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ON A FORMULA OF BENIAMINO SEGRE

by Ernst Kunz

Abstract. This formula concerns Jacobians of n polynomials f1, . . . , fn

in n variables having
n∏

i=1

deg fi distinct zeros in affine n–space. It was

originally proved for n = 2 in [9], no.20. The generalization we have
in mind allows that some of the zeros are on the hyperplane at infinity.
Moreover a whole series of formulas will be considered, the first one being
a classical formula of Jacobi [5] and the second one the above mentioned
formula of B. Segre. As many other geometric results also these formulas
can be derived from the residue theorem for projective algebraic curves. It
is well known that the formulas of Jacobi and B. Segre have numerous geo-
metric applications including Pascal’s theorem for conics, versions of the
Cayley-Bacharach theorem and generalizations of the Reiss relation about
the curvature of real plane algebraic curves (see [8], for instance).

1. Assumptions and formulation of the theorem. Let K be an al-
gebraically closed field of characteristic 0 and H1, . . . ,Hn hypersurfaces in
Pn

K = ProjK[Y0, . . . , Yn] with deg Hi = di (i = 1, . . . , n) such that Γ :=
H1 ∩ · · · ∩Hn−1 is a reduced curve and Γ ∩Hn is a zero dimensional scheme.
Clearly Γ is locally everywhere a complete intersection. The hyperplane Y0 = 0
will be denoted by H∞. Let An

K = D+(Y0) = Spec K[X1, . . . , Xn] with
Xi := Yi

Y0
(i = 1, . . . , n) and C := Γ ∩ An

K , H := Hn ∩ An
K the affine parts

of Γ and Hn. We set C∞ := Γ ∩ H∞, and we assume that dim C∞ = 0 and
C ∩H is non-empty and is a reduced scheme.

Let Hi := V+(Fi) with a homogeneous polynomial Fi ∈ K[Y0, . . . , Yn]
(i = 1, . . . , n), and let fi ∈ K[X1, . . . , Xn] be the dehomogenization of Fi

with respect to Y0, i.e. fi(X1, . . . , Xn) = Fi(1, X1, . . . , Xn). Then C =
V(f1, . . . , fn−1), H = V(fn). That C ∩ H be reduced is equivalent with the
condition, that for every P ∈ C ∩H the Jacobian determinant J := ∂(f1,...,fn)

∂(X1,...,Xn)

does not vanish at P . We have J 6= 0 since C ∩H 6= ∅.
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When V(f1, . . . , fn) consists, as in the classical case, of
n∏

i=1
di distinct points,

i.e. C∞∩Hn = ∅, then Γ is automatically a reduced curve and C∩H a reduced
scheme, so our assumptions are not stronger than the classical ones.

For a polynomial h ∈ K[X1, . . . , Xn] let R0 := J−1 · h. If ρ > 0 and Rρ−1

is already defined, set

Rρ := J−1 · ∂(f1, . . . , fn−1, Rρ−1)
∂(X1, . . . , Xn)

.

In what follows we want to show that for ρ ∈ N we have∑
P∈C∩H

Rρ(P ) = 0

provided the degree of h does not exceed a certain bound N(ρ) depending on ρ.
The bound depends on the behavior of Γ and Hn at the points of C∞.

For Q ∈ C∞ let ÔΓ,Q be the completion of the local ring of Γ at Q and
Zk := Q̂Γ,Q/pk with the minimal primes pk of Q̂Γ,Q the “analytic branches”
of Γ at Q (k = 1, . . . , ηQ). Their integral closures Zk are power series algebras
Zk = K[[tk]] in a variable tk over K, and

Z1 × · · · × ZηQ = K[[t1]]× · · · ×K[[tηQ ]]

is the integral closure ÔΓ,Q of ÔΓ,Q. The conductor FQ of ÔΓ,Q/ÔΓ,Q is of the
form

FQ = (tc11 , . . . , t
cηQ
ηQ ) · ÔΓ,Q (ck ∈ N).

Let νk := µQ(Zk,H∞) and ν ′k := µQ(Zk,Hn) be the intersection multiplicities
of the branch Zk with H∞ resp. Hn (k = 1, . . . , ηQ). Since Q ∈ H∞ we have
νk > 0 while ν ′k = 0 in case Q /∈ Hn (k = 1, . . . , ηQ). We introduce the rational
number

σQ := Max
k=1,...,ηQ

{ 1
νk

(ck + (ρ + 1) · ν ′k)}

and set

N(ρ) :=
n∑

i=1

di + ρ · dn − n− 1− Max
Q∈C∞∩Hn

{σQ}.

Theorem. Given ρ ∈ N suppose that deg h ≤ N(ρ). Then∑
P∈C∩H

Rρ(P ) = 0.

In case C∞∩Hn = ∅ we have N(ρ) =
∑

di +ρdn−n−1. If Γ is intersected
transversally by Hn at Q ∈ C∞, then ηQ = 1, ν ′1 = 1 and c1 = 0, therefore
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σQ = (ρ + 1) · 1
ν1

. If in addition H∞ is not tangential to Γ at Q, then νk = 1
(k = 1, . . . , ηQ), and σQ = ρ + 1. Hence we have

Corollary. Assume Γ ∩ Hn is a reduced zero-dimensional scheme and

H∞ is nowhere tangential to Γ. If deg h ≤
n∑

i=1
di + ρ · dn − n− ρ− 2, then

∑
P∈C∩H

Rρ(P ) = 0.

For K = C a generalization of the Jacobian formula (ρ = 0) allowing zeros
at infinity was proved by Biernat [1] with different methods. See also the work
of Berenstein-Yger [2] on related questions. The case of quasihomogeneous
polynomials with no common zeros at infinity has been discussed in [8], and
Jacobian formulas for Laurent polynomials are derived in [3] and [6]. The case
ρ = 1 is the one considered by B. Segre.

2. Reduction to the residue theorem on the curve Γ. In order to
prove the theorem we may assume that no point of C∞ is contained in the
hyperplane Yn = 0. In fact, a suitable projective coordinate transformation
leaving H∞ invariant achieves this goal and, by the chain rule for Jacobians,
also leaves the Rρ invariant.

Let K[C] = K[x1, . . . , xn] be the affine coordinate ring of C with the
images xi of the variables Xi (i = 1, . . . , n) mod (f1, . . . , fn−1). Let K(C) :=
Q(K[C]) = K(Γ) be the ring of rational functions of C and of Γ. The above
choice of coordinates guarantees that K[C] is a finite module over K[xn]. For
the module of differentials we then have

Ω1
K(C)/K = K(C)dxn.

In the sequel for an h ∈ K[X1, . . . , Xn] its image in K[C] is also denoted by
the same letter h, when it is clear from the context what we mean.

From the equations fi(x1, . . . , xn) = 0 (i = 1, . . . , n − 1) we obtain the
systems

(1)
n∑

k=1

(fi)Xk
dxk = 0

and

(2)
n∑

k=1

(fi)Xk
·∆k = 0,
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(fi)Xk
denoting ∂fi

∂Xk
(x1, . . . , xn) and

∆k :=

∣∣∣∣∣∣∣∣∣
0 · · · 1 · · · 0

(f1)X1 · · · (f1)Xk
· · · (f1)Xn

...
...

...
(fn−1)X1 · · · (fn−1)Xk

· · · (fn−1)Xn

∣∣∣∣∣∣∣∣∣ (k = 1, . . . , n).

Since C is reduced the Jacobian [(fi)Xk
]
i=1,...,n−1
k=1,...,n

has rank n − 1, hence the

solution space of (2) is K(C) · (∆1, . . . ,∆n), a free K(C)–module of rank 1. If
we write dxk = τkdxn (τk ∈ K(C), k = 1, . . . , n − 1), then (τ1, . . . , τn−1, 1) is
also a solution of (2), in particular ∆n is a unit of K(C). As a polynomial in

K[X1, . . . , Xn] the determinant ∆n has degree α :=
n−1∑
i=1

(di−1). In fact, by our

assumptions, K[Y0, . . . , Yn]/(F1, . . . , Fn−1, Y0, Yn) is a zero-dimensional graded
K–algebra whose socle is generated by the image of ∂(F1,...,Fn−1)

∂(Y1,...,Yn−1

∣∣∣
Y0=0

which is

therefore a non-zero polynomial of degree α. Replacing Yi by Xi (i = 1, . . . , n)
gives the degree form of ∆n which also has degree α.

Moreover fn is a unit in K(C), since H = V(fn) does not contain an
irreducible component of C. Therefore the differential

ωρ :=
h

fρ+1
n

· 1
∆n

· dxn ∈ Ω1
K(Γ)/K (ρ ∈ N)

is well-defined. We say that this is the expression for ωρ in X–coordinates.
Add the equation

n∑
k=1

(fn)Xk
dxk = dfn

at the end of system (1). Cramer’s rule then implies that

(3)
dxn

∆n
=

dfn

J
.

We consider now the situation in the affine space D+(Yn) and dehomogenize
with respect to Yn. Set Zi := Yi

Yn
, and let zi be the image of Zi in K(C)

(i = 0, . . . , n− 1). In Z–coordinates ωρ can be written as

(4) ωρ = − h̃

f̃ρ+1
n · ∆̃n

· dz0

zm+2
0

.

Here the number m is defined by

(5) m := deg h− (ρ + 1)dn − deg ∆n = deg h−
n∑

i=1

di − ρdn + n− 1.
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Further h̃ denotes the element obtained from h by first homogenizing with
respect to Y0, then dehomogenizing with respect to Yn and taking the image
in K(C), similarly for f̃n and ∆̃n.

Our assumptions imply that Γ ⊂ D+(Y0) ∪ D+(Yn), hence the residue
theorem for Γ states that

(6)
∑
P∈C

ResP (
h

fρ+1
n

· 1
∆n

· dxn) =
∑

Q∈C∞

ResQ(
h̃

f̃ρ+1
n

· 1

∆̃n

· dz0

zm+2
0

).

The formula of the theorem will be obtained by a calculation of these residues.
See [4] for this method of deriving geometric results from the residue theorem.

3. Calculation of residues.
a) Let P ∈ C ∩ H. Without loss of generality we may assume that P = 0 is
the origin of An

K . Since J(P ) 6= 0 we have K[[X1, . . . , Xn]] = K[[f1, . . . , fn]],
hence

ÔC,P = K[[X1, . . . , Xn]]/(f1, . . . , fn−1) = K[[t]],
where t is the image of fn mod (f1, . . . , fn−1). Due to (3) the image of ωρ in
K((t))dt has the form

ωρ =
h(t)
J(t)

· 1
tρ+1

· dt

with the images h(t) and J(t) of h and J in K((t)), hence

ResP (ωρ) =
1
ρ!

∂ρ

∂tρ

(
h(t)
J(t)

)∣∣∣∣
t=0

.

For each r ∈ K(X1, . . . , Xn) the chain rule for differentiation yields

∂r

∂fn
= J−1 · ∂(f1, . . . , fn−1, r)

∂(X1, . . . , Xn)
,

therefore

ResP (ωρ) =
1
ρ!

∂ρ−1

∂tρ−1

(
∂

∂t

(
h(t)
J(t)

))∣∣∣∣
t=0

=
1
ρ!
· ∂ρ−1

∂tρ−1

(
R1(t)

)∣∣∣∣
t=0

and inductively

ResP (ωρ) =
1
ρ!

Rρ(P ).

b) Let P ∈ C, P /∈ H, and assume again that P = 0. As xn is contained in
the maximal ideal of ÔC,P and is not a zero-divisor of this ring, the exten-
sion ÔC,P /K[[xn]] is finite. Since ÔC,P = K[[X1, . . . , Xn]]/(f1, . . . , fn−1) is a
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complete intersection the Dedekind complementary module of ÔC,P /K[[xn]] is
1

∆n
· ÔC,P ,

i.e. 1
∆n

· ÔC,P = {z ∈ Q(ÔC,P ) | Tr(r · z) ⊂ K[[xn]] for all r ∈ ÔC,P } where

Tr : Q(ÔC,P ) → K((Xn)) is the standard trace, see [7], G.12 for instance. By
the trace formula for residues (see [4], (2))

ResP (ωρ) = Resxn(Tr(
1

∆n
· h

fρ+1
n

)dxn) = 0

since fn is a unit in OC,P and Tr( 1
∆n

h

fρ+1
n

) ∈ K[[xn]] by what was said above.
Here Resxn denotes the residue with respect to the parameter xn of K[[xn]].

c) We turn now to the residues at Q ∈ C∞, Q /∈ Hn. An easy calculation
shows that ∆̃n can be expressed as

∆̃n = (−1)n+1 det[(f̃i)Zk
]i,k=1,...,n−1 = (−1)n+1 · (∆̃)0,

where ∆̃ is the Jacobian matrix of f̃1, . . . , f̃n−1 with respect to Z0, . . . , Zn−1

and (∆̃)0 is the minor obtained by deleting its first column. By our assump-
tions on the curve Γ the ring ÔΓ,Q is a complete intersection of the form
ÔΓ,Q = K[[Z0, . . . , Zn−1]]/(f̃1, . . . , f̃n−1). The element z0 = 1

xn
is a non-unit

of ÔΓ,Q and not a zerodivisor, hence ÔΓ,Q/K[[z0]] is a finite extension with
complementary module

1
(∆̃)0

· ÔΓ,Q.

As Q /∈ Hn, we have f̃n(Q) 6= 0, hence f̃n is a unit in ÔΓ,Q. Since

deg h ≤
∑

di + ρ · dn − n− 1

we have by (5) that m+2 ≤ 0, and with the trace Tr : Q(ÔΓ,Q) → K((z0)) we
obtain similarly as above

ResQ(ωρ) = (−1)n+1 ResQ(
1

(∆̃)0
· h̃ · z−m−2

0

f̃ρ+1
n

dz0)

= (−1)n+1 Resz0(Tr(
1

(∆̃)0
· h̃ · z−m−2

0

f̃ρ+1
n

) · dz0) = 0.

d) Finally we show that the residues of ωρ at the points Q ∈ C∞ ∩Hn vanish.
Consider as in section 1 the ring extensions

K[[z0]] ↪→ ÔΓ,Q ↪→ Z1 × · · · × ZηQ = K[[t1]]× · · · ×K[[tηQ ]].
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As elements of K[[t1]]× · · · ×K[[tηQ ]] we can write for z0 and f̃n

z0 = (tν1
1 , . . . , t

νηQ
ηQ ) · ε

f̃n = (tν
′
1

1 , . . . , t
ν′ηQ
ηQ ) · η

with units ε and η and νk = µQ(Zk,H∞), ν ′k = µQ(Zk,Hn) (k = 1, . . . , ηQ).
By the trace formula it suffices to show that the residue with respect to z0 of
the following differential vanishes:

Tr
(

1
(∆̃)0

[
h̃ · ε · (t(−m−2)ν1−(ρ+1)ν′1

1 , . . . , t
(−m−2)νηQ

−(ρ+1)ν′ηQ
ηQ )

ηρ+1

])
dz0

where Tr : Q(ÔΓ,Q) → K((z0)) is again the standard trace. If

(7) (−m− 2)νk − (ρ + 1)ν ′k ≥ ck (k = 1, . . . , ηQ)

then the function inside the bracket [ ] belongs to ÔΓ,Q, and the residue
vanishes by the arguments used previously. By (5) condition (7) is equivalent
with

−deg h− 2 +
n∑

i=1

di + ρdn − n + 1−
ν ′k
νk

(ρ + 1)− ck

νk
≥ 0,

hence with

deg h ≤
n∑

i=1

di + ρdn − n− 1− 1
νk

(ck + ν ′k(ρ + 1)).

The degree assumption of the theorem guarantees that this is the case.
The proof of the theorem is completed by substituting the residues of a)–d)

into formula (6).
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