(x1)
)

.

Here
M ijmn = λδijδmn + µ(δimδjn + δinδjm),

M ijmnpq = η1δijδmnδpq + η2δij(δmnδnq + δmnδnp)+

+η3δmn(δipδjq + δiqδjp) + η4δpq(δimδjn + δinδjm),
(

δij =
{

1, i = j
0, i 6= j

)

.

For the eij we obtain

e12 =
1
2

(

r1
du(x1)
dx1

+ r2
dv(x2)
dx2

+
du
dx1

dv
dx2

)

= e21,

e13 =
1
2

(

n
du
dx1

+
r1u
R

+
u
R

du
dx1

)

,

e23 =
1
2

(

n
dv
dx2

+
r2u
R

+
u
R

dv
dx2

)

,

e11 = r1
du
dx1

+
1
2

(

du
dx1

)2

, e22 = r2
dv
dx2

+
1
2

(

dv
dx2

)2

, e33 =
nu
R

+
u2

2R2 .

The stress vector σ(̂l) has the form (̂l = r2):

σ(̂l) = σ(r2) = (1 +
x3

R
)T 2l2

ds
dŝ

= T 2.
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