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Abstract. It is sufficient to consider in the Jacobian Conjecture (for every

n > 1) only polynomial mappings of cubic linear form F (x) = x + (Ax)∗3,
i. e. F (x) = (x1+(a1

1x1+...+a1
nxn)3, ..., xn+(an

1 x1+...+an
nxn)3) where the

matrix F ′(x)−I = 3∆((Ax)∗2)A is nilpotent for every x = (x1, ..., xn). In
the paper we give a new contributions to the Jacobian Conjecture, namely
we show that it is sufficient in this problem to consider (for every n > 1)
only cubic linear mappings F (x) = x + (Ax)∗3 such that A2 = 0.

1. Introduction and notation. Let K denote either the field of complex
numbers K or the field of reals R. Basis in the domain and codomain vector
spaces Kn are assumed to be fixed and identical, so a linear mapping A from
Kn into Kn is identified with its matrix and denoted by the same letter A (I
denotes the identity matrix). Let Mn denote the set of n× n square matrices
with entries in K. A vector x ∈ Kn is treated as one column matrix and xT

denotes its transpose, i. e. xT = (x1, ..., xn) ∈ Kn. Let aj , bj , cj : Kn → K be
linear forms and let the symbol ajx (resp. bjx, cjx) denote the value of the
linear form aj (resp. bj , cj) at a point x ∈ Kn, i. e. ajx = a1

jx1 + ...an
j xn,

j = 1, ..., n. Denote for short the square matrix A := [aj
i : i, j = 1, ..., n]

and the vector (Ax)T := (a1x, ..., anx), i.e. Ax is one column matrix. If
v = (v1, ..., vn)T is a column vector, then we denote the k power of v by
v∗k := ((v1)k, ..., (vn)k)T and by ∆(v∗k) we denote the diagonal n× n matrix

∆(v∗k) :=


(v1)k 0 0 ... 0 0

0 (v2)k 0 ... 0 0
...........
0 0 ... 0 (vn−1)k 0
0 0 ... 0 0 (vn)k

 .
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If F = (F1, ..., Fn) : Kn → Kn is a polynomial mapping, then we denote
Jac F (x) := det [∂Fi

∂xj
(x) : i, j = 1, ..., n]. Let a polynomial mapping F =

(F1, ..., Fn) have a cubic linear form F (x) = x + (Ax)∗3 that is Fj(x) =
xj + (ajx)3, x = (x1, ..., xn) ∈ Kn, j = 1, ..., n.

We recall that the n-dimensional Jacobian Conjecture (JC)n (n > 1) as-
serts

(JC)n

If F is any polynomial mapping of Kn and Jac F (x) = const 6= 0,

then F is injective.

By the Jacobian Conjecture (for short (JC) ) we mean that (JC)n holds for
each n > 1.

If F is injective polynomial transformation of Cn, then F is a polynomial
automorphism, cf. [1, 8]. Therefore the Jacobian Conjecture is sometimes
formulated with the requirement that F has to be a polynomial automorphism.
We have the following reduction theorem.

Theorem 1. [2] In order to verify the Jacobian Conjecture (for every
n > 1) it is sufficient to check the Jacobian Conjecture (for every n > 1) only
for polynomial mappings F = (F1, ..., Fn) of a cubic linear form

F (x) = x + (Ax)∗3, i. e. Fj(x) = xj + (ajx)3, j = 1, ..., n.

It is known ([1, 2]) that Jac F = 1 if and only if the matrix Ax :=
[(ajx)2ai

j : i, j = 1, ..., n] = ∆((Ax)∗2) A is nilpotent for every x ∈ Kn. Some
interesting applications of Th.1 to the Jacobian Conjecture can be found in
[4, 5, 7]. Note that

F (x) = x + Ax(x) = x + ∆((Ax)∗2) (Ax)

F ′(x) = I + 3Ax = I + 3∆((Ax)∗2)A,

and call A the matrix of the cubic linear mapping F . Hence, for every x ∈ Kn

there exists an index of nilpotency of the matrix Ax, i.e. a number p(x) ∈ N
such that Ax

p(x) = 0 and Ax
p(x)−1 6= 0. We define the index of nilpotency

of the mapping F to be the number ind F := sup {p(x) ∈ N : x ∈ Kn}.
Obviously ind F ≤ n.

2. We will prove the following.

Theorem 2. (new reduction theorem) In order to verify the Jacobian
Conjecture (for every n > 1) it is sufficient to check the Jacobian Conjecture
(for every n > 1) only for polynomial mappings F = (F1, ..., Fn) of the cubic
linear form

Fj(x) = xj + (ajx)3, j = 1, ..., n,

having an additional nilpotent property of the matrix A := [aj
i : i, j = 1, ..., n],

namely A2 = 0.
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Proof. Due to Th.1 we can take F : Kn → Kn of the form F (x) =
x + (Ax)∗3, x ∈ Kn. Evidently F is a polynomial automorphism if and only
if x + δ(Ax)∗3 is a polynomial automorphism for every (some) δ ∈ K \ {0}.
Put F̂ (x, y) := (x + δ(Ax)∗3, y), δ 6= 0, (x, y) ∈ Kn × Kn. Obviously F

is a polynomial automorphism of Kn if and only if F̂ : K2n → K2n is an
automorphism of K2n. We define polynomial automorphisms of K2n by the
formulas:

Q(x, y) :=
(
αx− βy, y + (αAx− βAy)∗3

)
where αβ 6= 0,

and
P (x, y) :=

(
1
αx + β

αy, y
)

where αβ 6= 0.

Put G := P ◦ F̂ ◦Q : K2n → K2n. It not difficult to verify that

G(x, y) =
(
x + (δ+β)α2

β3 (βAx− β2

α y)∗3, y + (αAx− βy)∗3
)

.

The mapping F is a polynomial automorphism if and only if G is a polynomial
automorphism. Now we choose α 6= 0, β 6= 0 such that (δ+β)α2

β3 = 1 (it is

always possible if α2

β2 6= 1). Hence we get

G(x, y) =
(
x + (βAx− β2

α y)∗3, y + (αAx− βy)∗3
)

.

Denote by N a block matrix (with entries in Mn) of the form

N :=
(

βA −β2

α A
αA −βA

)
.

Observe that we can write G(w) = w + (Nw)∗3, w ∈ K2n. It is easy to check

that N2 = 0. Therefore the theorem is proved.

Remark 1. Since A2 = 0, rank A ≤ n
2 .

In the example given in [3, Ex. 7.8], and also investigated in [6, Ex. 6.1], the
matrix A of an automorphism F (x) = x + (Ax)∗3 : K15 → K15 has the form
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 −1 1 1 1 0 0 −1 0 0 −1 0
0 0 −1 0 −1 0 1

2 0 0 1
2 0 −1

2 −1
2 0 0

0 0 1 −2 0 0 0 1 −1 −1 −1 0 0 0 1
1 0 1 −2 0 0 0 1 −1 −1 −1 0 0 0 1
0 1 1 −2 0 0 0 1 −1 −1 −1 0 0 0 1
1 0 −1 0 −1 0 1

2 0 0 1
2 0 −1

2 −1
2 0 0

1 0 0 −2 −1 1 1 1 0 0 −1 0 0 −1 0
0 1 0 −2 −1 1 1 1 0 0 −1 0 0 −1 0
1 0 1 0 1 0 −1

2 0 0 −1
2 0 1

2
1
2 0 0

0 1 −1 2 0 0 0 −1 1 1 1 0 0 0 −1
0 1 0 2 1 −1 −1 −1 0 0 1 0 0 1 0
1 1 1 −2 0 0 0 1 −1 −1 −1 0 0 0 1
1 1 0 −2 −1 1 1 1 0 0 −1 0 0 −1 0


It is easy to check that ind A = 2, rank A = 5 and ind F = 5.

Remark 2. It was proved earlier ([2]) that in Th.1 we can additionally
assume that (∗) the matrix A = Ac for some point c ∈ Kn and ind A = ind F .
If we investigated the Jacobian Conjecture for cubic linear assuming ind A = 2,
then the property (∗) usually does not hold (cf. the mentioned above example
where ind A = 2 < 5 = ind F ).
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