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Problem of a cylindrical vibration of elastic plate can be reduced to the
following integro-differential equation (see, e.g.., [1])

ol t) + / K(2,€)put (€0 = fa,8), z€[0.0], >0, (1)

where o(-,t) € C([0,1]), p(z,) € CHt > 0) N C%*t > 0), p(z,t) € C(0 <
c <l t>0); K(z,£) € C([0,] x [0,1]) is defined in the explicit form, and
f(z,t) e C(0<c<I t>0)is a given function.

We solve (1) under the following initial conditions

(10(1'70) 2901(1.)7 Pt (.I',O) :@2('%.)7 LS [07”7 (2)

where ¢;(x) € C([0,1]) (i = 1,2) are given functions. By ¢, (x,t) we denote
(2,t) := Op(,t)
Pt \ T, : ot

Let us consider the case when K (z, &) isn’t a degenerate kernel (case of the
degenerate kernel is investigated in [2]) and K (z, &) is symmetric with respect
to z and &, i.e., K(z,§) = K(§, x).

Let firstly f(z,t) = 0 and let us consider the following integral equation

X(2) = A / K (€)X (€)de. 3)

We denote by A, and X,, corresponding eigenvalues and eigenfunctions
of (3). It is known that because of K(z,&) isn’t a degenerate kernel, the
number of eigenvalues of (3) isn’t finite, all \,, are real numbers, and system of
X, (x) is ful (see, e.g., [3]). Without loss of generality it can be assumed that
IA1] <|A2] <|As] < ... (see [3]).
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Furthermore, from (1) we obtain
! !
— - [ K@ Oou it = [ KwOuend, @
0 0

according to the Hilbert-Schmidt theorem ¢(z,t) can be expressed as an ab-
solutely and uniformly convergent series

= 3 X)), 5)
where l
T.(t) = /go(x,t)Xn(x)dx. (6)
By virtue of (6) and initial conditions (2) we obtain
1,0 = [(e@Xa@)in, T,0) = [@@X@d 0

Let us consider expression (6), in view of (4) and (3) we get

l l l
1
.0 = - [ %) [ K@ Opa@dsts =~ [ ol
0 0 nO
l
——1/ () Xo(2)de = ——T7(1)
= )\n (A n\2)aT = )\n n .
0

Hence, for T,,(t) we have the following equation
T, (t) + X\ T (t) = 0, (8)

under initial conditions (7). Solution of the problem (8)-(7) has the following
form

T, (t) = b} cos(v/ Aut) + by sin(y/ Aut), b = const, i=1,2,

where

by = /Xn(m)gol(m)dm, by = \/%/Xn(m)g@(x)dx.

So, (5) can be rewritten as follows

oz, t) = Z(anOS\/_t +b”sm\/_t> : 9)

n=1
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After formal differentiation of the last series with respect to ¢ we have

Oy (x,t) ZX \/_(b"cos (VAnt) — b?sin(\/)\_nt)), (10)

e (x,t) ZX An <b”cos (v/Ant) + 5 sin( \/_t> (11)

Theorem 1 The series (10) and (11) are convergent absolutely and uniformly
on [0,1] if pi(z) (i = 1,2) can be expressed as an absolutely and uniformly
convergent series as follows

l

I l
0= [ K@&) [ K(€npista)inde = / Koy
for any 1/?1(:3 ) piece - wise continious functlon on [0,1], i=1,2.

Proof. From (10) we get

!so,trvt\<21\/_X b"\+2\\/_X

Let us now consider the first term of the last inequality

> [VAXa@it| = 32| VAX(e) JR GG

l

VAXa(e) [ Xa(€ / K (€ m)xa(n)dndé
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l
— Xn(m)xi(n)dn| < — /Xn n)x1(n
1 )\n \% |)\ | n=1 0

(in view of (12) and Hilbert — Schmidt theorem) < +o0.

Analogously, we can proof the absolutely and uniformly convergence of the

second term of (10) and of the series (11).
0]

Thus, differentiation of (9) is justified.
Evidently, (9) is the solution of (1), (2) for f(x,t) =0.
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Now, let us consider problem (1)-(2) when f(x,t) #Z 0, ¢; = 0, i = 1,2,
and let f(x,t) be expressed as follows

0= [ Ko [ K mwmindg = / K@Oxends g
(0 0

for any (x) piece — wise continious functlon on [0,1].

Then f(x,t) can be replaced as a convergent series

=3 (F o, 1), Xa(2)) Xu(2),

n=1

here,

o0

:ZXn(x)fn(t), fu(?) ::/f(x,t)X x)dx

Further, we look for the solution in the form

z,t) =Y On(z,1),

where ®,(z,t) is a solution of the problem (1)-(2) with f(x,t) replaced by
X, () fr(t). Because of (13), we can rewrite (1) as follows

_ / K (2,€) [~ (€,1) + X(&,1)] d¢

So, ®,,(x,t) has the following form
D, (z,t) = X, (x)T1,(t),
where
T7(8) + A Tin(t) = fu(t),
X (z) satisfies (3).

Therefore, p(z,t) can be expressed as an absolutely and uniformly conver-
gent series

l

=1 .
- ; \/—)\_an(:c) /sm(\/)\_n(t — 7)) fu(T)dT

o

Now, similarly to the Theorem 1, if condition (13) is fulfilled, we have the
absolutely and uniformly convergent of the following series

t
o}

pulat) =3 X(a) [ cos(y/Rult = ) ulr)dr

n=1 0
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t

Oyt (z,1) Z \/_X /sm \/E(t — 7)) fu(T)dr

0

Remark 2 Let f(x,t), @;(x) £ 0 ¢ =1,2. If the following condition

[z, t) + ¢1(z) + tpo(x foﬁfKﬁn Y(n)dnds,

for any (x) piece — wise contlmous functlon on [0,1].

is satisfyed then solution of (1)-(2) can be expressed as follows

t) = i‘l!n(x t

n=1

where

U, (7,1) = X (2)Ton(t),

T3, () + AuTan(t) = ful?),

/ F(.) + o1(2) + ta(2)) Xa(2)dor

Theorem 3 The solution of the problem (1)-(2) is unique.

Proof. Let the difference of two admissible solutions of the problem under
consideration be p(z,t).
For this function we get the following equation

ol t) + / K (2, €)pu (€, 1)dE = 0, (14)

under the following initial conditions
90(x7 0) = 07 (Vo (I, 0) =0. (15)

For ¢(z,t) we have (5), where T,,(¢) is given by the equation (8), and it
satisfies homogeneous initial conditions (15), i.e., T,,(¢) = 0.
Hence, problem (14), (15) has only trivial solution. O
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