
UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XXXIX

2001

THE MIXED PROBLEM FOR AN INFINITE SYSTEM OF

FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

by Tomasz Cz lapiński

Abstract. We consider the mixed problem for the infinite system of non-
linear partial functional differential equations

Dtzi(t, x) = fi

(
t, x, z(t,x), Dxzi(x, y)

)
, i ∈ N,

where z(x,y) =
{

(zi)(t,x)

}
denotes an infinite sequence of functions defined

by the formula z(t,x)(τ, s) = z(t + τ, x + s), (τ, s) ∈ [−τ0, 0]× [0, h]. Using
the method of bicharacteristics and the quasi-iteration method for a certain
integral-functional system, we prove, under suitable assumptions, a theo-
rem on the local existence of generalized solutions of the mixed problem.

1. Introduction. We denote by `∞ the space of all infinite sequences
p = {pi}, pi ∈ R, i ∈ N, such that |p|∞ = sup {|pi|; i ∈ N} < +∞, where N
denotes the set of natural numbers. Put B = [−τ0, 0] × [0, h] ⊂ R1+n, where
h = (h1, . . . , hn) ∈ Rn

+, τ ∈ R+, (R+ = [0,+∞)) and

[0, h] = {x = (x1, . . . , xn) ∈ Rn; 0 ≤ xj ≤ hj , 1 ≤ j ≤ n} .

Let z = {zi} : [−τ0, ā]× [−b, b + h] → `∞ be a given function, where ā > 0,
b = (b1, . . . , bn), bj > 0, j = 1, . . . , n. Then for a point (t, x) = (t, x1, . . . , xn) ∈
[0, ā] × [−b, b], we consider the function z(t,x) =

{
(zi)(t,x)

}
: B → `∞ defined

by
z(t,x)(τ, s) = z(t + τ, x + s), (τ, s) ∈ B.

In this paper the operator (t, x) 7→ z(t,x) is used to describe the functional
dependence in a differential system.
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For any a ∈ (0, ā] we define the sets

E∗
0 = [−τ0, 0]× [−b, b + h], Ea = [0, a]× [−b, b],

∂0Ea = [0, a]× [−b, b + h] \ [0, a]× [−b, b), E∗
a = E∗

0 ∪ ∂0Ea ∪ Ea,

and for any X ⊂ E∗
a we denote by C(X, `∞) the space of all continuous func-

tions from X to `∞.
Given the sequences of functions f = {fi} and φ = {φi} such that

fi : Eā × C(B, `∞)× Rn → R and φi : E∗
0 ∪ ∂0Eā → R,

where ā > 0, we consider the mixed problem for the following weak coupled
infinite system

Dtzi(t, x) = fi

(
t, x, z(t,x), Dxzi(t, x)

)
, (t, x) ∈ E∗

ā, i ∈ N,(1)

z(t, x) = φ(t, x), (t, x) ∈ E∗
0 ∪ ∂0Eā,(2)

where Dxzi = (Dx1zi, . . . , Dxnzi). Note that since we use the operator (t, x) 7→
z(t,x) in the right-hand side of (1), the functions fi, i ∈ N, actually become
functional operators with respect to the third variable. In this setting differ-
ential systems with a deviated argument and differential-integral systems are
particular cases of (1).

We call z =
{
zi

}
: E∗

a → `∞, where 0 < a ≤ ā, a solution of problem
(1),(2) if

(i) z ∈ C(E∗
a, `∞) and the derivative Dxz =

{
Dxzi(t, x)

}
exists on Ea,

(ii) z(·, x) : [0, a] → `∞ is absolutely continuous on [0, a] for each x ∈ [−b, b],
(iii) for any fixed i ∈ N and x ∈ [−b, b], the i-th equation of system (1) is

satisfied for almost all t ∈ [0, a], and condition (2) holds true for all
(t, x) ∈ E∗

0 ∪ ∂0Ea.
In other words we wish to investigate the local (with respect to t) existence

of generalized solutions of problem (1),(2).
In this paper we consider the mixed problem for the infinite nonlinear func-

tional differential problem. We use the method of bicharacteristics that was
introduced and developed for non-functional equations by Cinquini-Cibrario
[9],[10] and Cinquini [8] for quasilinear as well as nonlinear problems. This
method was adapted by Cesari [6],[7] and Bassanini [1],[2] for quasilinear sys-
tems in the second canonical form. Some extensions of Cesari’s results to
differential-functional systems were given in [3],[11],[18]. The results obtained
in the papers mentioned above by means of the method of bicharacteristics
pertain generalized (in the “almost everywhere” sense) solutions.

Generalized solutions to quasilinear or nonlinear functional mixed problems
were investigated by Leszczyński [16], Turo [19], and Kamont and Topolski
[15]. Classical solutions in the functional setting were considered in [12].
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In this paper we deal with the mixed problem for infinite nonlinear func-
tional differential systems. Among the literature concerning the Cauchy prob-
lem for infinite nonlinear functional differential systems we mention papers by
Szarski [17] and Jaruszewska-Walczak [14]. We prove existence of solutions
using the quasi-iteration method for a certain integral-functional system which
was introduced by Ważewski [20]. This method was used by Brandi, Kamont
and Salvadori [5] in the case of the Cauchy problem (see also [13]). An exis-
tence result for this equation was also obtained by Brandi and Ceppitelli [4]
by means of the method of successive approximations.

2. Notation and assumptions. Let Rn denote the n-dimensional Eu-
clidean space with the norm |·| defined by |x| = max1≤i≤n |xi|. We use the sym-
bol `∞n to denote the space of infinite sequences r = {ri}, ri = (ri1, . . . , rin) ∈
Rn for i ∈ N, such that |r|∞ = sup {|ri|; i ∈ N} < +∞. Note that we use the
same symbols for the norms in `∞ and `∞n for simplicity.

Let C0,1(B, `∞) be the set of all continuous functions ω : B→`∞ in the vari-
ables (τ, s)=(τ, s1, . . . , sn) such that the derivatives Dsωi =(Ds1ωi, . . . , Dsnωi),
exist and Dsω = {Dsωi} ∈ C(B, `∞m ). If ‖ · ‖0 denotes the supremum norm in
C(B, `∞m ) then the norm in C0,1(B, R) is defined by ‖ω‖1 = ‖ω‖0 + ‖Dsω‖0.

For any ω ∈ C(B, `∞m ) let

‖ω‖L = sup
{ |ω(τ, s)− ω(τ, s̄)|∞

|s− s̄|
: (τ, s), (τ, s̄) ∈ B, s 6= s̄

}
.

If we put ‖ω‖0,L = ‖ω‖0 + ‖ω‖L, ‖ω‖1,L = ‖ω‖1 + ‖Dsω‖L, then we define by
C0,i+L(B, `∞), i = 0, 1, the space of all functions ω ∈ C0,i(B, `∞) such that
‖ω‖i,L < +∞ with the norm ‖ · ‖i,L.

Let Ω(0) = Eā×C(B, `∞)×Rn and Ω(1) = Eā×C0,1(B, `∞)×Rn. We denote
by Θ the set of all functions θ : [0, ā]× R+ → R+ such that θ(t, ·) : R+ → R+

is nondecreasing for almost all t ∈ [0, ā] and θ(·, p) : [0, ā] → R+ is Lebesgue
integrable for all p ∈ R+.

The norms in C(E∗
a, `∞) and C(E∗

a, `∞n ) will be denoted by the same symbol
‖ · ‖E∗

a
.

Assumption H1. Let f = {fi}, fi : Ω(0) → R be the infinite sequence of
functions in the variables (t, x, w, q) and let δ be any of these variables. Suppose
that

1◦ the derivatives Dδfi, i ∈ N exist on Ω(1), the sequence Dδf = {Dδfi} is
measurable with respect to t and there is a nondecreasing function θ1 : R+ →
R+ such that

|Dδf(t, x, w, q)|∞ ≤ θ1(‖w‖1) on Ω(1),
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2◦ there is θ2 ∈ Θ such that

|Dδf(t, x, w, q)−Dδf(t, x̄, w + h, q̄)|∞
≤ θ2(t, ‖w‖1,L)

[
|x− x̄|+ ‖h‖1 + |q − q̄|

]
,

for all (t, x, h, q) ∈ Ω(1), x̄, q̄ ∈ Rn, w ∈ C0,1+L(B, `∞).

Remark 1. Note that if δ = w then for each (t, x, w, q) ∈ Ω(1) the deriv-
ative Dδf(t, x, w, q) is a continuous linear operator from C0,1(B, `∞) to `∞.
This means that in that case the norm of Dδf(t, x, w, q) is a norm of a linear
operator while if δ = x or δ = q it is a norm in the space `∞n . These norms
should be distinguished but for simplicity we use the same symbol | · |∞ in both
cases.

Assumption H2. Suppose that
1◦ φ = {φi} ∈ C(E∗

0 ∪ ∂0Eā, `
∞) and the derivative Dxφ = {Dxφi} exists

on E∗
0 ∪ ∂0Eā;

2◦ there are constants Λ0, Λ̃1,Λ1, Λ̃2,Λ2 ∈ R+, such that on E∗
0 ∪ ∂0Eā we

have

|φ(t, x)|∞ ≤ Λ0, |φ(t, x)− φ(t̄, x)|∞ ≤ Λ̃1|t− t̄|, |Dxφ(t, x)|∞ ≤ Λ1

|Dxφ(t, x)−Dxφ(t̄, x̄)|∞ ≤ Λ̃2|t− t̄|+ Λ2|x− x̄|;
3◦ the derivatives Dtφi(t, x), i ∈ N, exist on ∂0Eā∩Eā and the consistency

condition

(3) Dtφi(t, x) = fi

(
t, x, φ(t,x), Dxφi(t, x)

)
, i ∈ N,

holds true on ∂0Eā ∩ Eā.

Now, analogously to [5],[13], we define two functional spaces such that the
solution z of (1) will belong to the first space, while Dxz to the other. Let φ
be the function fulfilling Assumption H2 and 0 < a ≤ ā.

If Qj ≥ Λi for j = 0, 1, 2, and Q̃j ≥ Λ̃j for j = 0, 1, then we denote by
C0,1+L

φ,a (Q) the set of all functions z = {zi} : E∗
a → `∞ such that the derivative

Dxz =
{
Dxzi

}
exists on E∗

a and
(i) z(t, x) = φ(t, x) on E∗

0 ∪ ∂0Ea;
(ii) |z(t, x)|∞ ≤ Q0, |Dxz(t, x)|∞ ≤ Q1 on Ea;
(iii) for t, t̄ ∈ [0, a], x, x̄ ∈ [−b, b], we have

|z(t, x)− z(t̄, x)|∞ ≤ Q̃1|t− t̄|,

|Dxz(t, x)−Dxz(t̄, x̄)|∞ ≤ Q̃2|t− t̄|+ Q2|x− x̄|.

If Pj ≥ Λj+1 for j = 0, 1, and P̃1 ≥ Λ̃2, then we denote by C0,L
Dxφ,a(P ) the

set of all functions u =
{
ui

}
: Ea → `∞n such that
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(i) u(t, x) = Dxφ(t, x) on ∂0Ea ∩ Ea;
(ii) |u(t, x)|∞ ≤ P0 on Ea;
(iii) for t, t̄ ∈ [0, a], x, x̄ ∈ [−b, b], we have

|u(t, x)− u(t̄, x̄)|∞ ≤ P̃1

∣∣t− t̄|+ P1|x− x̄|.

3. Bicharacteristics. Let φ be a given function satisfying Assumption
H2 and 0 < a ≤ ā. Then, for any z ∈ C0,1+L

φ,a (Q), u ∈ C0,L
Dxφ,a(P ) and i ∈ N, we

consider the Cauchy problem
dη

dτ
(τ) = −Dqfi

(
τ, η(τ), z(τ,η(τ)), ui(τ, η(τ))

)
, τ ∈ [0, a],

η(t) = x,
(4)

and we denote by gi[z, u](·, t, x) = (gi1[z, u](·, t, x), . . . , gin[z, u](·, t, x)) its Cara-
theodory solution. This solution we call the i-th bicharacteristic of system (1)
corresponding to [z, u]. From classical theorems it follows that the unique solu-
tion to problem (4) exists if Assumption H1 holds with δ = q. Let λi[z, u](t, x)
be the left end of the maximal interval on which the solution gi[z, u](·, t, x) is
defined. If Dqjfi(t, x, w, q) ≥ 0, j = 1, . . . , n, on Ω(0) then(

λi[z, u](t, x), gi[z, u](λi[z, u](t, x), t, x)
)
∈ (E∗

0 ∪ ∂0Ea) ∩ Ea

and we may define the following two sets:

E
(i)
a0 [z, u] = {(t, x) ∈ Ea; λi[z, u](t, x) = 0},

E
(i)
ab [z, u] = {(t, x) ∈ Ea; gij [z, u](λi[z, u](t, x), t, x) = bj ,

for some 1 ≤ j ≤ n}.
Write

R1 = 1 + Q1 + Q2 + P1, Υ(τ, t) = exp
{

R1

∣∣∣ ∫ τ

t
θ∗2(ξ)dξ

∣∣∣},

where θ∗2(ξ) = θ2(ξ, Q0 + Q1 + Q2). In the sequel we will also write θ∗1 instead
of θ1(Q0 + Q1) for simplicity.

Lemma 1. Suppose that φ fulfills Assumption H2 and that Assumption
H1 is satisfied for δ = q. If z, z̄ ∈ C0,1+L

φ,a (Q), u, ū ∈ C0,L
Dxφ,a(P ), are given

functions and i ∈ N then for (t, x), (t̄, x̄) ∈ Ea such that the intervals

K1 =
[
max{λi[z, u](t, x), λi[z, u](t̄, x̄)},min{t, t̄}

]
,

K2 =
[
max{λi[z, u](t, x), λi[z̄, ū](t, x)}, t

]
are nonempty we have the estimates

(5) |gi[z, u](τ, t, x)− gi[z, u](τ, t̄, x̄)| ≤ Υ(τ, t)
{
θ∗1|t− t̄|+ |x− x̄|

}
for τ ∈ K1, and
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(6) |gi[z, u](τ, t, x)− gi[z̄, ū](τ, t, x)| ≤ Υ(τ, t)
∣∣∣ ∫ τ

t
θ∗2(ξ)

{
‖z − z̄‖Eξ

+ ‖Dxz −Dxz̄‖Eξ
+ ‖u− ū‖Eξ

}
dξ

∣∣∣ for τ ∈ K2.

Proof. Let (t, x), (t̄, x̄) ∈ Ea be such that the intervals K1, K2 are non-
empty. If we transform (4) into an integral equation then by virtue of Assump-
tion H1 we have

|gi[z, u](τ, t, x)− gi[z, u](τ, t̄, x̄)|

≤ |x− x̄|+
∣∣∣ ∫ t̄

t
|Dqfi(Pi[z, u](ξ, t̄, x̄))|dξ

∣∣∣
+

∣∣∣ ∫ τ

t
|Dqfi(Pi[z, u](ξ, t, x))−Dqfi(Pi[z, u](ξ, t̄, x̄))|dτ

∣∣∣
≤ |x− x̄|+ θ∗1|t− t̄|+

∣∣∣ ∫ τ

t
θ∗2(ξ)

{
|gi[z, u](ξ, t, x)− gi[z, u](ξ, t̄, x̄)|

+ ‖z(ξ,gi[z,u](ξ,t,x)) − z(τ,gi[z,u](ξ,t̄,x̄))‖1

+ |ui(τ, gi[z, u](τ, x, y))− ui(ξ, gi[z, u](ξ, t̄, x̄))|
}
dξ

∣∣∣
≤ |x− x̄|+ θ∗1|t− t̄|

+
∣∣∣ ∫ τ

t
θ∗2(ξ)R1|gi[z, u](ξ, t, x)− gi[z, u](ξ, t̄, x̄)|dξ

∣∣∣
for τ ∈ K1, where

(7) Pi[z, u](ξ, t, x) =
(
ξ, gi[z, u](ξ, t, x), z(ξ,gi[z,u](ξ,t,x)), ui(ξ, gi[z, u](ξ, t, x))

)
.

Thus (5) follows from the Gronwall lemma.
In the same way, by Assumption H1, we get the estimate

|gi[z, u](τ, t, x)− gi[z̄, ū](τ, t, x)|

≤
∣∣∣ ∫ τ

t
θ∗2(ξ)

{
‖z − z̄‖Eξ

+ ‖Dxz −Dxz̄‖Eξ
+ ‖u− ū‖Eξ

}
dξ

∣∣∣
+

∣∣∣ ∫ τ

t
θ∗2(ξ)R1|gi[z, u](ξ, t, x)− gi[z̄, ū](ξ, t, x)|dξ

∣∣∣
for τ ∈ K2. Now, again using the Gronwall lemma, we get (6), which completes
the proof of Lemma 1.

Lemma 2. Suppose that φ fulfills Assumption H2 and that Assumption H1

is satisfied for δ = q. Furthermore, suppose that for every p ∈ R+ there is
δ(p) > 0 such that we have Dqjfi(t, x, w, q) ≥ δ(p), i ∈ N, j = 1, . . . , n, for
all (t, x, w, q) ∈ Ω(1), such that ‖w‖1 ≤ p. If i ∈ N and z, z̄ ∈ C0,1+L

φ,a (Q),
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u, ū ∈ C0,L
Dxφ,a(P ), are given functions then for all (t, x), (t̄, x̄) ∈ Ea we have

|λi[z, u](t, x)− λi[z, u](t̄, z̄)| ≤ 1
δ∗

Υ(0, t)
{
θ∗1|t− t̄|+ |x− x̄|

}
,(8)

|λi[z, u](t, x)− λi[z̄, ū](t, x)| ≤ 1
δ∗

Υ(0, t)
∫ t

0
θ∗2(ξ)

{
‖z − z̄‖Eξ

(9)

+ ‖Dxz −Dxz̄‖Eξ
+ ‖u− ū‖Eξ

}
dξ,

where δ∗ = δ(Q0 + Q1).

Proof. Let i ∈ N be fixed and gi = gi[z, u], λi = λi[z, u], ḡi = gi[z̄, ū],
λ̄i = λi[z̄, ū]. Since (8) is obviously satisfied if (t, x), (t̄, x̄) ∈ E

(i)
a0 [z, u], without

loss of generality we may assume that λi(t̄, x̄) ≤ λi(t, x) and (t, x) ∈ E
(i)
ab [z, u].

There exists 1 ≤ j ≤ n such that gij(λi(t, x), t, x) = bj . Then we have

gij(λi(t, x), t, x)− gij(λi(t, x), t̄, x̄)

≥ gij(λi(t̄, x̄), t̄, x̄)− gij(λi(t, x), t̄, x̄)

=
∫ λi(t,x)

λi(t̄,x̄)
Dqjfi

(
ξ, gi(ξ, t̄, x̄), z(ξ,gi(ξ,t̄,x̄)), ui(ξ, gi(ξ, t̄, x̄))

)
dτ

≥ δ∗[λi(t, x)− λi(t̄, x̄)].

The above estimate together with (5) gives (8).
Analogously, since (9) is obviously satisfied if (t, x) ∈ E

(i)
a0 [z, u]∩E

(i)
a0 [z̄, ū],

we may assume that λ̄i(t, x) ≤ λi(t, x) and (t, x) ∈ E
(i)
ab [z, u]. Then for 1 ≤ j ≤

n such that gij(λi(t, x), t, x) = bj we have

gij(λi(t, x), t, x)− ḡij(λi(t, x), t, x)

≥ ḡij(λ̄i(t, x), t, x)− ḡij(λi(t, x), t, x)

=
∫ λi(t,x)

λ̄i(t,x)
Dqjfi

(
ξ, ḡi(ξ, t, x), z̄(ξ,ḡi(ξ,t,x)), ūi(ξ, ḡi(ξ, t, x))

)
dξ

≥ δ∗[λi(t, x)− λ̄i(t, x)],

which together with (6) gives (9).

4. A certain system of integral-functional equations.

Assumption H3. Suppose that
1◦ f = {fi}, fi : Ω(0) → R is an infinite sequence of functions in the

variables (t, x, w, q), measurable in t, and there is a nondecreasing function
θ0 : R+ → R+ such that

|f(t, x, w, q)|∞ ≤ θ0(‖w‖0) on Ω(0),

Furthermore, let Assumption H1 be satisfied with δ = x,w, q.
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2◦ For every p ∈ R+ there is a constant δ(p) > 0 such that we have
Dqjfi(t, x, w, q) ≥ δ(p), i ∈ N, j = 1, . . . , n, for all (t, x, w, q) ∈ Ω(1), such that
‖w‖1 ≤ p.

Let φ and f satisfy assumptions H2,H3, respectively, and for a ∈ (0, ā]
let z = {zi} ∈ C0,1+L

φ,a (Q), u = {ui} ∈ C0,L
Dxφ,a(P ), where ui = (ui1, . . . , uin),

i ∈ N be given functions. Note that u consists of n infinite sequences which
we denote by ûj = {uij}, 1 ≤ j ≤ n. We define the operators Ti[z, u], Vij [z, u],
i ∈ N, j = 1, . . . , n, by

Ti[z, u](t, x) = φi(λi[z, u](t, x), gi[z, u](λi[z, u](t, x), t, x))

+
∫ t

λi[z,u](t,x)

[
fi(Pi[z, u](ξ, t, x))

−
n∑

k=1

Dqk
fi(Pi[z, u](ξ, t, x))uik(τ, gi[z, u](τ, t, x))

]
dξ,

Vij [z, u](t, x) = Dxjφi(λi[z, u], gi[z, u](λi[z, u](t, x), t, x))

+
∫ t

λi[z,u](t,x)

[
Dxifi(Pi[z, u](ξ, t, x))

+ Dwfi(Pi[z, u](ξ, t, x)) ◦ (ûj)(τ,gi[z,u](ξ,t,x))

]
dξ

for (t, x) ∈ E∗
a, and

Ti[z, u](t, x) = φi(t, x), Vij [z, u](t, x) = Dxjφi(t, x)

for (t, x) ∈ E∗
0 ∪ ∂0Ea, where gi[z, u] is a solution of (4), λi[z, u] is the left end

of the maximal interval on which this solution is defined and Pi[z, u] is given
by (7). In the definition of Vij [z, u] the derivative Dwfi(Pi[z, u](ξ, t, x)) is a
continuous linear operator and by ◦ we denote the value of this operator taken
on the function (ûj)(τ,gi[z,u](ξ,t,x)) ∈ C0,1(B, `∞). Put T [z, u] = {Ti[z, u]} and
V [z, u] = {Vi[z, u]}, where Vi[z, u] = (Vi1[z, u], . . . , Vin[z, u]). We will consider
the system of integral-functional equations

(10) z = T [z, u], u = V [z, u].

Remark 2. The integral-functional system (10) arises in the following way.
We introduce an additional unknown function u = Dxz in the i-th equation of
system (1). Then we consider the linearization of this equation with respect
to ui = (ui1, . . . , uin), which yields

(11) Dtzi(t, x) = fi(P̃i) +
n∑

k=1

Dqk
fi(P̃i)

(
Dxk

zi(t, x)− uik(t, x)
)
,
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where P̃i = (t, x, z(t,x), ui(t, x)). Differentiating (1) with respect to xj and
substituting u = Dxz, we get

(12) Dtuij(t, x) = Dxjfi(P̃i) + Dwfi(P̃i) ◦ (ûj)(t,x)

+
n∑

k=1

Dqk
fi(P̃i)Dxjuik(x, y), j = 1, . . . , n.

Making use of (4) we have

d

dξ
zi(ξ, gi[z, u](ξ, t, x)) = Dtzi(ξ, gi[z, u](ξ, t, x))

−
n∑

k=1

Dqk
fi(Pi[z, u](ξ, t, x))Dxk

zi(ξ, gi[z, u](ξ, t, x)).

Substituting (11) in the above relation and integrating the resulting equation
with respect to ξ on [λ[z, u](t, x), t], we get the first of the equations in (10)
on Ea. Repeating these considerations for (12) and taking into account that
z = φ, u = Dxφ, on E∗

0 ∪ ∂0Ea, we get the second equation in (10).

Suppose that φ and f satisfy Assumptions H2, H3, respectively. Under
these assumptions we prove that the solution of (12) exists, using the quasi-
iteration method, which general idea was given by Ważewski [20]. We define
a sequence {z(m), u(m)} in the following way.

1◦ Let φ̃ be any extension of φ onto the set E∗
a such that φ̃ satisfies condi-

tions 1◦,2◦ of Assumption H2 on E∗
a. We put

(13) z(0)(t, x) = φ̃(t, x), u(0)(t, x) = Dxφ̃(t, x),

and then z(0) ∈ C0,1+L
φ,a (Q), u(0) ∈ C0,L

Dxφ,a(P ).

2◦ If z(m) ∈ C0,1+L
φ,a (Q), u(m) ∈ C0,L

Dxφ,a(P ) are already defined functions
then u(m+1) is a solution of the equation

u = V (m)[u],(14)

and z(m+1) is defined by

z(m+1) = T [z(m), u(m+1)].(15)
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The operator V (m) =
{
V

(m)
i

}
, where V

(m)
i [u] = (V (m)

i1 [u], . . . , V (m)
in [u]), i ∈ N,

is given by

(16) V
(m)
ij [u](t, x)

= Dxjφi(λi[z(m), u](t, x), gi[z(m), u](λi[z(m), u](t, x), t, x))

+
∫ t

λi[z(m),u](t,x)

[
Dxjfi(Pi[z(m), u](ξ, t, x))

+ Dwfi(Pi[z(m), u](ξ, t, x)) ◦ (û(m)
j )(ξ,gi[z(m),u](ξ,t,x))

]
dξ

for (t, x) ∈ Ea, and

V
(m)
ij [u](x, y) = Dxjφi(x, y) for (t, x) ∈ E∗

0 ∪ ∂0Ea.

Remark 3. Note that the operators V (m) and V [z(m), ·] are not identical
since in the last term of (16) we have û

(m)
j instead of ûj . In Theorem 3 we

prove that Dxz(m) = u(m) and therefore, analogously as in Remark 2, we may
say that û

(m)
j appears in (16) as a substitution for Dxẑ

(m)
j .

In the next section we prove the existence of the sequence {z(m), u(m)} under
the assumption that the constants defining classes C0,1+L

φ,a (Q) and C0,L
Dxφ,a(P )

are sufficiently large. More precisely, they fulfill the following assumption.

Assumption H4. Suppose that Q0 > Λ0, Q1 > Λ1,

Q2 > Λ2

[ 1
δ∗

(1 + θ∗1) + 1
]
+ S1θ

∗
1

1
δ∗

Q̃1 > max
{

Λ̃1,Λ1

[ 1
δ∗

(1 + θ∗1) + 1
]
θ∗1 +

[
1 +

1
δ∗

θ∗1
]
(θ0(Q0) + θ∗1P0)

}
,

Q̃2 > max
{

Λ̃2,Λ2

[ 1
δ∗

(1 + θ∗1) + 1
]
θ∗1 +

[
S1 + S1θ

∗
1

1
δ∗

]
θ∗1

}
,

and let P0 = Q1, P1 = Q2, P̃1 = Q̃2.

Write

Γ0(t) = Λ1 + θ∗1S1t,

Γ̃0(t) = Λ1Υ(0, t)
[ 1
δ∗

(1 + θ∗1) + 1
]
θ∗1

+
[
1 +

1
δ∗

Υ(0, t)θ∗1
]
(θ0(Q0) + θ∗1P0)

+
∫ t

0

{
θ∗1 + θ∗2(τ)P0

}
R1Υ(0, τ)dτ,
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Γ1(t) = Λ2Υ(0, t)
[ 1
δ∗

(1 + θ∗1) + 1
]
+ S1θ

∗
1

1
δ∗

+
∫ t

0

{
θ∗2(τ)R1S1 + θ∗1P1

}
Υ(0, τ)dτ,

where S1 = 1 + P0.

Remark 4. Note that, since limt→0 Υ(0, t) = 1, by Assumption H4, we
may choose a ∈ (0, ā] sufficiently small for the following estimates to hold

Λ0 +
[
θ∗0 + θ∗1P0

]
a ≤ Q0, Γ̃0(a) ≤ Q̃1, Γ0(a) ≤ Q1 = P0,

θ∗1[S1 + Γ1(a)] ≤ Q̃2 = P̃1, Γ1(a) ≤ Q2 = P1.

5. The existence of the sequence of successive approximations.
In this section we prove that the sequence {z(m), u(m)} exists, provided that
a ∈ (0, ā] is sufficiently small.

Theorem 3. If Assumptions H2–H4 are satisfied and a ∈ (0, ā] is suffi-
ciently small then for any m ∈ N we have

(Im) z(m), u(m) are defined on E∗
a and we have z(m) ∈ C0,1+L

φ,a (Q), u(m) ∈
C0,L

Dxφ,a(P );
(IIm) Dxz(m)(t, x) = u(m)(t, x) on Ea.

Proof. We will prove (Im) and (IIm) by induction. It follows from (15)
that (I0),(II0) are satisfied. Suppose that conditions (Im) and (IIm) hold true
for a given m ∈ N. We first prove that u(m+1) : E∗

a → Rn exists and u(m+1) ∈
C0,L

Dxφ,a(P ).

We claim that given z(m) ∈ C0,1+L
φ,a (Q), the operator V (m) maps C0,L

Dxφ,a(P )
into itself for sufficiently small a ∈ (0, ā]. It follows from Assumptions H2,H3

and inequality (5) that given u ∈ C0,L
Dxφ,a(P ), for all (t, x), (t̄, x̄) ∈ Ea we have

the estimates

|V (m)
i [u](t, x)| ≤ Λ1 +

∫ t

λi[z(m),u](t,x)
θ∗1S1dξ ≤ Γ0(a),
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|V (m)
i [u](t, x)− V (m)[u](t̄, x̄)|

≤ Λ2Υ(0, t)
{
[1 + θ∗1]

1
δ∗

+ 1
}{

θ∗1|t− t̄|+ |x− x̄|
}

+
∣∣∣ ∫ t̄

t
θ∗1S1dξ

∣∣∣ +
∣∣∣ ∫ λi[z

(m),u](t̄,x̄)

λi[z(m),u](t,x)
θ∗1S1dξ

∣∣∣
+

{
θ∗1|t− t̄|+ |x− x̄|

}
·
∫ t

λ(t,x)

{
θ∗2(ξ)R1S1 + θ∗1P1

}
Υ(ξ, t)dξ

≤ θ∗1[S1 + Γ1(a)]|t− t̄|+ Γ1(a)|x− x̄|.

Hence by Assumption H4 we may take a ∈ (0, ā] so small that Γ0(a) ≤ P0,
Γ1(a) ≤ P1, θ∗1[S1 + Γ1(a)] ≤ P̃1, and then

|V (m)[u](t, x)|∞ ≤ P0,

|V (m)[u](x, y)− V (m)[u](t̄, x̄)|∞ ≤ P1

[
|t− t̄|+ |x− x̄|

](17)

for (t, x), (t̄, x̄) ∈ Ea. Since V (m)[u] = Dxφ on E∗
0 ∪ ∂Ea, it follows from (17)

that V (m) maps C0,L
Dxφ,a(P ) into itself.

If u ∈ C0,L
Dxφ,a(P ), ū ∈ C0,L

Dxφ̄,a
(P ) then analogously, by Assumptions H2,

H3, formulas (6), (9) and the relation V (m)[u] = V (m)[ū] = Dxφ on E0, we get

‖V (m)[u]− V (m)[ū]‖E∗
a
≤

∫ a

0
G(τ)‖u− ū‖E∗

τ
dτ,

where

G(t) = Λ2Υ(0, t)θ∗2(t)
[ 1
δ∗

(1 + θ∗1) + 1
]
+ θ∗1S1

1
δ∗

Υ(0, t)θ∗2(t)

+
[
θ∗2(t)R1S1 + θ∗1P1

]
Υ(0, t)

∫ t

0
θ∗2(τ)dτ + θ∗2(t)S1.

We may take a ∈ (0, ā] so small that
∫ a
0 G(τ)dτ < 1 and consequently V (m)

is a contraction with the norm ‖ · ‖E∗
a
. By the Banach fixed point theorem,

there exists the unique solution u ∈ C0,L
Dxφ,a of (14) which is u(m+1).

Our next goal is to prove that z(m+1) given by (15) satisfies (IIm+1). For
t ∈ [0, a], x, x̄ ∈ [−b, b] put ∆(t, x, x̄) =

{
∆i(t, x, x̄)

}
, where

(18) ∆i(t, x, x̄) = z
(m+1)
i (t, x)− z

(m+1)
i (t, x̄)− u

(m+1)
i (t, x) · (x− x̄),

and “·” denotes the scalar product. We will prove that there is a constant
C̃ ∈ R+ such that

(19) |∆(t, x, x̄)|∞ ≤ C̃|x− x̄|2
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For simplicity we put λi(t, x) = λi[z(m), u(m+1)](t, x) and

Pi(ξ) = Pi[z(m), u(m+1)](ξ, t, x), gi(ξ) = gi[z(m), u(m+1)](ξ, t, x),

and replacing x with x̄ we get analogous formulas for P̄i(ξ), ḡi(ξ). In view of
(15) we may write (18) in the form

∆i(t, x, x̄) = φi(λi(t, x), gi(λi(t, x)))− φi(λi(t, x̄), ḡi(λi(t, x̄)))

−Dxφi(λi(t, x), gi(λ(t, x))) · (x− x̄)

+
∫ t

λ(t,x)

(
fi(Pi(ξ))− fi(P̄i(ξ))

)
dξ

−
∫ t

λ(t,x)

{
Dqfi(Pi(ξ)) · u

(m+1)
i (ξ, gi(ξ))

−Dqfi(P̄i(ξ)) · u
(m+1)
i (ξ, ḡi(ξ))

}
dξ

+
∫ λi(t,x̄)

λi(t,x)
{fi(P̄i(ξ))−Dqfi(P̄i(ξ)) · u

(m+1)
i (ξ, ḡ(ξ)}dξ

−
∫ t

λi(t,x)

{
Dxfi(Pi(ξ)) + Dwfi(Pi(ξ)) ◦ (u(m))(ξ,gi(ξ))

}
dξ · (x− x̄),

where

Dwfi(Pi(ξ)) ◦ (u(m))(ξ,gi(ξ))

=
(
Dwfi(Pi(ξ)) ◦ (û(m)

1 )(ξ,gi(ξ)), . . . , Dwfi(Pi(ξ)) ◦ (û(m)
n )(ξ,gi(ξ))

)
In the above formula we apply the Hadamard mean value theorem to the
difference fi(Pi(ξ))− fi(P̄i(ξ)), whence∫ t

λi(t,x)

(
fi(Pi(ξ))− fi(P̄i(ξ))

)
dξ

=
∫ t

λi(t,x)

∫ 1

0
Dxfi(Qi(s, ξ))[gi(ξ)− ḡi(ξ)]ds dξ

+
∫ t

λi(t,x)

∫ 1

0
Dwfi(Qi(s, ξ)) ◦

[
z
(m)
(ξ,gi(ξ))

− z
(m)
(ξ,ḡi(ξ))

]
ds dξ

+
∫ t

λi(t,x)

∫ 1

0
Dqfi(Qi(s, ξ)) ·

[
u

(m+1)
i (ξ, gi(ξ))− u

(m+1)
i (ξ, ḡi(ξ))

]
ds dξ,

where

Qi(s, ξ) = sPi[z(m), u(m+1)](ξ, t, x) + (1− s)Pi[z(m), u(m+1)](ξ, t, x̄).
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Let us define

∆(1)
i (t, x, x̄) = φi(λi(t, x), gi(λi(t, x)))− φi(λi(t, x̄), ḡi(λi(t, x̄)))

−Dxφi(λi(t, x), gi(λ(t, x)))[λi(t, x)− λi(t, x̄)]

−Dxφi(λi(t, x), gi(λ(t, x))) · [gi(λi(t, x))− gi(λi(t, x̄))]

+
∫ t

λi(t,x)

∫ 1

0

[
Dxfi(Qi(s, ξ))−Dxfi(Pi(ξ))

]
· [gi(ξ)− ḡi(ξ)]ds dξ

+
∫ t

λi(t,x)

∫ 1

0

[
Dwfi(Qi(s, ξ))−Dwf(Pi(ξ))

]
◦

[
z
(m)
(ξ,gi(ξ))

− z
(m)
(ξ,ḡi(ξ))

]
ds dξ

+
∫ t

λi(t,x)

∫ 1

0

[
Dqfi(Qi(s, ξ))−Dqfi(P̄i(ξ))

]
·
[
u

(m+1)
i (ξ, gi(ξ))− u

(m+1)
i (ξ, ḡi(ξ))

]
ds dξ

+
∫ t

λi(t,x)
Dwfi(Pi(ξ)) ◦

[
z
(m)
(ξ,gi(ξ))

− z
(m)
(ξ,ḡi(ξ))

− (u(m))(ξ,gi(ξ)) · [gi(ξ)− ḡi(ξ)]
]
dξ,

∆(2)
i (t, x, x̄) = [λi(t, x)− λi(t, x̄)] ·Dtφ(λi(t, x), gi(λ(t, x)))

−
∫ λi(t,x)

λi(t,x̄)
fi(P̄i(ξ))dξ

+ [ḡi(λi(t, x))− ḡi(λi(t, x̄))] · Dxφi(λi(t, x), gi(λ(t, x)))

+
∫ λi(t,x)

λi(t,x̄)
Dqf(P̄i(ξ)) · u

(m+1)
i (ξ, ḡi(ξ))dξ,

and

∆̃(1)
i (t, x, x̄)

= Dxφi(λi(t, x), gi(λi(t, x))) · [gi(λi(t, x))− ḡi(λi(t, x))− (x− x̄)]

∆̃(2)
i =

∫ t

λi(t,x)
Dxfi(Pi(ξ)) · [gi(ξ)− ḡi(ξ)− (x− x̄)]dξ

+
∫ t

λi(t,x)
Dwfi(Pi(ξ)) ◦ (u(m))(ξ,gi(ξ)) · [gi(ξ)− ḡi(ξ)− (x− x̄)]dξ

∆̃(3)
i = −

∫ t

λi(t,x)

[
Dqfi(Pi(ξ))−Dqfi(P̄i(ξ))

]
· u

(m+1)
i (ξ, gi(ξ))dξ.
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With the above definitions, we have

(20) ∆i(t, x, x̄) =
2∑

k=1

∆(k)
i (t, x, x̄) +

3∑
k=1

∆̃(k)
i (t, x, x̄).

Since gi is a solution of (4), we see that

gi(ξ)− ḡi(ξ)− (x− x̄) =
∫ t

ξ

[
Dqfi(Pi(ζ))−Dqfi(P̄i(ζ))

]
dζ.

Substituting the above relation in ∆̃(2)
i and in ∆̃(1)

i with ξ = 0 and changing
the order of integrals where necessary, we get

3∑
k=1

∆̃(k)
i (t, x, x̄) =

∫ t

λi(t,x)

[
Dqfi(Pi(ξ))−Dqfi(P̄i(ξ))

]
·
[
Dxφi(0, gi(0)) +

∫ ξ

λi(t,x)
Dxfi(Pi(ζ))dζ

+
∫ ξ

λi(t,x)
Dwfi(Pi(ζ)) ◦ (u(m))(ζ,gi(ζ))dζ − u

(m+1)
i (ξ, gi(ξ))

]
dξ

=
∫ t

λi(t,x)

[
Dqfi(Pi(ξ))−Dqfi(P̄i(ξ))

]
·
[
V (m)[u(m+1)](ξ, gi(ξ))− u

(m+1)
i (ξ, gi(ξ))

]
dξ = 0,

from which and from (20) we get ∆i(t, x, x̄) =
∑2

k=1 ∆(k)
i (t, x, x̄). In the above

transformations we have also used the group property for the bicharacteristic
gi. Assumptions H2, H3, inequality (5) and the existence of derivatives Dxφ,
Dxz(m) = u(m) yield the existence of a constant C1 ∈ R+ such that

|∆(1)
i (t, x, x̄)| ≤ C1|x− x̄|2, t ∈ [0, a], x, x̄ ∈ [−b, b].

Writing ∆(2)
i in the form

∆(2)
i (t, x, x̄) =

∫ λi(t,x)

λi(t,x̄)

[
Dtφi(λi(t, x), gi(λi(t, x)))− fi(P̄i(ξ))

]
dξ

+
∫ λi(t,x)

λi(t,x̄)
Dqfi(P̄i(ξ))

·
[
u

(m+1)
i (ξ, ḡi(ξ))−Dxφi(λi(t, x), gi(λi(t, x), t, x))

]
dξ

making additional use of the consistency condition (3), and taking into account
the relation u(m+1) = Dxφ on ∂0E ∩Ea, we get the estimate of the same type
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for ∆(2)
i with a constant C2 ∈ R+. This means that (19) holds true with

C̃ = C1 + C2, which completes the proof of (IIm+1).
Finally, we prove that z(m+1) defined by (15) belongs to the class C0,1+L

φ,a (Q).
Since Dxz(m+1) = u(m+1), it follows from (17) that

|Dxz(m+1)(t, x)|∞ ≤ Q1,

|Dxz(m+1)(t, x)−Dxz(m+1)(t̄, x̄)|∞ ≤ Q̃2|t− t̄|+ |x− x̄|
]

for (t, x), (t̄, x̄) ∈ Ea. By Assumptions H2–H4 we easily get

|z(m+1)(t, x)|∞ ≤ Λ0 + [θ0(Q0) + θ∗1P0]a,

|z(m+1)(t, x)− z(m+1)(t̄, x)|∞ ≤ Γ̃0(a)|t− t̄|,
for (t, x), (t̄, x) ∈ Ea. By Assumption H4 we may choose a ∈ (0, ā] so small that
additionally Λ0 + [θ0(Q0) + θ∗1P0]a ≤ Q0, Γ̃0(a) ≤ Q̃1. This together with the
relation z(m+1) = φ on E∗

0 ∪ ∂0Ea gives z(m+1) ∈ C0,1+L
φ,a (Q), which completes

the proof of (Im+1). Thus Theorem 3 follows by induction.

6. The main result. Write

H∗(t) = H(t) + H(t) exp
{∫ t

0
G(ξ)dξ

}∫ t

0
G(ξ)dξ,

where

H(t) = Λ1Υ(0, t)θ∗2(t)
[ 1
δ∗

(1 + θ∗1) + 1
]
+ θ∗1S1

1
δ∗

Υ(0, t)θ∗2(t)

+
[
θ∗2(t)R1P0 + θ∗1R1

]
Υ(0, t)

∫ t

0
θ∗2(τ)dτ + θ∗1 + θ∗2(t)P0.

Theorem 4. If Assumptions H2–H4 are satisfied then the sequences {z(m)},
{u(m)} are uniformly convergent on Ea for sufficiently small a ∈ (0, ā].

Proof. Suppose that a ∈ (0, ā] is such that the conclusion of Theorem 3
holds true. For any τ ∈ [0, a] and m ∈ N we put

Z(m)(τ) = sup
{
|z(m)(t, x)− z(m−1)(t, x)|∞; (t, x) ∈ E∗

τ

}
,

U (m)(τ) = sup
{
|u(m)(t, x)− u(m−1)(t, x)|∞; (t, x) ∈ E∗

τ

}
.

Using the same technique as in the proof of Theorem 3, by Assumptions H2,
H3 and inequality (6), for any t ∈ [0, a] and m ∈ N, we get the estimate

U (m+1)(t) ≤
∫ t

0
G(ξ)U (m+1)(ξ)dξ

+
∫ t

0
G(ξ)

[
Z(m)(ξ) + U (m)(ξ)

]
dξ.
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Making use of the Gronwall lemma, we have

(21) U (m+1)(t) ≤ exp
{∫ t

0
G(ξ)dξ

}∫ t

0
G(ξ)

[
Z(m)(ξ) + U (m)(ξ)

]
dξ.

By Assumptions H2, H3 and relations (10), (21), we get the estimate

(22) Z(m+1)(t) ≤
∫ t

0
H∗(ξ)

[
Z(m)(ξ) + U (m)(ξ)

]
dξ, t ∈ [0, a].

Thus if we take
M(t) = exp

{∫ a

0
G(ξ)dξ

}
G(t) + H∗(t),

then using (21), (22) for any t ∈ [0, a], we have

Z(m+1)(t) + U (m+1)(t) ≤
∫ t

0
M(ξ)

[
Z(m)(ξ) + U (m)(ξ)

]
dξ.

Now, by induction, it is easy to get

Z(m)(t) + U (m)(t) ≤
(∫ t

0 M(ξ)dξ
)m−1

(m− 1)!
[
Z(1)(a) + U (1)(a)

]
, t ∈ [0, a],

and consequently

(23)
m∑

i=k

[
Z(i)(a) + U (i)(a)

]
≤

[
Z(1)(a) + U (1)(a)

] m−1∑
i=k−1

(∫ a
0 M(ξ)dξ

)i

i!
.

Since the series
∑∞

i=1
(
∫ a
0 M(ξ)dξ)i

i! is convergent, it follows from (23) that the
sequences {z(m)}, {u(m)} satisfy the uniform Cauchy condition on E∗

a, which
means that they are uniformly convergent on E∗

a. This completes the proof of
Theorem 4.

Theorem 5. If Assumptions H2–H4 are satisfied then there is a solution
of the problem (1), (2).

Proof. It follows from Theorem 4 that there exist functions z̄, ū such that
{z(m)}, {u(m)} are uniformly convergent on E∗

a to z̄, ū, respectively, if a ∈ (0, ā]
is sufficiently small. Furthermore, Dxz̄ exists on E∗

a and Dxz̄ = ū. We prove
that z̄ is a solution of (1).

From (12) it follows that for any i ∈ N and (t, x) ∈ E
(i)
a0 [z̄, Dxz̄] we have

(24) z̄i(t, x) = φi(0, ḡi(0, t, x)) +
∫ t

0

[
fi(Pi[z̄, Dxz̄](ξ, t, x))

−
n∑

k=1

Dqk
fi(Pi[z̄, Dxz̄](ξ, t, x))Dxk

z̄i(ξ, t, x)
]
dξ,

where ḡi = gi[z̄, Dxz̄].
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For a fixed t we define the transformation x 7→ ḡi(0, t, x) = ζ. Then by the
group property ḡi(τ, t, x) = ḡi(τ, 0, ζ) and by (24), we get

z̄i(t, ḡi(i, 0, ζ)) = φi(0, ζ)

+
∫ t

0

[
fi

(
ξ, ḡi(ξ, 0, ζ), z̄(ξ,ḡi(ξ,0,ζ)), Dxz̄(ξ, ḡi(ξ, 0, ζ))

)
−

n∑
k=1

Dqjfi

(
ξ, ḡi(ξ, 0, ζ), z̄(ξ,ḡi(ξ,0,ζ)), Dxz̄(ξ, ḡi(ξ, 0, ζ))

)
Dxk

z̄i(ξ, ḡi(ξ, 0, ζ))
]
dξ.

Differentiating the above relation with respect to t and making use of the
reverse transformation ζ 7→ ḡi(t, 0, ζ) = x, we see that the i-th equation of
system (1) is satisfied for almost all t with fixed x on E

(i)
a0 [z̄, Dxz̄].

Analogously, for any (t, x) ∈ E
(i)
ab [z̄, Dxz̄] we have

(25) z̄i(t, x) = φi(0, ḡi(0, t, x)) +
∫ t

λ̄i(t,x)

[
fi(Pi[z̄, Dxz̄](ξ, t, x))

−
n∑

k=1

Dqjfi(Pi[z̄, Dxz̄](ξ, t, x))Dxk
z̄i(ξ, t, x)

]
dξ,

where λ̄i = λi[z̄, Dxz̄].
Without loss of generality we may suppose that ḡij(λ̄i(t, x), t, x) = bj for j = n
and for simplicity we write ζ ′ = (ζ1, . . . , ζn−1), ḡ′i = (ḡi1, . . . , ḡi,n−1). For a
fixed t we define the transformation x 7→

(
ḡ′i(λ̄i(t, x), t, x), λ̄(t, x)

)
= (ζ ′, η).

Then by (25) and the group property we get

z̄i(t, ḡi(t, η, ζ ′, bn)) = φi(η, ζ ′, bn)

+
∫ t

η

[
f
(
ξ, ḡi(ξ, η, ζ ′, bn), z̄(ξ,ḡi(ξ,η,ζ′,bn)), Dxz̄(ξ, ḡi(ξ, η, ζ ′, bn))

)
−

n∑
k=1

Dqk
fi

(
ξ, ḡi(ξ, η, ζ ′, bn), z̄(ξ,ḡi(ξ,η,ζ′,bn)), Dxz̄(ξ, ḡi(ξ, η, ζ ′, bn))

)
·Dxk

z̄i(ξ, ḡi(ξ, η, ζ ′, bn))
]
dξ.

As previously, differentiating the above relation with respect to t and making
use of the reverse transformation (ζ ′, η) 7→ ḡi(t, η, ζ ′, bn) = x, we see that the
i-th equation of system (1) is satisfied for almost all t with fixed x also on
E

(i)
ab [z̄, Dxz̄]. Since z̄ obviously fulfills condition (2), the proof of Theorem 5 is

complete.
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Remark 5. If in Theorem 5 we assume that f is continuous then we get
existence of classical solutions of problem (1), (2).

7. Solutions with a generalized Lipschitz condition. We may con-
sider solutions of problem (1), (2) that satisfy a generalized Lipschitz condition
with respect to the first variable. In this case we modify the assumption on
the initial function φ.

Assumption H5. Suppose that
1◦ φ = {φi} ∈ C(E∗

0 ∪ ∂0Eā, `
∞) and the derivative Dxφ = {Dxφi}, i ∈ N,

exists on E∗
0 ∪ ∂0Eā;

2◦ there are constants Λ0,Λ1,Λ2 ∈ R+, and Lebesgue integrable functions
ω1, ω2 : R+ → R+ such that on E∗

0 ∪ ∂0Eā we have |φ(t, x)|∞ ≤ Λ0 and

|φ(t, x)− φ(t̄, x)|∞ ≤
∣∣∣∫ t̄

t
ω1(τ)dτ

∣∣∣, |Dxφ(t, x)|∞ ≤ Λ1

|Dxφ(t, x)−Dxφ(t̄, x̄)|∞ ≤
∣∣∣∫ t̄

t
ω2(τ)dτ

∣∣∣ + Λ2|x− x̄|;

3◦ the derivatives Dtφi(t, x), i ∈ N, exist on ∂0Eā∩Eā and the consistency
condition (3) holds true on ∂0Eā ∩ Eā.

Let φ fulfill Assumption H5 and let a ∈ (0, ā]. Instead of the functional
spaces C0,1+L

φ,a (Q), C0,L
Dyφ,a(P ) considered in section 2, we may define two other

spaces. By C0,1+L
φ,a (µ,Q), we define the set of all functions z : E∗

a → `∞ such
that the derivative Dxz, exists on E∗

a and
(i) z(t, x) = φ(t, x) on E∗

0 ∪ ∂0Ea;
(ii) |z(t, x)|∞ ≤ Q0, |Dxz(t, x)|∞ ≤ Q1 on Ea;
(iii) for t, t̄ ∈ [0, a], x, x̄ ∈ [−b, b], we have

|z(t, x)− z(t̄, x)|∞ ≤
∣∣∣ ∫ t̄

t
µ1(τ)dτ

∣∣∣,
|Dxz(t, x)−Dxz(t̄, x̄)|∞ ≤

∣∣∣ ∫ t̄

t
µ2(τ)dτ

∣∣∣ + Q2|x− x̄|.

We also define by C0,L
Dxφ,a(ν, P ) the set of all functions u : Ea → `∞n such

that
(i) u(t, x) = Dxφ(t, x) on ∂0Ea ∩ Ea;
(ii) |u(t, x)|∞ ≤ P0 on Ea;
(iii) for t, t̄ ∈ [0, a], x, x̄ ∈ [−b, b], we have

|u(t, x)− u(t̄, x̄)|∞ ≤
∣∣∣ ∫ t̄

t
ν(τ)dτ

∣∣∣ + P1|x− x̄|.
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In the above definitions the constants Q̃1, Q̃2, P̃1 from section 2 have been
replaced by Lebesgue integrable functions µ1, µ2, ν, respectively.

Assumption H6. Suppose that
1◦ f = {fi}, fi : Ω(0) → R is an infinite sequence of functions in the

variables (t, x, w, q), measurable in t, and there is θ1 ∈ Θ such that

|f(t, x, w, q)|∞ ≤ θ1(t, ‖w‖0) on Ω(0).

2◦ For δ = x,w, q the derivatives Dδfi, i ∈ N exist on Ω(1), the sequence
Dδf = {Dδfi} is measurable with respect to t, we have

|Dδf(t, x, w, q)|∞ ≤ θ1(t, ‖w‖1) on Ω(1),

and there is θ2 ∈ Θ such that

|Dδf(t, x, w, q)−Dδf(t, x̄, w + h, q̄)|∞
≤ θ2(t, ‖w‖1,L)

[
|x− x̄|+ ‖h‖1 + |q − q̄|

]
,

for all (t, x, h, q) ∈ Ω(1), x̄, q̄ ∈ Rn, w ∈ C0,1+L(B, `∞).
3◦ For every p ∈ R+ there is a constant δ(p) > 0 such that we have

Dqjfi(t, x, w, q) ≥ δ(p)θ1(t, p), i ∈ N, j = 1, . . . , n, for all (t, x, w, q) ∈ Ω(1),
such that ‖w‖1 ≤ p.

Let φ be a given function satisfying Assumption H5 and 0 < a ≤ ā. As in
section 3, for any z ∈ C0,1+L

φ,a (µ,Q), u ∈ C0,L
Dxφ,a(ν, P ) and i ∈ N, we may define

the i-th bicharacteristic gi[z, u](·, t, x) of system (1) corresponding to [z, u] as
a solution of problem (4). We may also prove a lemma about properties of
gi[z, u](·, t, x) analogous to Lemma 1, where instead of the term θ∗1|t− t̄| at the
right-hand side of (5), we now have

∣∣∫ t̄
t θ∗1(ξ)dξ

∣∣, where θ∗1(τ) = θ1(τ,Q1 +Q2).
For λi[z, u](t, x), the left end of the maximal interval on which gi[z, u](·, t, x)
is defined we may prove the following estimates∣∣∣∫ λi[z,u](t̄,z̄)

λi[z,u](t,x)
θ∗1(ξ)dξ

∣∣∣ ≤ 1
δ∗

Υ(0, t)
{∣∣∣∫ t̄

t
θ∗1(ξ)dξ

∣∣∣ + |x− x̄|
}

,

∣∣∣∫ λi[z̄,ū](t,x)

λi[z,u](t,x)
θ∗1(ξ)dξ

∣∣∣ ≤ 1
δ∗

Υ(0, t)
∫ t

0
θ∗2(ξ)

{
‖z − z̄‖Eξ

+ ‖Dxz −Dxz̄‖Eξ
+ ‖u− ū‖Eξ

}
dξ,

instead of (8) and (9) proved in Lemma 2.
Suppose that Assumptions H5 and H6 are satisfied and that there are

constants M1, M2 ∈ R+ such that we have

ω1(τ) ≤ M1θ
∗
1(τ), ω2(τ) ≤ M2θ

∗
1(τ), for τ ∈ [0, ā].
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Then we may choose parameters defining the classes C0,1+L
φ,a (µ,Q), u ∈

C0,L
Dxφ,a(ν, P ) such that for sufficiently small a ∈ (0, ā] there is a solution z̄

of problem (1), (2) belonging to the class C0,1+L
φ,a (µ,Q) and such that Dxz̄ ∈

C0,L
Dxφ,a(ν, P ).

Finally, we show some examples of infinite functional differential systems
which are particular cases of (1).

Example 1. Given f̃i : Eā × `∞ × Rn → R, i ∈ N, let us consider the
differential system with deviated argument

(26) Dtzi(t, x) = f̃i(t, x, z(α(t), β(t, x)), Dxzi(t, x)),

where α : [0, ā] → R, β : Eā → [−b, b], and α(t) ≤ t for t ∈ [0, ā]. We define a
function f = {fi} by

f(t, x, w, q) = f̃(t, x, w(α(t)− t, β(t, x)− x), q)

for (t, x, w, q) ∈ Eā×C(B, `∞)×Rn. If (α(t)−t, β(t, x)−x) ∈ B for (t, x) ∈ Eā

then (26) is a particular case of (1) under natural assumptions on α, β, f̃ .

Example 2. With f̃i as in the previous example, consider the differential-
integral system

(27) Dtzi(t, x) = f̃i(t, x,

∫
B

z(t + τ, x + s)dτds, Dxzi(t, x)).

If we define a function f = {fi} by

f(t, x, w, q) = f̂(t, x,

∫
B

w(τ, s)dτds, q)

for (t, x, w, q) ∈ Eā ×C(B, `∞)×Rn, then it is easy to formulate assumptions
on f̃ in order to get the existence theorem for (27) as a particular case of (1).
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