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Abstract. We give an effective formula for the improper intersection cycle
of analytic curves in terms of local parametrizations of the curves.

1. Introduction. A new geometric improper intersection theory in the
complex analytic geometry was initiated by Achilles, Tworzewski and Winiarski
in [2] (for isolated improper intersections). In general case the theory was
introduced by Tworzewski in [18]. For arbitrary analytic sets X,Y (or more
generally for analytic cycles X,Y ) in a complex manifold M we obtain an
analytic cycle X •Y in M which reflects the geometric structure of intersection
of X and Y in M . It has also been generalized to arbitrary analytic spaces M
by Rams [15]. The theory has found applications in the separation of analytic
sets [4], [5], [6], [10], [17]. The main idea of construction of X • Y in M
is as follows (see [18]): for any x ∈ M we define the index of intersection
i(X,Y ;x) ∈ Z of X and Y at x. Since i(X,Y ; ·) : M → Z is an analytically
constructible function, it generates an analytic cycle in M , just X • Y . If X
and Y intersect properly in M then X • Y is the ordinary cycle of intersection
of X and Y in M in the sense of Draper [7]. Much more complicated case is
when X and Y intersect improperly. We will consider this case when X and Y
are analytic curves in M i.e. analytic sets of pure dimension one in M . If X
and Y are irreducible analytic curves in M then two cases may occur:

2000 Mathematics Subject Classification. 32S05, 14C17.
Key words and phrases. Improper intersection, analytic curve, analytic cycle, intersec-

tion cycle.
This research was partially supported by KBN Grant No. 2 P03A 007 18.



154

1. X ∩ Y is an isolated set in M . Then

X • Y =
∑

P∈X∩Y

i(X • Y ;P )P

where i(X • Y ;P ) ∈ N (in this case i(X,Y ;P ) = i(X • Y ;P )). An effective
formula for i(X • Y ;P ) was given in [3],

2. X = Y . In this case

X •X = X +
∑

P∈Sing(X)

i(X •X;P )P

where Sing(X) is the set of singular points of X. The main result of the
paper is an effective formula for the coefficients i(X • X;P ) in terms of local
parametrizations of X near P (Th. 4).

I would like to thank R. Achilles and P. Tworzewski for their remarks con-
cerning the first version of this paper and S. Spodzieja for his comments and
advices during writing of this paper.

2. Intersection algorithm. Since in the proof of the main theorem we
will use notions from the Tworzewski intersection algorithm, we first recall it
(see [18]).

Let M be a complex manifold of dimension n. An analytic cycle on M is
a formal sum

A =
∑
j∈J

αjCj ,

where Z 3 αj 6= 0 for j ∈ J and {Cj}j∈J is a locally finite family of distinct
irreducible analytic subsets of M . By SuppA we mean

⋃
j∈J

Cj . If U ⊂M is an

open set then by A|U we mean the restriction of A to U (defined in an obvious
way). The degree µ(A;x) of A at x ∈M is defined to be the sum∑

j∈J

αjµ(Cj ;x),

where µ(Cj ;x) stands for the degree of the component Cj at x. Then the
function

M 3 x 7→ µ(A;x) ∈ Z

is analytically constructible, and inversely, for each analytically constructible
function f : M → Z there exists a unique analytic cycle A on M such that its
degree equals the value of f at every point of M i.e.

f(x) = µ(A;x), x ∈M.
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Each analytic cycle A has the unique decomposition into the sum of analytic
cycles Td of pure dimension d

A =
n∑

d=0

Td.

The extended degree of A at x is defined by

µext(A;x) := (µ(Tn;x), ..., µ(T0;x)) ∈ (N0)n+1,

where N0 := N ∪ {0}. If ∆ ⊂M is an analytic submanifold then the part of A
supported by ∆ is defined by

A∆ :=
∑

j∈J, Cj⊂∆

αjCj .

Now we may recall the Tworzewski algorithm. Since the intersection cycle
is a biholomorphic invariant we will lead considerations in open sets of Cn.

Let X and Y be pure dimensional analytic sets in an open set Ω ⊂ Cn. Let
r := dimX and s := dimY . Denote by ∆ ⊂ Cn × Cn the diagonal, i.e.

∆ := {(x, y) ∈ Cn × Cn : x1 = y1, . . . , xn = yn}.

For any open set U ⊂ Cn×Cn such that U ∩∆ 6= ∅, we denote by H(U,X×Y )
the family of all systems H = (H1, ...,Hn) of analytic hypersurfaces in U (i.e.
analytic sets of codimension 1 in U) such that:

(a) Hj is a nonsingular hypersurface and contains ∆,
(b)

⋂n
j=1 T(x,x)Hj = T(x,x)∆ for x ∈ U ∩∆,

(c) (U\∆)∩ (X × Y )∩H1 ∩ ...∩Hj is an analytic subset of (U\∆) of pure
dimension r + s− j (or empty) for j = 1, ..., n.

For any H = (H1, ...,Hn) ∈ H(U,X × Y ) we define an analytic cycle
(X × Y ) · H in U by the following procedure:

Step 0. Let Z0 := (X × Y ) ∩ U, treated as an analytic cycle. Then
Z0 = Z∆

0 +(Z0−Z∆
0 ), where Z∆

0 is the part of Z0 supported by U ∩∆ (usually
Z∆

0 = 0 unless X = Y = {one point}).
Step 1. Let Z1 := (Z0 − Z∆

0 ) · H1 – it is the intersection cycle in the
sense of Draper of (Z0 − Z∆

0 ) and H1 (note that the intersection of these sets
is proper). Then Z1 = Z∆

1 + (Z1 −Z∆
1 ), where Z∆

1 is the part of Z1 supported
by U ∩∆.

.................................................................................................................
Step n. Let Zn := (Zn−1−Z∆

n−1)·Hn. Then Zn = Z∆
n +(Zn−Z∆

n ), where Z∆
n

is the part of Zn supported by U ∩∆. In this last case Supp(Zn−Z∆
n )∩∆ = ∅.

Then we define
(X × Y ) · H := Z∆

0 + ...+ Z∆
n .
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Now we may define the basic notions of the intersection theory. For any x ∈ Ω
we define the extended index of intersection of X and Y at x by

iext(X,Y ;x) :=(1)

min
lex

{µext((X × Y ) · H; (x, x)) ∈ (N0)n+1 : H ∈ H(U,X × Y ), U 3 (x, x)}

where minimum in (N0)
n+1 is taken with respect to the lexicographic order.

Next, we define the index of intersection of X and Y at x by

i(X,Y ;x) :=
∑

iext(X,Y ;x),

where
∑
v is the sum of coordinates of v ∈ Zn+1. The function

Ω 3 x 7→ i(X,Y ;x) ∈ Z

in analytically constructible in Ω. So, it generates an analytic cycle in Ω. We
denote it by X • Y and call the intersection cycle of X and Y in Ω. If

X • Y =
∑
j∈J

αjCj , αj ∈ Z

then αj is called the intersection multiplicity of X and Y along Cj and is
denoted by i(X • Y ;Cj).

We extend this definition to the case of arbitrary analytic cycles in the
usual way, i.e. by Z–linearity.

In the sequel we will need results concerning the above algorithm and the
intersection cycle. First we quote two formal properties of the intersection
cycle.

Theorem 1. 1. Let X1, X2 and Y be pure dimensional analytic sets in
an open set Ω ⊂ Cn. If X1, X2 are irreducible in Ω, X1 6= X2, and dimX1 =
dimX2 then

(X1 ∪X2) • Y = X1 • Y +X2 • Y.
2. Let X and Y be pure dimensional analytic sets in an open set Ω ⊂ Cn.

If Ω̃ ⊂ Ω is an open set and X̃ := X ∩ Ω̃, Ỹ := Y ∩ Ω̃ then

X̃ • Ỹ = (X • Y ) |Ω̃.

Proof. Ad 1. See Corollary 5 in [1] or Prop. 3, Ch. III in [13].
Ad 2. It follows from the fact that the definition of the extended index of

intersection and, a fortiori, the index of intersection is local, i.e.

i(X,Y ;x) = i(X̃, Ỹ ;x), x ∈ Ω̃.

This gives X̃ • Ỹ = (X • Y ) |Ω̃.
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The next results concern the algorithm. The first is that in the above
algorithm it suffices to take for Hj linear hyperplanes, and the second one that
there are many such hyperplanes. To formulate precisely these results we have
to fix some notions. Since an arbitrary hyperplane H in Cn×Cn containing ∆
has the equation

A1(x1 − y1) + ...+An(xn − yn) = 0, A1, ..., An ∈ C and not all vanish,

the set of such hyperplanes will be identified with Pn−1. For A ∈ Pn−1 we
denote by HA the hyperplane generated by A and for A ∈ (Pn−1)n by HA an
appropriate system of hyperplanes. If x ∈ X ∩ Y then we define

J (x) = {A ∈ (Pn−1)n : HA realizes minimum in the intersection algorithm}

= {A ∈ (Pn−1)n : iext(X,Y ;x) = µext((X × Y ) · HA; (x, x))}.

Theorem 2. For x ∈ X ∩ Y
J (x) 6= ∅.

Proof. See Nowak [12], Cor. 6, or Achilles and Rams [1], Cor. 3.

Theorem 3. Fix x ∈ X ∩ Y , i ∈ {1, ..., n} and A = (A1, ..., An) ∈ J (x).
Then there exists an neighbourhood W ⊂ Pn−1 of Ai such that for any A ∈W
we have

(A1, ..., Ai−1, A,Ai+1, ..., An) ∈ J (x).

Proof. See Rams [15], Th. 3.3, Achilles and Rams [1], Cor. 3, Nowak [13],
Prop. 5, Ch. III, or Spodzieja [16], Th. 3.

3. Improper intersections of analytic curves. Let X,Y be irreducible
analytic curves in an open set Ω ⊂ Cn. Then either X ∩ Y is an isolated set in
Ω or X = Y. In the first case from the intersection algorithm we easily obtain
that

Supp(X • Y ) = X ∩ Y
(see [18], Th. 6.6). So,

X • Y =
∑

P∈X∩Y

i(X • Y ;P )P.

The effective formulas for i(X • Y ;P ) were given in [3], Th. 1, in terms of
local parametrizations of X and Y near P . Namely, without loss of generality
(by the biholomorphic invariance of intersection cycle and Theorem 1) we may
assume that P = 0 ∈ X ∩ Y is an isolated point of intersection of X and Y,
the germs of X and Y at 0 are irreducible and that

C ⊃ K1 3 t 7→ (tp, φ(t)) ∈ X, ordφ > p,

C ⊃ K2 3 τ 7→ (τ q, ψ(τ)) ∈ Y, ordψ > q
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are local parametrizations of X and Y in a neighbourhood of 0 (K1,K2 are
neighbourhoods of 0 in C). Then

(2)

i(X • Y ;P ) = (1/q)
q∑

i=1

ord(φ(tq)− ψ(ηitp))

= (1/p)
p∑

i=1

ord(ψ(tp)− φ(εitq))

where η, ε are primitive roots of unity of degree q and p, respectively (in the
above formulas by ordλ of a holomorphic mapping λ = (λ1, ..., λn) defined in
a neighbourhood of 0 ∈ Ck we mean minn

i=1(ordλi)).
Consider now the other case, X = Y .

Theorem 4. Let X be an irreducible analytic curve in an open set Ω ⊂ Cn.
Then the intersection cycle X •X is equal to

(3) X •X = X +
∑

P∈Sing(X)

i(X •X;P )P

where i(X •X;P ) is given by the following formulas (for simplicity we assume
that P = 0 ):

1. If the germ of X at 0 is irreducible and

C ⊃K 3 t 7→ (tp, φ(t)) ∈ X, ordφ > p > 1,

is a local parametrization of X in a neighbourhood of 0 (K is a neighbourhood
of 0 in C), then

(4) i(X •X;P ) =
p−1∑
i=1

ord(φ(t)− φ(εit))

where ε is a primitive root of unity of degree p,
2. If the germ of X at 0 is reducible and

(X)0 = (X1)0 ∪ ... ∪ (Xk)0

is the decomposition of the germ (X)0 of X at 0 into irreducible components,
then

(5) i(X •X;P ) =
k∑

i,j=1
i6=j

i(Xi •Xj ;P ) +
k∑

i=1

i(Xi •Xi;P )

and i(Xi • Xj ;P ) can be calculated by formula (2) and i(Xi • Xi;P ) by for-
mula (4).
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Proof. Take an arbitrary point P ∈ X. We may assume that P = 0.
1. Assume that the germ of X at 0 is irreducible. We will calculate the

index i(X,X;P ). Let

C ⊃K 3 t 7→ Φ(t) := (tp, φ(t)) = (tp, φ2(t), ..., φn(t)) ∈ X, ordφ > p > 1,

be a local parametrization of X in a neighbourhood of 0. We may also assume
(shrinking Ω) that

X = {Φ(t) : t ∈ K}.
Then we have

X ×X = {(tp, φ(t), τp, φ(τ)) : t, τ ∈ K}.
Now we apply the intersection algorithm. Take an open set U = Ũ × Ũ ⊂

Ω×Ω, (0, 0) ∈ U and a system of hyperplanes H = (H1, ...,Hn) ∈ H(U,X×Y ),
Hi = {(x, y) : Ai

1(x1 − y1) + ...+Ai
n(xn − yn) = 0, Ai

1, ..., A
i
n ∈ C and not all

vanish}. By Theorem 3 we may assume that A1
1 6= 0. Consider two cases:

(i) P is a nonsingular point of X. Then p = 1. Consider the step 0 of the
algorithm. Since X ×X is an irreducible analytic set of pure dimension 2 and
X ×X * ∆ then Z∆

0 = 0 and Z0−Z∆
0 = (X ×X)∩U . Let us pass to the step

1 of the algorithm. We have to find Z1 = (Z0−Z∆
0 ) ·H1 = ((X ×X)∩U) ·H1.

Notice first that

(X ×X) ∩ U ∩H1

= {(t, φ(t), τ, φ(τ)) : t, τ ∈ Φ−1(Ũ), A1
1(t− τ) + ...+A1

n(φn(t)− φn(τ)) = 0}

= {(t, φ(t), t, φ(t)) : t ∈ Φ−1(Ũ)}

∪ {(t, φ(t), τ, φ(τ)) : t, τ ∈ Φ−1(Ũ), A1
1 +A1

2

(φ2(t)− φ2(τ))
t− τ

+ ...

+A1
n

(φn(t)− φn(τ))
t− τ

= 0}.

The first set is equal to X∆ ∩ U ⊂ ∆, where X∆ := {(x, x) : x ∈ X}. So, it is
biholomorphic to X near 0. Since the vector [1, 0, ..., 0] belongs to the tangent
space T(0,0)(X ×X) and not to H1 (because A1

1 6= 0), the proper intersection
of (X ×X) ∩ U with H1 is transversal along X∆ ∩ U . Hence

Z∆
1 = X∆ ∩ U

and
µ(Z∆

1 ; (0, 0)) = 1.

Since A1
1 6= 0 and ordφ > 1, the second set is empty for sufficiently small U .

Then for such U we have Z1 − Z∆
1 = ∅. Hence

iext(X,Y ; 0) = (0, ..., 0, 1, 0)
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and consequently
i(X,Y ; 0) = 1.

(ii) P is a singular point of X. Then p > 1. The step 0 of the algorithm is
the same as in the first case. We have Z∆

0 = 0 and Z0 − Z∆
0 = (X ×X) ∩ U .

Let us pass to the step 1 of the algorithm. We have to find

Z1 = (Z0 − Z∆
0 ) ·H1 = ((X ×X) ∩ U) ·H1.

Notice first that

(X ×X) ∩ U ∩H1

= {(tp, φ(t), τp, φ(τ)) : t, τ ∈ Φ−1(Ũ), A1
1(t

p−τp) +...+A1
n(φn(t)−φn(τ)) = 0}

= {(tp, φ(t), tp, φ(t)) : t ∈ Φ−1(Ũ)}

∪ {(tp, φ(t), τp, φ(τ)) : t, τ ∈ Φ−1(Ũ), A1
1(t

p−1 + ...+ τp−1)

+A1
2

(φ2(t)− φ2(τ))
t− τ

+ ...+A1
n

(φn(t)− φn(τ))
t− τ

= 0}

The first set is equal to X∆ ∩ U ⊂ ∆, where X∆ := {(x, x) : x ∈ X}. So, it is
biholomorphic to X near 0. Moreover, the proper intersection of (X ×X) ∩ U
with H1 is transversal along X∆∩U . In fact, for sufficiently small t ∈ K, t 6= 0,
the vector [ptp−1, φ′(t), 0, ..., 0] belongs to the tangent space

T(ptp−1,φ′(t),ptp−1,φ′(t))(X ×X)

to X ×X at a nonsingular point (ptp−1, φ′(t), ptp−1, φ′(t)) and does not belong
to H1 (because A1

1 6= 0). Hence

Z∆
1 = X∆ ∩ U

and
µ(Z∆

1 ; (0, 0)) = µ(X∆ ∩ U ; (0, 0)) = µ(X; 0) = p.

Now, we will analyse the second set. Since A1
1 6= 0, we may for simplicity

put A1
1 = 1. First we consider the analytic set

Ψ(t, τ) = 0

in a neighbourhood of 0 ∈ C2
(t,τ) where we put

Ψ(t, τ) := (tp−1 + ...+ τp−1) +A1
2

(φ2(t)− φ2(τ))
t− τ

+ ...+A1
n

(φn(t)− φn(τ))
t− τ

.

Since ordφ > p, this analytic set generates (p−1) irreducible nonsingular germs
at 0 ∈ C2

(t,τ). So, shrinking U, we may assume that this analytic set is a sum
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of (p − 1) irreducible analytic sets Vi, i = 1, ..., p − 1 and each of them has a
parametrization

Φi : Ki → Vi, 0 ∈ Ki ⊂ C,

Φi(s) = (s, ψi(s)) = (s, εis+ ...)

where ε is a primitive root of unity of degree p. Since Ψ(Φi(s)) ≡ 0, easy
calculations give a more precise form of the Φi(s)

Φi(s) = (s, εis+ (ai
2A

1
2 + ...+ ai

nA
1
n)ski + ...),

for some ki > 1 and ai
2, ..., a

i
n ∈ C which do not all vanish.

The above considerations show that

(X ×X) ∩ U ∩H1 = (X∆ ∩ U) ∪ Ṽ1 ∪ ... ∪ Ṽp−1,

where
Ṽi := {(tp, φ(t), τp, φ(τ)) : (t, τ) ∈ Vi}, i = 1, ..., p− 1.

Similarly as above we prove that the proper intersection of (X ×X) ∩ U with
H1 is transversal along each Ṽi, i = 1, ..., p− 1. Summing up, we obtain

Z1 = (X∆ ∩ U) + Ṽ1 + ...+ Ṽp−1,

Z∆
1 = X∆ ∩ U,

Z1 − Z∆
1 = Ṽ1 + ...+ Ṽp−1.

Let us pass to the step 2 of the algorithm. We have to find

Z2 = (Z1 − Z∆
1 ) ·H2 = (Ṽ1 + ...+ Ṽp−1) ·H2.

Since dim(Z1 − Z∆
1 ) = 1 and dim(Z1 − Z∆

1 ) ∩ H2 = 0, then shrinking U we
have

(Z1 − Z∆
1 ) ∩H2 = {(0, 0)}.

Hence
Z2 = α{(0, 0)},

where α is the sum of multiplicities of the proper isolated intersection of the
hyperplane H2 with the analytic curves Ṽi at (0, 0) for i = 1, ..., p − 1. Since
each Ṽi has a parametrization

Φ̃i(s) = (sp, φ(s), ψ(s)p, φ(ψ(s))),

there is

α =
p−1∑
i=1

ord(A2
1(s

p − ψi(s)p) +A2
2(φ2(s)− φ2(ψi(s)) + ...).

Since
(X ×X) · H = (X∆ ∩ U) + α{(0, 0)},
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there is
iext(X,X; 0) := min

(1,A1
2,...,A1

n)
(A2

1,A2
2,...,A2

n)

{(0, ..., 0, µ(X; 0), α)}.

So, we have to calculate

min
(1,A1

2,...,A1
n)

(A2
1,A2

2,...,A2
n)

p−1∑
i=1

ord(A2
1(s

p − ψi(s)p) +A2
2(φ2(s)− φ2(ψi(s)) + ...).

Notice that it is equal to

min
(1,A1

2,...,A1
n)

p−1∑
i=1

ord(sp − ψi(s)p, φ2(s)− φ2(ψi(s)), ...).

So, to conclude the proof it suffices to prove that for each i ∈ {1, ..., p− 1} the
equality

(6)
min

(1,A1
2,...,A1

n)
ord(sp − ψi(s)p, φ2(s)− φ2(ψi(s)), ..., φn(s)− φn(ψi(s)))

= ord(φ2(s)− φ2(εis), ..., φn(s)− φn(εis))

holds. Then fix i ∈ {1, ..., p− 1}. Put

u := ord(φ2(s)− φ2(εis), ..., φn(s)− φn(εis)).

It means that

u :=
n

min
j=2

uj

uj := min{r ∈ N : r ∈ Suppφj , ε
ir 6= 1},

where Suppφ for a series 0 6= φ(s) = cn1s
n1 + cn2s

n2 + ..., cni 6= 0, denotes the
set {n1, n2, ...}. We have

min
(1,A1

2,...,A1
n)

ord(sp − ψi(s)p, φ2(s)− φ2(ψi(s)), ..., φn(s)− φn(ψi(s)))

6 min
(1,A1

2,...,A1
n)

ord(φ2(s)− φ2(ψi(s)), ..., φn(s)− φn(ψi(s)))

= min
(1,A1

2,...,A1
n)

26j6n

ord(φj(s)− φj(εis+ (ai
2A

1
2 + ...+ ai

nA
1
n)ski + ...)).

Notice that for a fixed j ∈ {2, ..., n}:
(a) if εi ord φj 6= 1 then

ord(φj(s)− φj(εis+ (ai
2A

1
2 + ...+ ai

nA
1
n)ski + ...)) = uj ,
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(b) if εi ord φj = 1 then

min
(1,A1

2,...,A1
n)

ord(φj(s)− φj(εis+ (ai
2A

1
2 + ...+ ai

nA
1
n)ski + ...))

= min
(1,A1

2,...,A1
n)

ord(γj(ai
2A

1
2 + ...+ ai

nA
1
n)sord φj−1+ki + ...+ δj(1− εiuj )suj + ...)

for some constants γj , δj 6= 0, which do not depend on A1
2, ..., A

1
n. Since ai

2A
1
2 +

...+ ai
nA

1
n 6= 0 in C[A1

2, ..., A
1
n], this last expression is equal to

min(ordφj − 1 + ki, uj) 6 uj .

So, from these cases we obtain the inequality ” 6 ” in formula (6). To
prove the opposite inequality we assume to the contrary that there is a strict
inequality ”<” in formula (6). Then two cases may happen:

A.

min
(1,A1

2,...,A1
n)

ord(φ2(s)− φ2(ψi(s)), ..., φn(s)− φn(ψi(s))) < u

Then from the last considerations there exists j ∈ {2, ..., n} such that

min
(1,A1

2,...,A1
n)

ord(φ2(s)− φ2(ψi(s)), ..., φn(s)− φn(ψi(s)))

= ordφj − 1 + ki > ordφ− 1 + ki.

But we have
Ψ(s, ψi(s)) ≡ 0

Since ψi(s) is not equal to s, the last identity is equivalent to the following one

(7) (sp − ψi(s)p)︸ ︷︷ ︸
I(s)

+ (A1
2(φ2(s)− φ2(ψi(s)) + ...)︸ ︷︷ ︸

II(s)

≡ 0.

We have

ord I(s) = p− 1 + ki < ordφ− 1 + ki,

min
(1,A1

2,...,A1
n)

ord II(s) > ordφ− 1 + ki,

which gives a contradiction in this case.
B.

min
(1,A1

2,...,A1
n)

ord(sp − ψi(s)p)

< min
(1,A1

2,...,A1
n)

ord(φ2(s)− φ2(ψi(s)), ..., φn(s)− φn(ψi(s))).

But this is impossible by (7).
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Summing up, we obtain

iext(X,X; 0) = {(0, ..., 0, µ(X; 0),
p−1∑
i=1

ord(φ(s)− φ(εis))}.

Hence

i(X,X; 0) = µ(X; 0) +
p−1∑
i=1

ord(φ(s)− φ(εis)).

2. Assume that the germ of X at 0 is reducible. Then formula (5) follows
from Theorem 1.

This concludes the proof.

4. Plane curves. Let X be an analytic curve in a neighbourhood U ⊂ C2

of the origin P = (0, 0) ∈ X, and let f = 0 be its (reduced) equation, where
f ∈ C{x, y}. We denote by µP (X) the Milnor number of X at P. Then we
have

µP (X) = µP (
∂f

∂x
,
∂f

∂y
),

where µP (g, h) stands for the multiplicity of a holomorphic mapping (g, h) at
P . Now, we recall two well known formulas (see e.g. [14]):

1. the Teissier formula: if f(0, y) 6= 0 then

µP (f,
∂f

∂y
) = µP (X) + ord f(0, y)− 1,

2. the relation between the Milnor number and the virtual number of double
points δP (X) ofX at P : if P ∈ X and rP (X) is the number of irreducible germs
of X at P , then

2δP (X) = µP (X) + rP (X)− 1.

Proposition 5. If P = (0, 0) is a singular point of X and the axis x = 0
is not tangent to the curve X at P then

(8) i(X •X;P ) = µP (f,
∂f

∂y
).

Proof. First assume that the germ of X at P is irreducible and that the
tangent line to the curve X at P is the axis y = 0. Then in a neighbourhood
U ′ ⊂ U of P the curve X has a parametrization

C ⊃K 3 t 7→ (tp, φ(t)) ∈ X, ordφ > p.

(K is a neighbourhood of 0 in C). Then, from the main theorem and the
Puiseux Theorem, there follows

i(X •X;P ) =
p−1∑
i=1

ord(φ(t)− φ(εit)) = µP (f,
∂f

∂y
)
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where ε is a primitive root of unity of degree p. If the germ of X at P is still
irreducible and the tangent line to the curve X at P is not the axis y = 0 (and
also not the axis x = 0 by assumption) then by a linear change of variables L
in C2 we obtain from the above case that for f̃(x̃, ỹ) := f ◦ L(x̃, ỹ) we have

i(X •X;P ) = µP (f̃ ,
∂f̃

∂ỹ
).

But from the Teissier formula we obtain that for such a linear change of vari-
ables we have

µP (f̃ ,
∂f̃

∂ỹ
) = µP (f,

∂f

∂y
).

Assume now that the germ of X at P is reducible. Let (X)P = (X1)P ∪
... ∪ (Xk)P be the decomposition of the germ (X)P into irreducible germs.
Then we also have f = f1...fk in a neighbourhood U ′ ⊂ U of P, where each
fi is holomorphic and describes Xi in U ′. Then from the additivity of the
intersection cycle (Theorem 1), cases considered above and properties of the
multiplicity of mappings we have

i(X •X;P )

=
k∑

i=1

i(Xi •Xi;P ) +
k∑

i,j=1
i6=j

i(Xi •Xj ;P )

=
k∑

i=1

µP (fi,
∂fi

∂y
) +

k∑
i,j=1
i6=j

µP (fi, fj)

=
k∑

i=1

µP (fi,
∂f

∂y
) = µP (f,

∂f

∂y
).

Corollary 6. Under the assumptions of Proposition 5 we have

(9)
i(X •X;P ) = µP (X) + µ(X;P )− 1

= 2δP (X)− rP (X) + µ(X;P ).

Proof. It follows from the fact that from the assumption on the tangent
line we have

µ(X;P ) = ord f(0, y).

Remark 7. Notice that in the case that X is an algebraic plane curve in
the projective plane P2 over C the coefficients i(X •X;P ) in the intersection
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cycle X •X are the same as coefficients of singular points in the Stückrad–Vogel
intersection cycle v(X,X). Namely, formula (8) is given in [9], Ch. 3, S. 2(2)
and formulas (9) in [8], Example 2.5.16).

References

1. Achilles R., Rams S., Intersection numbers, Segre numbers and generalized Samuel mul-
tiplicities, Arch. Math. (to appear).

2. Achilles R., Tworzewski P., Winiarski T., On improper isolated intersection in complex
analytic geometry, Ann. Polon. Math. 51 (1990), 21–36.

3. Chądzyński J., Krasiński T., Tworzewski P., On the intersection multiplicity of analytic
curves in Cn, Bull. Polish Acad. Sci. Math. 45 (1997), 163–169.

4. Cygan E., Intersection theory and separation exponent in complex analytic geometry,
Ann. Polon. Math. 69 (1998), 287–299.

5. Cygan E., Tworzewski P., Proper intersection multiplicity and regular separation of an-
alytic sets, Ann. Polon. Math. 59 (1994), 293–298.

6. Cygan E., Krasiński T., Tworzewski P., Separation of algebraic sets and the Łojasiewicz
exponent of polynomial mappings, Invent. Math. 136 (1999), 75–87.

7. Draper R., Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175–204.
8. Flenner H., O’Carroll L., Vogel W., Joins and Intersections, Springer–Verlag, 1999.
9. van Gastel L. J., Excess intersections, PhD. Thesis, University of Utrecht, 1989.

10. Kollár J., Effective Nullstellensatz for arbitrary ideals, J. Eur. Math. Soc. 1(1999), 313–
337.

11. Nowak K.J., Analytic impropoper intersections I: Deformation to the normal cone, Bull.
Polish Acad. Sci. Math. 48 (2000), 121–130.

12. Nowak K.J., Analytic impropoper intersections II: Deformation to an algebraic bicone
and applications, Bull. Polish Acad. Sci. Math. 48 (2000), 131–140.

13. Nowak K.J., Impropoper intersections in complex analytic geometry, Dissertationes
Math. 391 (2001), 1–58.

14. Płoski A., On invariants of singularities of analytic curves, VII Konf. Szkol. z Teorii
Zagadnień Ekstremalnych, Wyd. UŁ, Łódź 1985 (in Polish).

15. Rams S., On intersection product of analytic cycles, Ann. Polon. Math. 73 (2000), 135–
146.

16. Spodzieja S., The generic intersections of an algebraic set by hyperplanes, in XXII
Konferencja Szkoleniowa z Geometrii Analitycznej i Algebraicznej Zespolonej, Wyd.UŁ,
Łódź 2001, 23–36 (in Polish).

17. Tworzewski P., Isolated intersection multiplicity and regular separation of analytic sets,
Ann. Polon. Math. 58 (1993), 213–219.

18. Tworzewski P., Intersection theory in complex analytic geometry, Ann. Polon. Math. 62
(1995), 177–191.

Received March 26, 2001
University of Łódź
Faculty of Mathematics
Banacha 22
90–238 Łódź
Poland
e-mail : krasinsk@krysia.uni.lodz.pl

mailto:krasinsk@krysia.uni.lodz.pl

	1. Introduction
	2. Intersection algorithm
	3. Improper intersections of analytic curves
	4. Plane curves
	References

