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THE MIXED PROBLEM FOR AN INFINITE SYSTEM OF
FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

BY ToMASz CZLAPINSKI

Abstract. We consider the mixed problem for the infinite system of non-
linear partial functional differential equations

Dyzi(t,x) = fi(t, 2, 2(,0), Dezi(®,y)), €N,
where z(g,,) = {(zi)@’z)} denotes an infinite sequence of functions defined
by the formula z( 4)(7,5) = 2(t + 7,2 + 5), (7,5) € [-70,0] x [0, h]. Using
the method of bicharacteristics and the quasi-iteration method for a certain

integral-functional system, we prove, under suitable assumptions, a theo-
rem on the local existence of generalized solutions of the mixed problem.

1. Introduction. We denote by ¢°° the space of all infinite sequences
p = {pi}, pi € R, i € N, such that |p|ec = sup {|pi|; i € N} < 400, where N
denotes the set of natural numbers. Put B = [—79,0] x [0,h] C R where
h=(hi,...,h,) €RY, T € Ry, (Ry =[0,4+00)) and

[0,h] ={z = (z1,...,25) €R"; 0<; < hj, 1 <j<n}.

Let z = {z} : [-70,a] X [-b,b+ h] — £°° be a given function, where a > 0,
b=(b1,...,by),b; >0, j=1,...,n. Then for a point (¢,2) = (t,z1,...,2y) €
[0,@] x [—b,b], we consider the function z(; 4y = {(2i)(t) } : B — £> defined
by

Z(t@)(T,S):Z(t—FT,Q}—FS), (7_78) € B.

In this paper the operator (¢,z) — Z(t,z) 1s used to describe the functional
dependence in a differential system.
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For any a € (0, a] we define the sets
Ey = [=70,0] x [=b,b + hl, Eq =[0,a] x [-b,],
aOEa = [07 a] X [_b7 b+ h] \ [O,(Z] X [_ba b)7 E; = E{)k U aOEa U Eaa

and for any X C E} we denote by C'(X, ¢>°) the space of all continuous func-
tions from X to £*°.
Given the sequences of functions f = {f;} and ¢ = {¢;} such that

fii Ea xC(B, ) xR" =R and ¢;: EjU0E; — R,

where a > 0, we consider the mixed problem for the following weak coupled
infinite system

(1) Dyzi(t,z) = f; (t, T, 2(t,2)5 szi(t,m)), (t,z) € EZ, i € N,
(2) Z(ta x) = ¢(t,$), (t,%) S Eg U a()Ea,
where Dyz; = (Dy, zi, ..., Dy, ). Note that since we use the operator (¢, z) —

Z(t,z) in the right-hand side of , the functions f;, i € N, actually become
functional operators with respect to the third variable. In this setting differ-
ential systems with a deviated argument and differential-integral systems are
particular cases of ().

We call z = {zz} : EY — (°°, where 0 < a < @, a solution of problem

(@, @) it

(i) z € C(E},€>) and the derivative Dyz = {D,z(t,x)} exists on Ej,

(ii) z(-,z) : [0,a] — £ is absolutely continuous on [0, a] for each x € [—b, b],

(iii) for any fixed i € N and x € [—b,b], the i-th equation of system is
satisfied for almost all ¢ € [0,a], and condition holds true for all
(t,x) € Ey UOoE,.

In other words we wish to investigate the local (with respect to t) existence
of generalized solutions of problem ,.

In this paper we consider the mixed problem for the infinite nonlinear func-
tional differential problem. We use the method of bicharacteristics that was
introduced and developed for non-functional equations by Cinquini-Cibrario
[9],[10] and Cinquini [8] for quasilinear as well as nonlinear problems. This
method was adapted by Cesari [6],[7] and Bassanini [1],[2] for quasilinear sys-
tems in the second canonical form. Some extensions of Cesari’s results to
differential-functional systems were given in [3],[11],[18]. The results obtained
in the papers mentioned above by means of the method of bicharacteristics
pertain generalized (in the “almost everywhere” sense) solutions.

Generalized solutions to quasilinear or nonlinear functional mixed problems
were investigated by Leszczynski [16], Turo [19], and Kamont and Topolski
[15]. Classical solutions in the functional setting were considered in [12].



209

In this paper we deal with the mixed problem for infinite nonlinear func-
tional differential systems. Among the literature concerning the Cauchy prob-
lem for infinite nonlinear functional differential systems we mention papers by
Szarski [17] and Jaruszewska-Walczak [14]. We prove existence of solutions
using the quasi-iteration method for a certain integral-functional system which
was introduced by Wazewski [20]. This method was used by Brandi, Kamont
and Salvadori [5] in the case of the Cauchy problem (see also [13]). An exis-
tence result for this equation was also obtained by Brandi and Ceppitelli [4]
by means of the method of successive approximations.

2. Notation and assumptions. Let R" denote the n-dimensional Eu-
clidean space with the norm |-| defined by |z| = maxj<;<p, |x;]. We use the sym-
bol £2° to denote the space of infinite sequences r = {r;}, r; = (Ti1,...,Tin) €
R™ for ¢ € N, such that |r|e = sup {|ri|; ¢ € N} < +o00. Note that we use the
same symbols for the norms in ¢°° and /;° for simplicity.

Let C%1(B, £>°) be the set of all continuous functions w : B — £*° in the vari-
ables (1,s)=(7, s1,..., Sy) such that the derivatives Dsw; = (Ds,w;, . . ., Ds, w;),
exist and Dyw = {Dsw;} € C(B,£X). If || - |lo denotes the supremum norm in
C(B, £°) then the norm in C%'(B,R) is defined by [|w||1 = ||w|o + || Dsw|lo-

For any w € C(B, () let

lw(T,s) —w(T, §)|so

lellz = sup{ - (1.5).(r,5) € B, s #5).

|s — 5]

If we put ||wlo.r, = |wllo + lw|lz, |wl1,r = [|w|1 + [|Dsw||, then we define by
CYHL(B, ), i = 0,1, the space of all functions w € C%(B, () such that
lwlls,r < 400 with the norm || - ||; 1.

Let Q) = E;xC(B, () xR" and Q1) = E;xC%(B, 1) xR™. We denote
by © the set of all functions 0 : [0,a] x Ry — R4 such that 6(¢,-) : Ry — Ry
is nondecreasing for almost all ¢ € [0,a] and 6(-,p) : [0,a] — Ry is Lebesgue
integrable for all p € R,.

The norms in C'(E}, £*°) and C(E}, £5°) will be denoted by the same symbol

ar*n
| s
|| HEa

AssuMPTION Hy. Let f = {f;}, fi : QO — R be the infinite sequence of
functions in the variables (t,z,w, q) and let § be any of these variables. Suppose
that

1° the derivatives Dsf;, i € N exist on QW) the sequence Dgf = {Dsfi} is
measurable with respect to t and there is a nondecreasing function 61 : Ry —
R4 such that

‘D5f<t7x7w7Q)’OO Sel(Hle) on Q(l),
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2° there is 05 € © such that
|D5f(t7 z,w, Q) - Dﬁf(t?jvw + ha Q)‘oo
< Os(t, ||wl1,L) [lz — 2 + [[All + g — gl],
for all (t,x,h,q) € QW , z,5 € R", w € COML(B, %),

REMARK 1. Note that if § = w then for each (¢, z,w,q) € Q) the deriv-
ative Dsf(t,x,w,q) is a continuous linear operator from C%!(B,¢(>) to (>°.
This means that in that case the norm of Dsf(t,x,w,q) is a norm of a linear
operator while if § = x or § = ¢ it is a norm in the space /;°. These norms
should be distinguished but for simplicity we use the same symbol |- |, in both
cases.

ASSUMPTION Hsy. Suppose that

1° ¢ ={¢i} € C(E§UE;, ) and the derivative Dy = {Dy¢;} exists
on E§ U 0yEg;

2 there are constants Ao, A1, A1, Ao, Ay € R4, such that on Ej U 0yl we
have

[6(t,2)|oo < Aoy [0(t,2) = DT, 2)|oo < Mt =, [Dad(t, )00 < At
|D26(t, @) — Dod(f,7) o0 < Aot 1] + Aofa — a;
3° the derivatives Dio;(t,z), i € N, exist on 0gE; N E; and the consistency
condition
(3) Digi(t,x) = fi(t, 2z, ¢4z, Datpi(t,z)), i€N,
holds true on OgE5; N Fj.

Now, analogously to [5],[13], we define two functional spaces such that the
solution z of will belong to the first space, while D,z to the other. Let ¢
be the function fulfilling Assumption [Hy] and 0 < a < a.

If Q; > A; for j = 0,1,2, and @Q; > Aj for j = 0,1, then we denote by
C’g:cliL(Q) the set of all functions z = {z;} : E} — £°° such that the derivative
D,z = {szi} exists on E} and

(i) z(t,x) = ¢(t,z) on EjU0yEq;

(i) 25, 2)loe < Qo |De(t,2)]oe < @1 on Ea
(iii) for ¢,t € [0,a|, z,& € [—b, b], we have
2(t,2) — 2(F, @)oo < Oult — 1,
1D, 2(t,2) — Dpz(t,T)|oo < Qalt — ] + Qalz — .

If P; > Ajqq for j =0,1, and P, > Ao, then we denote by C%’fd)a(P) the
set of all functions u = {uz} : Eq — £2° such that
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(1) u(t,x) = Dyop(t,x) on OgEq N Ey;
,T) oo < Py on Eg;
t,t €[0,a], z,x € [—b, b], we have

u(t,z) — u(t,Z)|e < Pr|t —t| + Pilz — 7.
3. Bicharacteristics. Let ¢ be a given function satisfying Assumption

and 0 < a < a. Then, for any z € C’g’clLJrL(Q), u € C%fd)a(P) and i € N, we
consider the Cauchy problem

(4) %(7) = —qui (7', 77(7'), 2(rn(7))> ui(T, 77(7'))) , TE [()7 a],

n(t) ==,
and we denote by g;[z, u](-,t,x) = (gi1[z,u](-,t,),. .., ginlz,u](, t, 7)) its Cara-
theodory solution. This solution we call the i-th bicharacteristic of system
corresponding to [z, u]. From classical theorems it follows that the unique solu-
tion to problem exists if Assumption [H;| holds with § = q. Let Az, u](t, x)
be the left end of the maximal interval on which the solution g;[z, u](-,t, z) is
defined. If Dy, fi(t,z,w,q) >0, j=1,...,n, on QO then
()\i[zv ’LL] (tv .73‘), gi[z’ U]()\Z[Z, U] (ta l‘), t, JZ‘)) € (Eg U aOEa) N Eq

and we may define the following two sets:

EW[z,u) = {(t,2) € Ea; Ailz,ul(t,z) = 0},

E((Lz) [z,u] = {(t,z) € Eq; gijlz, ul(Ni[z, u](t, x), t, z) = bj,

for some 1 < j < n}.
Write
Ri=14Qi+Qut P, Tt —ep{m| [ o30)a6]}
t

where 05(&) = 62(€, Qo + Q1 + Q2). In the sequel we will also write 6] instead
of 01(Qp + Q1) for simplicity.

LEMMA 1. Suppose that ¢ fulfills Assumption and that Assumption
is satisfied for 6 = q. If z, Z E_C'g:i+L(Q), u, U € C%f¢7a(P), are given
functions and i € N then for (t,z), (t,z) € E, such that the intervals

Ky = [max{\;[z,u](t, ), Xi[z, u](¢, )}, min{¢, }],
Ky = [max{\[z,u](t, ), N[z, @] (¢, 2)}, t]
are nonempty we have the estimates
(5)  lglzul(rt, o) — gilz,l(n B 2)| < Ym0 {051t — 1] + |2 — a1}
for T € K1, and
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©) lalzul(rtn) =l al(m ) < T 0] [ 6501 2l
+ 1Dy — D2 g + [Ju — aHE{}dg‘ for 7 € K.

PROOF. Let (t,z), (t,T) € E, be such that the intervals K7, Ko are non-

empty. If we transform into an integral equation then by virtue of Assump-
tion [H] we have

|gi[z,u](7,t,x) - gi[z7u](77 Eai‘)|
<lo—al+| [ DufPE (e E )
+| [ PPl (€ 0) = DuR L€ 8 )

<lo—al+ 8l — 8+ | [ 6501 laile. a6 t.2) — gz (€ 8.0)
t
F 2 glzalete) — gtz ezl
i, il wl(7, 2, ) — i€, gilz, ul (€7, 7))
<o — 7|+ 67t — 1

+ ‘ /T 0;(£)R1’92[27u](57t7$) - gi['%“](&vfa j)|d§‘
t

for 7 € K1, where

(7) P; [27 u](§7 2 LZZ) = (57 gi [Z, u] (67 t, 1’), 2(&,9i[z,u](€,t,x)) uz(fa gi [27 u] (57 t, $))) :

Thus follows from the Gronwall lemma.
In the same way, by Assumption we get the estimate

|gi[zv u] (7—7 t, l‘) - gi[i ﬂ] (7_7 t, :1?)|

<| [ 030 = 2N + I1Doz = Dzl + lu =l e

+ ‘ /tT 05(&)R1|gilz, u|(&, t, x) — g2, ﬁ](§,t,x)|d§‘

for 7 € K. Now, again using the Gronwall lemma, we get @, which completes
the proof of Lemma m

LEMMA 2. Suppose that ¢ fulfills Assumption[Hg and that Assumption[H,|
is satisfied for § = q. Furthermore, suppose that for every p € Ry there is
d(p) > 0 such that we have Dy, fi(t,x,w,q) > 6(p), i € N, j = 1,...,n, for

all (t,x,w,q) € QW such that |wl|; < p. Ifi € N and z, 2 € Cg:iJrL(Q),
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u, U € C%f¢a(P), are given functions then for all (t,x), (t,T) € E, we have

(8) |Nilz, ul(t, z) — N[z, u] (¢, 2)| < %T(O,t){@ﬂt —t|+ |z — x|},

_ 1 b _
9 [Ailz Ul 2) = Ailz, @] 2)] < 5,,ff(0,lﬁ)/0 03(&){1lz — 2|
+ |Dyz — Dol g + |lu — | g, }dE,
where §* = §(Qo + Q1)-
PRrROOF. Let i € N be fixed and ¢; = gi[z,ul, \i = Ni[z,u], §i = gi[z, 4],
i = \i[Z,@]. Since (§) is obviously satisfied if (¢,z), (¢,7) € E((ZZO) [z, u], without
loss of generality we may assume that \;(¢,z) < \;(¢,z) and (¢, ) € Eé? [z, ul.
There exists 1 < j < n such that g;;(\i(t,z),t, ) = b;. Then we have
> gij(Ni(t,2), 1, %) — gij(Ni(t, ), 1, @)
Ai(t,z) 3 3
= /)\ 5 Dq]' fi (57 gi (57 t, j)a 2(€,9:(&5,7))s ul(éu 92(57 i, j))) dr
> 5% Nilt, ) — Ni(¢, o))
The above estimate together with gives .
Analogously, since (9) is obviously satisfied if (¢,z) € El%) [z,u] N E((;O) [z, u],
we may assume that \;(t,z) < \i(t,2) and (¢, ) € EC(LZ) [z,u]. Then for 1 < j <
n such that g;;(\i(t,x),t,x) = b; we have

gZJ(Al(u x)a t: .CL') - gzg()\l(ta l’), t7 .CC)

/\i(t,x)
N /)\ Dy, fi (& 9i(&: 4, 2), Z(e gae ) Wil§, Gi €, 1, ) dE

i(t,a:)
> %[Nt @) — Ni(t, 2)],

which together with @ gives @D O

4. A certain system of integral-functional equations.

AssUMPTION Hs. Suppose that
2 f={fi}, fi : QO — R is an infinite sequence of functions in the
variables (t,z,w,q), measurable in t, and there is a nondecreasing function
0o : Ry — Ry such that
f(t,2,w,0)|00 < Oo(wllo)  on QO

Furthermore, let Assumption be satisfied with 6 = x,w, q.
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2 For every p € Ry there is a constant 6(p) > 0 such that we have
Dy, fi(t,z,w,q) > 6(p), i €N, j=1,...,n, for all (t,z,w,q) € QW such that
[wl[1 < p.
Let ¢ and f satisfy assumptions respectively, and for a € (0, a)
L
let z = {%} € Cg:};r (@), u = {u;} € C%zqﬁ,a(P)’ where u; = (w1, ..., Uin),
i € N be given functions. Note that u consists of n infinite sequences which
we denote by 4; = {u;;}, 1 < j < n. We define the operators T;[z, u], Vi;[z,ul,
1eN,j=1,...,n, by

Tz’[z7 u] (t7 .’L‘) = (b’b()\l['z? u](tv x)v gi[z’ u](/\z[z7 ’LL] (t7 :L'), tv x))

S S S

ilz,u](t,2)
= 3" Do fil Pl ul(§, ) uan(r. gilz ul (7.t ) | de,
k=1
‘/ij [’27 u] (t7 iU) = ij(ﬁ’b()‘Z[zv u]: gi[27 u]()‘z[z7 u] (tv iL'), t: .CIZ‘))

+At (D2 (P2, (6,1, 2)

ilz,u](t,2)

+ Dy fi( B[z, ul (€, 1, x)) o (ﬂj)(T,gi[Z,U](E’t@))} dg
for (t,z) € E}, and

,I%[Zvu](t?l') = ¢i(t7x)7 ‘/’ij[z7u](t7x) = ij(;si(t,x)

for (t,z) € Ej U OyE,, where g;[z,u] is a solution of [4)), A;[z,u] is the left end
of the maximal interval on which this solution is defined and P;[z,u] is given
by (7). In the definition of Vj;[z,u] the derivative D, f;(P;[z, u](&,t, z)) is a
continuous linear operator and by o we denote the value of this operator taken
on the function (i) (r gz ul(et2)) € COH(B,€°). Put T[z,u] = {T;[z,u]} and
V{z,u] = {Vi[z,u]}, where Vi[z,u] = (Vi1[z,ul,. .., Vin[z,u]). We will consider
the system of integral-functional equations

(10) z =Tz, ul, u=V]z,ul.
REMARK 2. The integral-functional system arises in the following way.
We introduce an additional unknown function © = D,z in the i-th equation of

system . Then we consider the linearization of this equation with respect
to U; = (uz’h . ,um), which yields

(11) thi(tal') = fz(pz) + ZDqkfz(pz)(kazz(ta l‘) - uik(ta x))a
k=1
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where P, = (t, @, 2(1,2), ui(t, 7). Differentiating with respect to z; and
substituting v = D, z, we get

(12)  Dyuij(t, x) = Dy, fi(P5) + D fi(P;) 0 (1) (1,0

n
+ZDQkf'L(P’L)D$Ju’Lk(xay)7 ,7:1,,77,
k=1
Making use of we have

é%@mhﬂ@iwb—&%@mhﬂﬁm@)

— "Dy fi(Pilz,u)(€, 1, 7)) Dy, 2i(€, gilz, u (€, £, 7).
k=1

Substituting in the above relation and integrating the resulting equation
with respect to & on [A[z,u](t,z),t], we get the first of the equations in ([10)
on F,. Repeating these considerations for and taking into account that
z=¢, u= Dy¢p, on EjU0yE,, we get the second equation in ([L0]).

Suppose that ¢ and f satisfy Assumptions respectively. Under
these assumptions we prove that the solution of exists, using the quasi-
iteration method, which general idea was given by Wazewski [20]. We define
a sequence {z(™ 4™} in the following way.

1° Let d~> be any extension of ¢ onto the set £ such that g?) satisfies condi-
tions 1°,2° of Assumption [Ho| on E*. We put

(13) Z(O)(t,l‘) = (j;(t, IE), U(O)(t’x) = ngg(tal')a
and then 2(0) ¢ Cg:clfL(Q), ul® ¢ C%f¢7a(P).

20 If z(m) ¢ ngiJrL(Q), um e C%f¢7 .(P) are already defined functions

(m+1)

then u is a solution of the equation

(14) u =V,
and z(m*1) is defined by

(15) 2D = (M) g (mH)]
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The operator V(™) = {Vi(m)}, where Vi(m) [u] = (Vz(lm) [ul,..., yim [u]), i € N,
is given by

(16) Vi lul(t,z)
— Dy, s\l (8, ), i KMWWMMM)

s f [Da, (P, w6, 1,2))
A=) ] ()

+ Dwfz( ’i[z )7 'LL] (67 t7 ‘T)) o (ﬁg'm))(f,gi[z(m),u}(f,t,ﬁ))} df
for (t,x) € E,, and

Vig‘m) [ul(z,y) = Da,¢i(z,y) for (t,x) € Ej U 0y E,.
REMARK 3. Note that the operators V™ and V[2("), ] are not identical
(m)

since in the last term of (16| we have ;" instead of @;. In Theorem (3| we

prove that D,z(™) = (™) and therefore, analogously as in Remark [2| we may
say that ﬁgm) appears in as a substitution for DQ,,%](-m)

In the next section we prove the existence of the sequence {z(m), u(m)} under
the assumption that the constants defining classes Cg’(llJrL(Q) and C%f¢ o(P)
are sufficiently large. More precisely, they fulfill the following assumption.

ASSUMPTION Hy. Suppose that Qg > Ag, Q1 > Ay,

Q2>A2[ (1+91) ] +51015*

0%

01 > max{Al,Al [5* (1461 + 1067+ [1+ 5 L6:1(00(Qo) + 9;130)},

- . 1
Qs > maX{AQ,A2 (55 (14 01) +1]67 + [$1 + $167 = ]9;},
and let Py = Q1, Pi = Q2, Py = Q2.
Write

Lo(t) = A+ 0754t,

fo(t) = AlT(OJ t) [%

F (1 5 T(0,065] (Bo(@Qu) + 61 )

t
+/ {9T+0§(T>P0}R1T(O,T)d7',
0

(1+67) +1]67
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1

5*
t

+/ {0§(T)R151+01‘P1}T(0,7-)d7,
0

1
Ii(t) =AY (0, 8) [ (1 +67) +1] + Slefg

where S1 =1+ Fp.

REMARK 4. Note that, since lim;_o Y(0,¢) = 1, by Assumption we
may choose a € (0, a] sufficiently small for the following estimates to hold

Ao+ [65 + 67 Pola < Qo, Lo(a) < Q1, Io(a) < Q1 = Po,
07[S1 +T1(a)] < Qa =P, Ti(a) < Qo= Py

5. The existence of the sequence of successive approximations.
In this section we prove that the sequence {z(m),u(m)} exists, provided that
a € (0,a is sufficiently small.

THEOREM 3. If Assumptions are satisfied and a € (0,a] is suffi-

ciently small then for any m € N we have

(In) 2™, u(™ are defined on Ef and we have z(™ ¢ C'g:(lz+L(Q), ul™ ¢
C%f¢7a(P);

(IL,) Dpz(™ (t,2) = u™(t,2) on E,.

ProOF. We will prove (I,,,) and (IL,,) by induction. It follows from
that (Ip),(IIp) are satisfied. Suppose that conditions (I,,) and (IL,,) hold true
for a given m € N. We first prove that u(™*1) : E* — R” exists and u(™*1) ¢
k. (P)

Dyx¢,a :

We claim that given z(™) Cg:iJrL(Q), the operator V(™) maps C%f J(P)
into itself for sufficiently small a € (0, a]. It follows from Assumptions
and inequality that given u € C%fzzﬁ,a(P)’ for all (t,z), (t,%) € E, we have
the estimates

t
VIRt 2)] < Ay + / 0:.51d€ < Tola),
Ai [Z(m) 7“](t7x)
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VL (t, ) — VO ) (7, f>|

K3

< AY(0,8){[1 +9* +1}{9*|t t|+ |z — z|}
i [2(™) ] (,
+(/ ot Sld§’+’/ ( e*sldg)

O 1]+ [ — ]} A ) ){e;@)Rlsl L OTPYY(E e

< 07[S1 + Tia)][t — t] + T1(a)|z — 2.
Hence by Assumption we may take a € (0,a] so small that T'yp(a) < Py,
['i(a) < Pi, 071 +T1(a)] < P1, and then
VU] (t, )]0 < Po,

17
o VI u](2,y) = VO 2) |0 < Pr[lt — ] + o — 2]

for (t,x), (t,%) € E,. Since V™ [u] = D,$ on Ef UIE,, it follows from
that V(™) maps C%fqﬁ,a(P) into itself.

Ifue C%f¢7a(P), u € C’%f&a(P) then analogously, by Assumptions
formulas (6, (©) and the relation V™ [u] = V(™) [a] = D,¢ on Ey, we get

IV ] = vi[a

s < / G(r)lu — al| gz dr,
0
where

G(t) = A27(0,1)05(t) [5% 5"

L [05() RySy + 61 P T(0, ) / 03 (7)dr + 03(1) 1.
0

(1+67)+1] +6751— T(o,t)eg(t)

We may take a € (0, @] so small that [;' G(7)dr < 1 and consequently v (m)
is a contraction with the norm || - [|gx. By the Banach fixed point theorem,

there exists the unique solution u € C%qu . of (14)) which is w(mth),

Our next goal is to prove that z(™*1) given by satisfies (II,,41). For
t €10,al, z,z € [-b,b] put A(t,z,z) = {Ai(t,w,iﬁ)}, where

18)  Ata,z)=2""(t,x) — 2"Vt z) — "t 1) - (2 — T),

and “-” denotes the scalar product. We will prove that there is a constant
C € R, such that

(19) IA(t, 2, %)|o < Clz — 7|



219

For simplicity we put \;(t,z) = X[z, u(™+D](¢, 2) and
Pi(&) = B[z )&t 2),  gi(§) = gil 2wV (€ 8 ),

and replacing x with z we get analogous formulas for P;(£), g;(¢). In view of
(15) we may write in the form

Ai(t, 2, T) = ¢i(Ailt, 2), gi(Ai(t, 2))) — di(Xilt, ), gi(Xi(t, T)))
_D:pgbi()\i(tvl‘)vgl()\(t 33‘))) (:E i‘)

w0 () - Re) de
A(t,z)

) /m ADafPA) - ™ €.1(6)
— Dy fi(P(€)) - ui™ (€, 3i(€)) } de

)\i(t,i) B _
4 / (JAB.)) - Dyfi(P€)) - ul™ V¢, 9(€)}de
Ai(t,z)

t
= [} o (PECRAO) + Duf(PE) » (47 ) e - (2 =),
where
Du fi(Pi(€)) © (™) ¢ .6
= (DufilPA&) o (™) g0 -+ Dufil Bil€)) © (4™ ) e gu(c1))
In the above formula we apply the Hadamard mean value theorem to the
difference f;(P;(€)) — fi(Pi(€)), whence
t
| () - £Pe)) de
Ai(t,z)
t 1
- / | Dasi@its )late) — aias ae
(t,x)

/M/Dwf,stg o [ ) — Aeoey | ds d

/ 8 / Dafi(Qul, ) - [u™ (€ gz<£>)—uﬁm“)(s,gz-@))]dwf,

Qi(5,6) = sPil", u™ V(€ b, 2) + (1 = 5) B[, "™V (€ 8, 7).
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Let us define
AV (t,2,7) = pi(Ni(t, 2), gi(Nilt, 7)) — di(Nilt,

— Dagi(Nilt, @), i (AL, 2))) [Mi(t, @) — Ni(E, 7))
— D2¢i(Ailt, ), i (A, 2))) - [9:(Ni(E, ) — (i, 7))

/ " / Do fi(Qi(5,€)) — Dufi(P(€))] + [9:(6) — Gi(€)]ds de

/ » / Dufi(Qi(s,€)) — Duf(PA€))]

)| ds dg

7)7 gz()‘z(ta j")))

(m)
[595» #(e,1(6)

t ] P00 - s
(€ 01(6) - *”(m(s))]dsds

t
i / (o D TiEE) [#nien — ameen

— (™) ¢ oo + 9:(€) — §i(§)ﬂd€,
AP (t,2,7) = Ni(t,2) = Ni(t,2)] - Ded(Ni(t, ), gi(A(t, 2)))

Ai(t,z)
- /A Fi(PA))de

i(t,T)
+ [gi(Ni(t, @) — Gi(Ai(t, )]+ Dadpi(Ni(t, ), gi(A(t, 2)))

Ai(t,z) B
4 A D f(B(€)) - ™ (€, gi(€) e,

i(t7j)

and

Agl)(t,m,f)
= Dpi(Ni(t, ), gi(Ni(t, ) - [9:(Ni(t, )

AD = / Do fi(PAE)) - [93(6) — 5i(E) — (w — 2)]de
(t,x)

+ / Do fi(P(€)) 0 (™) e ey - [9:(E) — 5:(€) — (x — 7)]dé
)\i(t,x)

AP =~ [ [DuiPAE) - DU(PAE] -0 6, 9O
Ai(t,z)

—gi(Ni(t,z)) = (2 = 7)]
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With the above definitions, we have
(20) i(t,x,T) ZA (t,x,T) Zg:AE t,x,T).
Since g; is a solution of ., we see that

06 = 56 ~ (o= 7) = [ (DRI - Df(PLON G

Substituting the above relation in AEQ) and in Agl) with ¢ = 0 and changing
the order of integrals where necessary, we get

3 t B
tl‘fL‘ = qu-Pz —inPi
SAl /Mm[ F(PAE)) = Do (PE))]

k=1

13
. [Dx@-(O,gi(O)) + / D, fi(P;(¢))d¢

Ai(t,z)

3
[ DuBPO o (1) eeds — a6 ()]
Ai(t,x)

= [ [PaA(RE) ~ Du(P©)]
[Vt e, gi(0)) - <m+”<s,gi<s>>]d§ =0,

from which and from we get Ai(t,x,7) = Yo | A (t x,Z). In the above
transformations we have also used the group property for the bicharacteristic
gi- Assumptions inequality and the existence of derivatives D,
D,z = (™) yield the existence of a constant C; € Ry such that

AD (¢ 2, 3)| < Cilz— 22, te[0,d], =, € [~b,bl.

Writing A§2) in the form

(2) )\i(t,:l:) B
)\i(t,x)
/\i(t,a:) B
D, fi(P;
R G)

V(€ 5:(6) — Dadi(Nilt, @), gi(Nilt, @), ¢, )] dé

making additional use of the consistency condition , and taking into account
the relation w(™*t1) = D,¢ on oF N E,, we get the estimate of the same type
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f9r Agz) with a constant Co € Ry. This means that holds true with
C = C1 + Cq, which completes the proof of (II,,41).

Finally, we prove that z(™*1) defined by belongs to the class Cg:iJrL(Q).
Since D,z(m+) = ¢(m+1) it follows from that

D2 (7)o < Q1
1D,z (t,2) — Dy ™ (E,7) |00 < Qalt — | + |2 — 7]
for (t,x), (t,%) € E,. By Assumptions we easily get
2"V (¢, 2) |0 < Ao + [00(Qo) + 6] Pola,
2" (8, 2) — 20"V 7)o < Tola)lt — 1],

for (t,z), (t,x) € E,. By Assumptlonwe may choose a € (0, a] so small that
additionally Ao + [0o(Qo) + 07 Pola < Qo, FO( ) < Q1. This together with the
relation 2™+ = ¢ on E} U9y E, gives 2(m+1) ¢ C’gffL(Q), which completes
the proof of (I,41). Thus Theorem [3| follows by induction. O

6. The main result. Write
t t
) =10+ aw e [ ceoah [ c@a
where

1 1
H(t) = Ay Y(0,1)05(t) [5—*(1 +607) +1] + 9;815

t
4 [65() RuPy + 6;Ry] Y(0, 1) / 05(r)dr + 07 + 05(1) Py
0

1(0,4)65(t)

THEOREM 4. If Assumptions are satisfied then the sequences {z(m)},

{u(m)} are uniformly convergent on E, for sufficiently small a € (0, a).

PROOF. Suppose that a € (0, a] is such that the conclusion of Theorem
holds true. For any 7 € [0,a] and m € N we put

2 (7) = sup{ |2 (t, ) — 2Dt 2)|oo; (tz) € B},
U(r) = sup{[u™ (¢, 2) — u" D (t,2) i (t,) € B2},

Using the same technique as in the proof of Theorem [3| by Assumptions
and inequality (@ for any t € [0,a] and m € N, we get the estimate

m+1) / G m+1 )df

" / G()[20(€) + U™ ()] de.
0
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Making use of the Gronwall lemma, we have

(21) U™ < exp{/ot G(g)dg} /OtG(g) [Z(m)(g) + U(m>(5)]d§.
By Assumptions n . and relations ., we get the estimate

(22) Zm ) (¢) / HY(&)[Z2M(&) + UM™(¢)]d¢,  te0,al

Thus if we take
) = exp /G d§ t)+ H*(t),

then using . for any t € [0, a], we have

ZmHD () ¢yt /M (&) + U™ ()] de.
Now, by induction, it is easy to get
ARIOERAR (fo( _1)) - [ZW(a) + UN(a)], ¢ €[0,a],
and consequently
(23) i[z“’(aHU(”(a)] < [2M(a) mzl Jo M g)dg)
i=k i=k—1

Since the series Y 2, % is convergent, it follows from . that the

sequences {z(™}, {u™} satisfy the uniform Cauchy condition on E}, which
means that they are uniformly convergent on E7. This completes the proof of
Theorem [l O

THEOREM 5. If Assumptions [Hg{H)| are satisfied then there is a solution
of the problem . .

PRrOOF. It follows from Theorem [ that there exist functions z, 4 such that
{z0m} {u(™} are uniformly convergent on E* to Z, @, respectively, if a € (0, a
is sufficiently small. Furthermore, D,z exists on E} and D,z = 4. We prove
that z is a solution of .

From it follows that for any i € N and (¢, ) € E(O)[z D, z] we have
@) F(ta) = 305000+ [ [#RIEDAE L)

—me 2, DoZ) (6, 7)) Dy 5 (€, 1 ) | d,

where g; = g;[z, D, Z].
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For a fixed ¢t we define the transformation z +— g;(0,¢,z) = (. Then by the
group property g;(7,t,z) = g;(7,0,() and by , we get

/M@m@odawmeZ@MUmm

- ZDquZ 3i(£,0,0). Z(e gi(e.0.00)» D22(€,5:(£,0,0)))

Differentiating the above relation with respect to ¢ and making use of the
reverse transformation ¢ — g;(¢,0,() = x, we see that the i-th equation of

system is satisfied for almost all ¢ with fixed = on Ec%) [z, Dy Z].
Analogously, for any (t,z) € ELSZ) [z, Dy Z] we have

t

(25) Z‘(t,w) = ¢i(oagi(0atvx)) +/

Ai(t,z)

|fi(Pi[2, D22 (6 1)

_ qujfz {[2, D] (€1 2) Doy 561, @) d,

where \; = \;[Z, D, 2].

Without loss of generality we may suppose that g;; (5\ (t,x),t,x) =b;for j=n
and for simplicity we write ¢’ = ((1,...,Cu-1), 9 = (i1,---,Gin—1). For a
fixed ¢ we define the transformation = — (gi(\i(t,z),t,z), A(t,z)) = ({',n).
Then by and the group property we get

zi(tv gi(tv m, C,a bn)) = ¢i(777 <,, bn)
t
/ [f(g’gl(g 77,C b ) Z(€,5:i(&m,C"\bn))s sz(évgi(ga’r/? <,,bn)))
77

_ZDqkfl 5 7, C b ) Z(ﬁ,gi(f,n,ﬁ’,bn))asz(g,gi(gan, Clabn)))

As previously, differentiating the above relation with respect to ¢ and making
use of the reverse transformation (¢’,n) — g;(t,n,{’,b,) = x, we see that the
i-th equation of system is satisfied for almost all ¢ with fixed x also on
E(SZ) [z, Dy z). Since z obviously fulfills condition (2), the proof of Theorem [5|is
complete. O
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REMARK 5. If in Theorem [5| we assume that f is continuous then we get
existence of classical solutions of problem , .

7. Solutions with a generalized Lipschitz condition. We may con-
sider solutions of problem , that satisfy a generalized Lipschitz condition
with respect to the first variable. In this case we modify the assumption on
the initial function ¢.

ASSUMPTION Hj. Suppose that

1° ¢ ={¢;} € C(E;UyEgz,£>°) and the derivative Dy¢ = {D,¢;}, i € N,
exists on E§ U OoEg;

2 there are constants Ao, A1, Ao € Ry, and Lebesgue integrable functions
wi,wz : Ry — Ry such that on Ef U 0yEg we have |¢p(t, x)|co < Ao and

t
ot.2) = d{E ) < | [ wr(ride], Dsolt,2)] < A

t
|D3¢(t,2) — Dy¢(t,T)]oc < \/ wz(T)dT‘ + Aoz — Z;
t

3° the derivatives Dyp;(t,z), i € N, exist on 0gEz N E; and the consistency
condition holds true on 9yFz; N Ej.

Let ¢ fulfill Assumption and let a € (0,a]. Instead of the functional
spaces Cg’(llJrL(Q), C%yL¢ .(P) considered in section we may define two other
spaces. By C’g’clfL(u, @), we define the set of all functions z : E} — (> such
that the derivative D,z, exists on E; and

(i) z(t,x) = ¢(t,z) on EjU0JyEq;

(11) |Z(t7$)|00 < Q(]a |D:L"Z(t7x)|oo < Ql on Ea;
(iii) for ¢,t € [0,a], z,Z € [—D, ], we have

2lt3) — 2 < | [ mirsin]

|Dy(t,) — Dy, )| < ‘/ pa(7)dr| + Qala — .

We also define by Cﬁz 5.a(V; P) the set of all functions u : Eq — €37 such
that

(1) u(t,x) = Dyop(t,x) on OgEq N Ey;
<Py on Eg;
0,al, z,z € [—b,b], we have

fult, 2) — u(f, 7)o < ‘/ rydr| + Pile — 7.
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In the above definitions the constants Q1, Q2, P from section [2 have been
replaced by Lebesgue integrable functions u1, us, v, respectively.

AssUMPTION Hg. Suppose that
1 f={fi}, fi - QO — R is an infinite sequence of functions in the
variables (t,z,w,q), measurable in t, and there is 01 € © such that

(2w, )l < 01(E, wlo) — on Q).

2 For § = x,w,q the derivatives Dsf;, i € N exist on Q)| the sequence
Dsf ={Dsfi} is measurable with respect to t, we have

|D5f(t’xawaQ)|oo Sel(t,Hwnl) on Q(l),
and there is 09 € © such that

< Oa(t, wllv.) [lo — 2 + [|hfl1 + |g — ql],

for all (t,z,h,q) € QW , z,§ € R, w € COML(B, ().

3 For every p € Ry there is a constant §(p) > 0 such thalt we have
Dy, fi(t,z,w,q) > 6(p)br(t,p), i €N, j=1,...,n, for all (t,r,w,q) € o),
such that ||w|; < p.

Let ¢ be a given function satisfying Assumption and 0 < a <a. Asin
section for any z € C’gziJrL(u, Q),u € C’%gﬁ%ﬂ(l/, P) and i € N, we may define
the i-th bicharacteristic g;[z,u](,t, z) of system corresponding to [z, u] as
a solution of problem . We may also prove a lemma about properties of
gi[z,u] (-, t, ) analogous to Lemma [} where instead of the term 07|t —¢t| at the
right-hand side of (), we now have Utt 07 (€)d¢|, where 67 (1) = 61(7, Q1 + Q2).
For \;[z,u](t,z), the left end of the maximal interval on which g;[z,u](-, ¢, z)
is defined we may prove the following estimates

‘/A[w]me* dﬁ‘ Ot /9* d£‘+|x—x\}

[z,u](¢,x)

Ailz,a)(t,z)
‘/ 0r (¢ d§‘<— Ot/ O{Ilz - 2ll g

+[|D2z — Doz g + |lu — ] g e,

instead of and @ proved in Lemma
Suppose that Assumptions and [Hg| are satisfied and that there are
constants M7, My € R, such that we have

wi(1) < M7 (1), wa(T) < Mabi(1), for 7 € [0, a).
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Then we may choose parameters defining the classes Cg’(lfL(u, Q), u €

C’%’fd) .V, P) such that for sufficiently small a € (0,a] there is a solution Z
of problem , belonging to the class C’g:(l;L(u, @) and such that D,z €
0,L
Chopas P).
Finally, we show some examples of infinite functional differential systems
which are particular cases of .

ExAMPLE 1. Given fz By x £ xR® - R, 7 € N, let us consider the
differential system with deviated argument

(26) thi(tv ."L‘) = fi(ta €, Z(Oé(t), B(t l‘)), D:chi(tv ZL‘)),

where a : [0,a] = R, : Ez — [-b,b], and «a(t) <t for ¢t € [0,a]. We define a
function f = {f;} by

flt,z,w,q) = f(t,z,w(a(t) —t,6(t,x) — x),q)
for (t,z,w,q) € Eg x C(B, ) xR". If (a(t)—t, B(t,z)—x) € B for (t,z) € E;

then ([26) is a particular case of under natural assumptions on «, 3, f.

ExAMPLE 2. With fz as in the previous example, consider the differential-
integral system

(27) Dyzi(t,z) = filt, a:,/ z2(t + 71,2+ s)drds, Dyzi(t, z)).
B

If we define a function f = {f;} by

f(t,2,0,9) = f(t, 2, /B w(r, s)drds, q)

for (t,z,w,q) € Ez x C(B,£>*) x R™, then it is easy to formulate assumptions
on f in order to get the existence theorem for as a particular case of .
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