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Abstract. The present paper deals with the bending of a cusped Kirchoff-
Love plate on an elastic foundation. For cusped plates see surveys in [1], [2],
[3].
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1. Introduction

The bending equation of isotropic Kirchhoff-Love plates on an elastic foun-
dation has the following form (see, e.g., [4]):

ka = (Dw711)711 + (Dw722)722 + V(Dw722)711 (1)
+ I/(D’LU711)722 + 2(1 — I/)(D’LUJQ)JQ
+ kw = f(x1,15) in Q C R?,
where w = w(z,x2) is the deflection, k; >k > ko >0, ko, k1 = const, k is
the modulus of a foundation, k(z1,z2) € C(Q), f is the intensity of the lateral
load, 2 is a bounded plane domain with Lipschitz boundary 02 = I'y U I'y
with I'; lying on the z; axis and I'; lying in the upper half-plane {z, > 0},
D € C%*(Q) N C(9Q) is the flexural rigidity of the plate,
2FEh?
Di=——— 2
3(1—v?)’ )
2h(z1,x2) is the thickness of the plate, F(z1,z9) is the Young’s modulus, v is
the Poisson’s ratio, 0 < v < 1, and indices after comma mean differentiation
with respect to the corresponding variables.
Throughout this paper we assume once and for all that

D(z1,29) >0 0n QUTy, D(x1,0) >0 for (x1,0)€Ty. (3)
If
Qh(l'l, 1132)‘1‘1 =0 (4)
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(i.e., 2h(x1,0) = 0 for (z1,0) € I'y). In this case
D(.Tl,l'z)‘rl =0. (5)

But (5) may also occur if 2h|p, > 0 but E|p, = 0 (or if both quantities vanish).
In all these cases, the plate will be called a cusped one, although it can be even
of constant thickness but with properties of cusped plate caused by vanishing
of the inhomogeneous Young’s modulus £ on I';.

We recall that for the bending moments M,w, a = 1,2, the twisting mo-
ments Myow, Mojw, the shearing forces Qow, o = 1,2, and the generalized
shearing forces Q*w, o = 1,2, we have the following expressions:

Myuw = —DWao+rvwgg), a,=1,2; a# 0, (6)
Myw = —Myw=2(1—-v)Dw,s, (7)
Qow = (Myw) o+ (Myw)g, a=1,2; a# 3, (8)
Qiw = Quw+ (Myw)g, a=1,2; a#[. 9)

At points of the boundary 02 where D vanishes, all the above quantities will
be defined as limits from the inside of €2.

Problem 1 Let us consider for equation (1) the following inhomogeneous
BCs:

—onTs
ow
_ - 1
w g1, on g2, ( 0)
-only
either w = wo(z1), wo =wi(z1) iff I < +o0, (11)
or wa =wi(x1), Q5 =Q5x1) iff lpa < +o0, (12)

% 0 when Ipy < +00,
= 0 when Iyy = +o0,

fo .[22 < +OO, (13)

or w = wy(x1), Mo = MJ(x) {

or
Z 0 when Iy < +00,

a0
My = M (x1) { = 0 when Iyy = +00,

Z 0 when I3 < +00,
= 0 when I = +o0,

Q5 = Q5(x1) {

where g1, ga and wo,wy, Q, MY are prescribed functions on Ty and Ty, respec-
tively,
U(z1)

Ikg = IkQ 1'1 / T 131, dT k€ {0,1, .. .}, (121,0) c FQ, (15)

where (x1,1(x1)) € Q for (z1,0) € T'y.
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2. Function Spaces

Definition 2 Let
W22(Q, p) (16)

be the sets of all measurable functions w(xy,xs) defined on Q@ which have on

locally summable generalized derivatives 8&%?2)10 for a1 +as <2, ag,a9 €
{0,1,2}, such that

x1,T2 T1,T2

/,oal,a2 (21, 22)|0L002p|2dQ < +o0, 000w =w, (17)
Q

for
poo =1, p2o=p11=pogz: = p(z1,72)
with a bounded measurable on Q0 function p(xy,x2) and the following norm

HwHI%VQ:Q(Q,p) = /{w2 +p[(w711)2 + (w,12)2 + (w,22)2]}d§2 (18)

Let us further consider the following sets for different cases of the function
p(l'l, 1.2):

W*2(Q, D) (19)

with p(x1, z2) = D(x1, 25) satisfying (3), and
W272(Q7 l'g) (p(xla 232) = 23;{), (20)
W2(Q,d*)  (p(z1,22) = d(x1, 32)), (21)

where

d(xy, xe) := dist{(x1,z2) € Q, 0Q}.

Further, in (19) let us introduce another norm:

0 = [0+ 0D+ w0+ (- 1)Dlws)
Q
+ 21— D) + (1 - )DwmPlde,  (2)
From (3) it is clear that in the case under consideration if D € C(f), then
pal,az S Llloc(Q)'

Therefore, according to [5], the spaces (19)—(21) with the norms (18)—(22),
respectively, will be Banach spaces, and moreover, Hilbert spaces under the
appropriate scalar products.
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Lemma 3
W22(Q, z5) € W3(Q,d*(x1,22)) ¥ 2> 0. (23)

Proof follows from the obvious inequality

d(zy,m0) <9 for (my,19) €N (24)

(if d(z1,x2) is a regularized distance, then in the inequality (24) arises a con-

stant factor). O
Lemma 4

VE(Q,2y) < VEH(Q,x3) for 0 < s < 4. (25)

Proof of (25) follows from 1* 727 > o} for 0 < xy < [, where

[ =const > max {z1}.

(z1,22)€Q
O
Let
Qs :={(z1,29) € Q29 >0, 6 = const > 0}.
Evidently,
W*2(Qs, D) C W*?(8s), (26)

where W22(Qs) = W2(s) is the usual (i.e., non-weighted) Sobolev space.
Hence, we get the following
Lemma 5 There exist the traces

ow
wlp, € WH(Ty), on v
2

e W2X(T,) Vve W2(Q,D).

Lemma 6 The norms HwH%W,Q(Q’D) and ||wl| are equivalent.

2
W22(Q,D)
Proof. Evidently,
J0ls2i0,00 < [ {0+ 20D [(wi0)* + (w1 ]
Q

+(1 - V)D [(w,u )2 + (w,u )2} + 2(1 - V)D(w,12 )2} dQ)

< / {20® + (1 +v)D [(wa1)? + (w,n1)?] +2D(w,12)* } dQ < 2||wl[fy22(g py
Q
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and
1
Jullsia = 7 [ A=) + =)D [0 + (wan )]

1

1—v
Q

+(1 — v)D(w,1; )2} dQ) < {w2 +(1—-v)D [(%U,n )2 + (w,20 )2}

1
+2(1 = v)D(w,12)*} dQ < :”w”IQ/V?aQ(Q,D)

O
3. Existence and Uniqueness Theorems
Now, we constitute the space V from the space W?%?%(Q, D) as follows:
Vo= {u € W%, D) : v|p, =0, v _ 0, (27)
? onlr,

and additionally

either v|p, =0, va|r, =0 (if we consider BCs (11))
or valp, =0 (if we consider BCs (12))

or vlr, =0 (if we consider BCs (13))

in the sense of traces}

and

V= {v e W, D) : v|p, =0, Z—Z

= 01in the sense of traces}. (28)
1)

Using the trace theorem, it is not difficult to prove the completeness of V.
We suppose that the functions ¢, gs, wg, ws from Problem 1 are traces
of a prescribed function

u € W**(Q, D). (29)
Let further Q9, MY € Ly(Ty).
Definition 7 Let f € Ly(Q2). A function w € W22(Q, D) will be called a

weak solution of Problem 1, in the space W*2(§), D) if it satisfies the following
conditions:

w—u€eV (30)
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and
Je(w, v) ::/Bk(w,v)dQ = /fvdﬂ—l—”yg/ngdxl
Q Q I
- ’Yl/MQO’U,Qdilfl YoelV, (31)
I}
where
v =0, 7% =0 for the BCs (11),
M =0, %=1 for the BCs (12),
m =1, %2 =0 for the BCs (13),
M =1, =1 for the BCs (14),
and
Bi(w,v) = vD(wi1 +wa)(vi1+v2)+ (1—v)Dwiivn,
+ 2(1 —v)Dw19v12 + (1 — v) Dw 290 29 + kww. (32)

Theorem 8 Let
T :=max{1l,k1} and m :=min{l, ko}. (33)

There ezists a unique weak solution of Problem 1 (more precisely, of each of
all the four BV Ps stated in Problem 1). This solution is such that

lwllwz2,0) < Clll fllza@) + llullw2z.p) + 11 1M | ooy
+’72||Q2||L2(F1)]; (34)

where the constant C is independent of f,u, MY, and QY.

Proof of Theorem 8 is based on the Lax-Milgram theorem. It is easy to
show the following three inequalities (see (37), (40), (41) below which imply
the proof).

In view of (31), (32), (22), and Lemma 5, we have

[ Je(w,v)] < [ (D)Zjway + was| - (vD)¥|v 1y + v,25]dD2

Q
" / (1 =)D fwn] - [(1 - ) D} |9
Q
/[2(1 — V)D)7|w | - [2(1 — v) D2 |v,15]dS
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" / (1 =)D wa| - (1 — 1) D] umldQ + T / ] [v]dE2

N

1

2
/I/D(’LU711 + w722)2dQ /I/D(’U,n + ’0722)2dﬂ
Q

IN

1 1
2 2

+ /(1_V) w11 /1—V vn dQ
Q Q

N

_|_
SR

2(1—V) w12 ] /21—V wlg) dS)
Q

N[—=

_|_
:0\

(1—V) w22 |:/]_V ’022 dQ
Q

3

+ [ 2dQ ZdQ

< (4+ |w||W22(QD ||U||W22 (©,D)

< 4@+ D)[wllwze@,n) llvw22@,p)- (35)
In particular,

| Jp(w,v)| < 4(4+D)|wllw22@.pllvllvy Y we W?%(Q, D) (36)
andVveV

and

|Jk(w,v)| <44+ T)||w|v|v]y YV w,oveV. (37)

Taking into account (36), and

‘/ngdml

I't
‘/U72M20d$1
Iy

with the positive constant C from the trace theorem, it is not difficult to see,
that the functional

Foo = /fde — Ju(u,v) + ”yg/ngdxl - ”yl/MSv,gdxl, veV,
Q

< ol ool @ Loy < Collvllv 1@l oy (38)

< ||U,2||L2(F1)HMSHIQ(FH (39)

< CO||U||V||M20||L2(T1)
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is bounded in V. Indeed,

[ Fxo| < || fllzo0) + 44 + T)|ullw22(0,p)
+Co[al| Q5 Lary) + MM | Loy ] V]V (40)

Besides, since m <1, 0<v <1,

Jolly, =
Ty | (0= )me 4 (0= 0)mD [0 + @) + (02 ]} 0

1 ) 2 2 2 B 2
SA=om Q/ {mv* + (1 =)D [(v.1)* + (v.22)*] +2(1 = v)D(v,12)"} d

=T
(1~ V) vz} =

1 9 ) ) )
< 1——1/)m Q/{k;v + Dlv(vi +v29)* + (1 —v)(v11)” +2(1 — v)(v12)

1

ka(v, v).

Whence,
Je(v,0) > (1 — v)ym|jv|)3. (41)
0]

In view of (38), (40), (41), according to Lax-Milgram theorem there exists
a unique z € V such that,

Je(z,v) = Fv = (v, f) = Je(u,v) + 72 / Udifﬂl—%/UﬂMSdiﬁV’UEV,

I I
ie.,
Je(w,v) = (v, )+ / v Q3 — / vy Midzy Vo€V, (42)
Fl Fl
where
w:=u+z€ W>(Q,D). (43)
So,

w—u=z€eV,

and (30) is fulfilled. (42) coincides with (31). Thus, the existence of a unique
weak solution w € W22(Q, D) of the Problem 1 has been proved.
From (40) it follows that

[1Ekllye < (1 fl] 0 + 404+ D)l[ullw22(0,p)
+Co(all @],y + M0,
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where V* is the conjugate to V' space.
By virtue of (43), (44),

lwllw229,0) < llullw22@.p) + [l2]ly < llullw22(e.p)
o 1]y + 44+ Dllullwezg,p) + Co(v2llQ2l| ey + M)
< Clll A1,y + Nullwzzc,p) + MM, 0y + 720100, )

where
C:=mar{4(4+T)a ' +1, a'Cp},

where the coefficient o comes from the Lax-Milgram theorem (see, e.g. [2]).
O

Let us note, that the existence of traces g1, g2, wo, wy of (29) has been
supposed but the traces g; and g, on I'y exist, by virtue of Lemma 5. The traces
wp and w§ exist in the corresponding cases under some additional restrictions
on D.

Let

D(Il, IQ)

s
)

D(zy,29) > D,xf ¥ (21,22) € Q, d.e., 0< D,, = igf (45)

If 52 > 1, then by s we denote the minimal among all the exponents
6 > s > 1 for which (45) holds. It means that if we have the inequality (45)
for s« > 1, we have to check whether there exists the less exponent for which
(45) is valid. If it does exist, then we have to continue this procedure until we
arrive at the minimal one.

If (45) holds for sc < 1, then we need no additional revision since for all
the s < 1 we have the same result concerning the traces.

The condition (45) is essential in a right neighbourhood of I'y. Then it can
be easily extended for the whole domain 2.

Let us note, that when & = 0 or k£ < 0, Problem 1 was considered in [2].

Lemma 9 If (45) takes place, then

W22(Q, D) C W*2(Q,z¥) C W**(Q,d*(x1,22)) ¥ 2 >0, (46)
Proof of (46) follows from (45), (23). O
Lemma 10 If w € W*%(Q, D) and (45) is valid, then there exist traces

35
wlp, € By? (1) C Ly(Ty) if 0< <3 (iee, Iolp, < +00),  (47)
walr, € BQ_TK(Fl) C Ly(Ty) if 0< <1 (e, Inglp, < +00),  (48)

3 1=
where By? (I'1) and By? (T'y) are Besov spaces.
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Proof. Since (45) is valid, according to Lemma 9 (see (46)), w € W*2(Q, D)
implies

w € WH(Q, d*(z1,22)).

But functions from this space (see [6], Theorem 1.1.2) have properties (47) and
(48) if 92 € C'*¢ and 9N € C?** (which means that the boundary is locally
described by functions whose first and second derivatives, satisfy the Holder
condition with a Holder exponent ¢ €]0, 1], respectively). Since in our case I'y
is a part of a straight line, these local conditions are fulfilled all the more.
O
Similarly can be investigated the bending of cusped Euler-Bernoulli beams
[2] on an elastic foundation.
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