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INVARIANTS OF SINGULARITIES OF POLYNOMIALS IN

TWO COMPLEX VARIABLES AND THE NEWTON

DIAGRAMS

by Mateusz Masternak

Abstract. For any polynomial mapping f : C2 → C with a finite number
of critical points we consider the Milnor number µ(f), the jump of the
Milnor numbers at infinity λ(f), the number of branches at infinity r∞(f)
and the genus γ(f) of the generic fiber f−1(tgen). The aim of this note is
to estimate these invariants of f in terms of the Newton diagram ∆∞(f).

1. Introduction. Let f : C2 → C be a polynomial with a finite number
of critical points. We define the global Milnor number µ(f) by putting

µ(f) :=
∑

P∈C2

(
∂f

∂X
,
∂f

∂Y

)
P

where the symbol (·, ·)P denotes the multiplicity of intersection at the point
P ∈ C2. Note that µ(f) < +∞.

Let Ct ⊂ P2(C) be the projective closure of the fiber f−1(t) where t ∈ C.
If d = deg f and F (X, Y, Z) is the homogeneous form corresponding to f =
f(X, Y ) =

∑
α+β≤d cαβXαY β, then Ct is given by the equation F (X, Y, Z) −

tZd = 0. Let L∞ ⊂ P2(C) be the line at infinity given by Z = 0 and let
(Ct)∞ = Ct ∩L∞. Obviously, (Ct)∞ = (C0)∞. In the sequel we write C = C0

and C∞ = (C0)∞. If f+(X, Y ) =
∑

α+β=d cαβXαY β is the leading part of the
polynomial f , then

C∞ = {(x : y : z) ∈ P2(C) : z = 0 and f+(x, y) = 0} .

For every P ∈ Ct we denote by µt
P = µt

P (Ct) the Milnor number of the
curve Ct at the point P . There exist numbers µgen

P ≥ 0 (P ∈ C∞) such that
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µt
P ≥ µgen

P for all t ∈ C. Moreover, µt
P = µgen

P for almost all t ∈ C. This fact
is due to Broughton [1] (see also [4] for a simple direct proof). Hence the set

Λ(f) = {t ∈ C : µt
P > µgen

P for some P ∈ C∞}
is finite and the numbers

λt(f) :=
∑

P∈C∞

(µt
P − µgen

P ) and λ(f) :=
∑
t∈C

λt(f)

are well defined. At any point P ∈ C we consider the number rP (C) of branches
of the curve C centered at P . We define the number r∞(C) of branches at
infinity of the curve C by putting

r∞(C) :=
∑

P∈C∞

rP (C) .

It is known (see [4]) that the function

C \ Λ(f) 3 t → r∞(Ct) ∈ N

is constant. Let r∞(f) := r∞(Ct) for t ∈ C \ Λ(f). We call r∞(f) the generic
number of branches at infinity.

Let supp f = {(α, β) ∈ N2 : cαβ 6= 0}. The Newton diagram at infinity
∆∞(f) is the convex hull of {(0, 0)} ∪ supp f . For any f we define its global
Newton number µ(∆∞(f)) by putting

µ(∆∞(f)) := 2 Area ∆∞(f)−A−B + 1

where A = max{α ∈ N : (α, 0) ∈ ∆∞(f)} and B = max{β ∈ N : (0, β) ∈
∆∞(f)}. The Newton polygon at infinity ∂∆∞(f) is the set of the faces of
∆∞(f) not included in the coordinate axes. We define the number

r(∆∞(f)) :=
∑

S∈∂∆∞(f)

r(S)

where r(S) = (number of integer points lying on the segment S) − 1. Hence
the integer points divide S into r(S) segments.

For any segment S ∈ ∂∆∞(f) we let in(f, S)(X, Y ) = the sum of all
monomials cαβXαY β such that (α, β) ∈ S. The polynomial f is nondegenerate
on S ∈ ∂∆∞(f) if the system of equations

in(f, S)(X, Y ) =
∂

∂X
in(f, S)(X, Y ) =

∂

∂Y
in(f, S)(X, Y ) = 0

has no solution in C∗ × C∗ where C∗ = C \ {0}. Our main result is the
following:

Theorem 1.1.
Let f : C2 → C be a polynomial such that µ(f) < +∞. Suppose that the
diagram ∆∞(f) has a nonempty interior. Then
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(1) µ(∆∞(f))− (µ(f) + λ(f)) ≥ r(∆∞(f))− r∞(f) ≥ 0,
(2) the equalities hold if f is nondegenerate on each segment S ∈ ∂∆∞(f)

not included in a line passing through the origin.

We give the proof in Section 3. Our theorem implies the following estima-
tion due to Cassou-Noguès:

Corollary 1.2 ([2], Theorem 10).
Let f : C2 → C be a polynomial such that µ(f) < +∞. Then

(1) µ(f) + λ(f) ≤ µ(∆∞(f)),
(2) the equality holds if f is nondegenerate on each segment S ∈ ∂∆∞(f)

not included in a line passing through the origin.

Proof. If ∆∞(f) does not have interior points then deg f ≤ 2 (otherwise
µ(f) = ∞) and the result is easily seen. Therefore we can assume that ∆∞(f)
has a nonempty interior and (1.2) follows from (1.1).

To give another application of our result let us put γ(f) = the genus of the
Riemann surface corresponding to the generic fiber f−1(tgen). Let γ(∆∞(f))
be the number of integer points lying inside ∆∞(f).

Corollary 1.3. With the assumptions given above we have
(1) γ(f) ≤ γ(∆∞(f)),
(2) the equality holds if f is nondegenerate on each segment S ∈ ∂∆∞(f)

not included in a line passing through the origin.

Proof. We may assume that ∆∞(f) has interior points. By Abhyankar-
Sathaye’s formula (see [3], Formula 4.4) we have

2 γ(f) = µ(f) + λ(f)− r∞(f) + 1.

On the other hand, by Pick’s formula we get

2 γ(∆∞(f)) = µ(∆∞(f))− r(∆∞(f)) + 1

and we obtain 1.3 directly from the main result.

2. The Newton diagrams. Let f(X, Y ) =
∑

cαβXαY β ∈ C[X, Y ] be
a nonzero polynomial of degree d. We say that the polynomial f is quasi–
convenient if cα0 6= 0 and c0β 6= 0 for some integers α, β ≥ 0. If the above
condition holds for some positive α, β, then f is called convenient polynomial.
Let supp f = {(α, β) ∈ N2 : cαβ 6= 0}. We define

∆(f) := convex(supp f) and ∆∞(f) := convex({(0, 0)} ∪ supp f).

The polygons ∆(f) and ∆∞(f) are called respectively Newton diagram and
Newton diagram at infinity of the polynomial f . For every quasi–convenient
polynomial we consider additionaly its Newton diagram at zero. This polygon
is the closure of the set ∆∞(f) \ ∆(f). We denote it by ∆0(f). If a, b > 0
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are smallest integer numbers such that (a, 0), (0, b) ∈ supp f , then ∆0(f) is
the polygon bounded by the segments joining the points (0, 0) with (a, 0) and
(0, 0) with (0, b) and by the faces of the diagram ∆(f) that separate it from
the origin.

Obviously, ∆∞(f) = ∆0(f)∪∆(f). If (0, 0) ∈ supp f , then ∆∞(f) = ∆(f)
and ∆0(f) = ∅. Similarly as in the definition of ∂∆∞(f), we define for every
quasi–convenient polynomial f its Newton polygon at zero ∂∆0(f) as the set
of the faces of ∆0(f) not included in the coordinate axes. By ∂∆(f) we denote
the set of all faces of ∆(f) and we call it Newton polygon of the polynomial f .
If f is quasi–convenient, then ∂∆0(f), ∂∆∞(f) ⊂ ∂∆(f). But if f(0, 0) 6= 0,
then ∂∆0(f) = ∅ and ∂∆∞(f) = ∂∆(f).

Newton Diagrams in affine systems of coordinates. If U = (~u;~e1, ~e2) is
an affine system of coordinates of the real plane R2 (i.e. ~u, ~e1, ~e2 ∈ R2

and ~e1, ~e2 are lineary independent), then we define the support of the poly-
nomial f(X, Y ) ∈ C[X, Y ] in the system U : supp Uf :=

{
~u + α~e1 + β~e2 :

(α, β) ∈ supp f
}

and Newton diagram of the polynomial f(X, Y ) in the sys-
tem U : ∆U (f) := convex(supp Uf). Similarly to the standard case we de-
fine ∆U

∞(f) := convex({~u} ∪ supp Uf) and if f is quasi–convenient we put
∆U

0 (f) := closure of
(
∆U
∞(f) \∆U (f)

)
. If f(0, 0) 6= 0, then (0, 0) ∈ supp f ,

hence ~u ∈ supp Uf and then ∆U
∞(f) = ∆U (f) and ∆U

0 (f) = ∅. Analogously
to the standard case we define the polygons ∂∆U

0 (f), ∂∆U (f) and ∂∆U
∞(f) of

the polynomial f in the system U . If

f(X, Y ) =
∑

(α,β)∈supp f

cαβXαY β ∈ C[X, Y ]

and S ∈ ∂∆U (f), then inU (f, S)(X, Y ) is the sum of all monomials cαβXαY β,
such that ~u + α~e1 + β~e2 ∈ S. Let (α, β)U := ~u + α~e1 + β~e2. Write

inU (f, S)(X, Y ) =
∑

(α,β)U∈S

cαβXαY β.

If U = (~0;~ı,~) where ~ı = [1, 0], ~ = [0, 1], then the notions introduced above
correspond to the standard constructions presented above, i.e. ∆U (f) = ∆(f),
∆U
∞(f) = ∆∞(f), inU (f, S)(X, Y ) = in(f, S)(X, Y ), etc.

Let F (X, Y, Z) = Zdf(X/Z, Y/Z), where d = deg f > 0, be a homogeniza-
tion of a polynomial f(X, Y ) . The projective curve F (X, Y, Z) = 0 is the
projective closure of the affine curve f(X, Y ) = 0. It is natural to consider the
affine curves F (1, Y, Z) = 0 and F (X, 1, Z) = 0. If f(X, 0)f(0, Y ) 6= 0, then
F (X, Y, Z) is also the homogenization of F (1, Y, Z) and F (X, 1, Z). The no-
tion of the Newton diagram in an affine system of coordinates is useful while
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comparing the Newton diagrams of the polynomials f(X, Y ) = F (X, Y, 1),
F (X, 1, Z) and F (1, Y, Z).

Lemma 2.1 (Main Lemma).
Let U = (~0;~ı,~), V = (d~ı;~−~ı,−~ı), W = (d~;~ı− ~,−~). Then

supp UF (X, Y, 1) = supp V F (1, Y, Z) = supp W F (X, 1, Z).

Proof. We prove the first equality. Denote N = supp f . Hence if
f(X, Y ) =

∑
(α,β)∈N cαβXαY β , then F (X, Y, Z) =

∑
(α,β)∈N cαβXαY βZd−α−β

and F (1, Y, Z) =
∑

(d−β−γ,β)∈N cd−β−γ,βY βZγ . We have

supp V F (1, Y, Z) =
= {β(~−~ı) + γ(−~ı) + d~ı : (β, γ) ∈ suppF (1, Y, Z)} =
= {β(~−~ı) + γ(−~ı) + d~ı : γ = d− α− β and (α, β) ∈ N} =
= {(d− β − γ)~ı + β~ : γ = d− α− β and (α, β) ∈ N} =

= {α~ı + β~ : (α, β) ∈ N} = N = supp UF (X, Y, 1).

In the same way we prove that supp UF (X, Y, 1) = supp W F (X, 1, Z).
Directly from the above lemma we get the following corollaries:

Corollary 2.2.
(1) ∆(f) = ∆U

(
F (X, Y, 1)

)
= ∆V

(
F (1, Y, Z)

)
= ∆W

(
F (X, 1, Z)

)
.

(2) ∂∆(f) = ∂∆U (F (X, Y, 1) = ∂∆V (F (1, Y, Z) = ∂∆W (F (X, 1, Z).
(3) If f is a quasi–convenient polynomial, then the polynomials F (1, Y, Z)

and F (X, 1, Z) are also quasi–convenient and the triangle with vertices
at (0, 0), (deg f, 0), (0,deg f) is the union of the polygons ∆∞(f), ∆I(f)
and ∆II(f), whose interiors are disjoint, where

∆I(f) := ∆V
0 (F (1, Y, Z)), ∆II(f) := ∆W

0 (F (X, 1, Z)).

Suppose that the polynomial f(X, Y ) is quasi–convenient. We denote

∂∆I(f) := ∂∆V
0 (F (1, Y, Z)), ∂∆II(f) := ∂∆W

0 (F (X, 1, Z)).

The leading part f+(X, Y ) is a homogeneous form and all points of its support
lie on the line α + β = deg f . Hence the diagram ∆(f+) is a segment or a
point. Therefore the polygon ∂∆(f+) is the empty set or a one-element set.
The segment ∆(f+) is called the main segment of the polynomial f .

Corollary 2.3. If f a is quasi–convenient polynomial, then

∂∆∞(f) = ∂∆I(f) ∪ ∂∆II(f) ∪ ∂∆(f+).
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Remark 2.4. The description of the Newton diagram at infinity by means
of local diagrams was given by numerous authors [2], [7], [8]. Our version of
this description allows us to give a simple proof of the main result.

Nondegeneracy. A nonzero polynomial f is nondegenerate on S ∈ ∂∆(f)
if the system of equations

in(f, S)(X, Y ) =
∂

∂X
in(f, S)(X, Y ) =

∂

∂Y
in(f, S)(X, Y ) = 0

has no solution in C∗ ×C∗. We say that a quasi–convenient polynomial f =
f(X, Y ) is nondegenerate at zero (at infinity) if it is nondegenerate on each
segment S ∈ ∂∆0(f) (S ∈ ∂∆∞(f)). The introduced notions of nondegeneracy
at zero and at infinity can be defined using the Newton diagram constructed
at any affine system U = (~u;~e1, ~e2). Instead of the notions in(f, S), ∂∆0(f),
∂∆∞(f) we consider their counterparts inU (f, S), ∂∆U

0 (f), ∂∆U
∞(f)). The

nondegeneracy at zero (at infinity) does not depend on the choice of the system
U because the diagram ∆U (f) is the image of the diagram ∆(f) by the affine
transformation of the real plane:

R2 3 (α, β) → (α, β)U := ~u + α~e1 + β~e2 ∈ R2.

Proposition 2.5. Let f(X, Y ) ∈ C[X, Y ] be a quasi–convenient polyno-
mial of degree d > 0 and let F (X, Y, Z) be its homogenization. Then f(X, Y )
is nondegenerate at infinity if and only if

(1) the polynomials F (1, Y, Z), F (X, 1, Z) are nondegenerate at zero and
(2) the leading part f+(X, Y ) is a homogeneous form without multiple fac-

tors of the form ξX − ηY where ξη 6= 0.

Proof. Let U = (~0;~ı,~), V = (d~ı;~ −~ı,−~ı), W = (d~;~ı − ~,−~) and let
S ∈ ∂∆(f). We may consider the nondegeneracy of the polynomials f(X, Y ) =
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F (X, Y, 1), F (1, Y, Z) and F (X, 1, Z) on S respectively in the systems U , V
and W (see Corollary 3.2 (2)). By direct calculation we have

(a) inV
(
F (1, Y, Z), S

)
(Y, Z) = Zdin(f, S)(1/Z, Y/Z),

(b) inW
(
F (X, 1, Z), S

)
(X, Z) = Zdin(f, S)(X/Z, 1/Z).

We show that the following conditions are equivalent:
(1) f(X, Y ) is nondegenerate on S,
(2) F (1, Y, Z) is nondegenerate on S,
(3) F (X, 1, Z) is nondegenerate on S.

We prove the equivalence (1) ⇔ (2). The proof of (1) ⇔ (3) runs analogously.
We denote g(X, Y ) = in(f, S)(X, Y ) and h(Y, Z) = inV (F (1, Y, Z), S)(Y, Z).
We have to show that the system ∂g

∂X (X, Y ) = ∂g
∂Y (X, Y ) = g(X, Y ) = 0

has a solution in C∗ × C∗ if and only if the system ∂h
∂Y (Y, Z) = ∂h

∂Z (Y, Z) =
h(Y, Z) = 0 has a solution in C∗ ×C∗. From (a) we get

h(Y, Z) = Zdg

(
1
Z

,
Y

Z

)
, Z

∂h

∂Y
(Y, Z) = Zd ∂g

∂Y

(
1
Z

,
Y

Z

)
and

Z2 ∂h

∂Z
(Y, Z) = Zd

(
dZg

(
1
Z

,
Y

Z

)
− ∂g

∂X

(
1
Z

,
Y

Z

)
− Y

∂g

∂Y

(
1
Z

,
Y

Z

))
.

These equalities imply the above equivalence.
By Corollary 2.3 we have

∂∆(f) = ∂∆∞(f) = ∂∆I(f) ∪ ∂∆II(f) ∪ ∂∆(f+).

Note that f is nondegenerate on each segment S ∈ ∂∆I(f) (S ∈ ∂∆II(f)) if
and only if the polynomial F (1, Y, Z) (F (X, 1, Z)) is nondegenerate at zero.
Let φ = φ(X, Y ) be a homogneous form of positive degree. It is easy to
check that the sytem φ = ∂φ

∂X = ∂φ
∂Y = 0 has no solution in C∗ × C∗ if and

only if φ(X, Y ) = XmY nφ1(X, Y ) for some m,n ∈ N where φ1 is a reduced
homogeneous form such that φ1(X, 0)φ1(0, Y ) 6= 0. Hence the polynomial f is
nondegenerate on the main segment S = ∆(f+) if and only if the homogeneous
form f+(X, Y ) = in(f, S)(X, Y ) has only single factors of the form ξX − ηY
where ξη 6= 0. The above observations complete the proof of our proposition.

3. The Milnor numbers and number of branches. Let f(X, Y ) ∈
C[X, Y ] be a convenient polynomial without constant term and let ∆0(f) be
its Newton diagram at zero. We define the numbers

µ(∆0(f)) = 2 Area ∆0(f)− ord f(X, 0)− ord f(0, Y ) + 1;

r(∆0(f)) :=
∑

S∈∂∆0(f)

r(S).
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We denote by r0(f) the number of branches of the curve f(X, Y ) = 0 at zero.
Let us recall the following:

Theorem 3.1 ([9], Theorem 1.2).
If f(X, Y ) ∈ C[X, Y ] is a convenient polynomial without constant term, then

(1) µ0(f)− µ(∆0(f)) ≥ r(∆0(f))− r0(f) ≥ 0,
(2) the equality holds if f is nondegenerate at zero.

Theorem 3.2 (Cassou-Noguès’ formula, [2], Proposition 12).
Let c = #C∞. If µ(f) < +∞, then∑

P∈C∞

µgen
P − c + µ(f) + λ(f)− 1 = d(d− 3).

A proof of the above formula without using Eisenbud-Neumann diagrams
is given in [3].

Proof of the main result. Without loss of generality we can assume
that the polynomial f is quasi-convenient with the generic fiber f−1(0). Other-
wise we consider the polynomial f t = f − t, where t ∈ C \ Λ(f) is such that
f t(0, 0) 6= 0. Then

(a) µ(∆∞(f)) = µ(∆∞(f t)), r(∆∞(f) = r(∆∞(f t),
(b) µ(f) = µ(f t), λ(f) = λ(f t) and r∞(f) = r∞(f t) .

Moreover, if f satisfies the assumption of the second part of our theorem then
we can choose t ∈ C \ Λ(f) such that f t is nondegenerate at infinity.

Therefore, it is enough to check our theorem for a quasi-convenient poly-
nomial f such that 0 6∈ Λ(f). Moreover, in the proof of (2) we may assume
that f is nondegenerate at infinity.

Let P1 = (1:0:0), P2 = (0:1:0) ∈ P2. We have the following cases:
(i) P1 ∈ C∞, P2 ∈ C∞
(ii) P1 ∈ C∞, P2 6∈ C∞
(iii) P1 6∈ C∞, P2 ∈ C∞
(iv) P1 6∈ C∞, P2 6∈ C∞

We give the proof in the case (i). In other cases the proof runs analogously. We
prove the both parts of our therem paralelly. In the case under consideration
f+(X, Y ) = aXpY d−p + · · ·+ bXd−qY q where a, b ∈ C∗ and p, q are integers
such that p, q > 0, p + q ≤ d. Hence c − 2 ≤ d − p − q. It is easily seen that
c = d− p− q + 2 if and only if the polynomial f is nondegenerate on the main
segment ∆(f+).

Let A = deg f(X, 0) and B = deg f(0, Y ). Let F (X, Y, Z) be the homoge-
neous form corresponding to the polynomial f(X, Y ). Note that

Area ∆0(F (1, Y, Z)) = Area ∆V
0 (F (1, Y, Z))
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and
Area ∆0(F (X, 1, Z)) = Area ∆W

0 (F (X, 1, Z))
where V = (d~ı;~−~ı,−~ı) and W = (d~;~ı− ~,−~). Hence

µ(∆0((F (1, Y, Z))) = 2 Area∆I(f)− (d−A)− q + 1
and

µ(∆0((F (X, 1, Z))) = 2 Area∆II(f)− (d−B)− p + 1.

Recall that µ(∆∞(f)) = 2Area∆∞(f) − A − B + 1. Therefore, by Corol-
lary 2.2 (3) we get

(∗) µ(∆0(F (1, Y, Z)) + µ(∆0(F (X, 1, Z))) + µ(∆∞(f)) =

= d(d− 3) + d− p− q + 3 ≥ d(d− 3) + c + 1
and the equality holds if and only if the polynomial f is nondegenerate on the
main segment. In the case under consideration the polynomials F (1, Y, Z) and
F (X, 1, Z) are convenient without constant term. By Theorem 3.1 we have

µgen
P1

= µ0
P1

= µ0(F (1, Y, Z)) ≥ µ(∆0(F (1, Y, Z)))

and
µgen

P2
= µ0

P2
= µ0(F (X, 1, Z)) ≥ µ(∆0(F (X, 1, Z))).

and the equalities hold if the polynomial f is nondegenerate on each seg-
ment S ∈ ∂∆I(f t) ∪ ∂∆II(f t) (see Corollary 2.3, Proposition 2.5 and The-
orem 3.1 (2)). Using the above estimate, formula (∗) and Cassou-Noguès’
formula we get

(∗∗) µ(∆∞(f))− (µ(f) + λ(f)) ≥ [µgen
P1

− µ(∆0(F (1, Y, Z)))]+

[µgen
P2

− µ(∆0(F (X, 1, Z)))] +
∑

P∈C∞\{P1,P2}

µgen
P .

Applying Theorem 3.1 and the Main Lemma we get

µgen
P1

− µ(∆0(F (1, Y, Z))) ≥
∑

S∈∂∆I(f)

r(S)− rP1(C) ≥ 0

and
µgen

P2
− µ(∆0(F (X, 1, Z))) ≥

∑
S∈∂∆II(f)

r(S)− rP2(C) ≥ 0.

On the other hand we have µgen
P = µ0

P ≥ ord P F − 1 for each P ∈ C∞. Thus∑
P∈C∞\{P1,P2}

µgen
P ≥

∑
P∈C∞\{P1,P2}

(ord P F − 1) = (d− p− q)− (c− 2) ≥



188

r(∆(f+))− (c− 2) ≥ r(∆(f+))−
∑

P∈C∞\{P1,P2}

rP (C).

It is clear that the equalities above we get if f is nondegenerate on the main
segment. The above estimate and the inequality (∗∗) give

µ(∆∞(f))− (µ(f) + λ(f)) ≥∑
S∈∂∆I(f)

r(S) +
∑

S∈∂∆II(f)

r(S) + r(∆(f+))−
∑

P∈C∞

rP (C).

The diagram ∆∞(f) has a nonempty interior. Hence by Corollary 2.3 we get

µ(∆∞(f))− (µ(f) + λ(f)) ≥ r(∆∞(f))−
∑

P∈C∞

rP (C) .

This completes the proof of (1). To proof of (2) we use Proposition 2.5.
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