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Abstract. In this paper residues and duality theory for curves are used to
construct error-correcting codes and to find estimates for their parameters.
Results of Goppa are extended to singular curves.

In an attempt to find long codes with good parameters, algebraic-geometric
codes have been introduced by Goppa [4]. The construction is based on the
(residual) evaluation of the space of sections of a line bundle on a non-singular
curve over a finite field at the points in the support of a given divisor. The
explicit construction and description of these codes faces two major difficulties:

i) To get long codes with good parameters it is necessary to construct non-
singular curves of high genus (due to the Hasse-Weil-Serre resp. the Drinfeld-
Vladut bound).

ii) To make this codes explicit and computable, it is necessary to determine
the global space of sections of line bundles on curves.

Both tasks are in general not easy to achieve and require deep insights into
the theory of function fields of transcendence degree 1 over finite fields and the
geometry of their nonsingular models (cf. [18], [19], [20], [3], [5], [6]).

In this note we propose an extension of Goppa’s techniques in two direc-
tions: The extension to the case of singular curves and to divisors that are not
necessarily the sum of simple rational points. Whereas the nonsingular model
of a function field might be very hard to determine, it is often quite easy to
find and describe explicitly a singular model, and if we remove the restriction
to divisors with support that is rational over the base field, it is possible to
construct long codes with the help of comparatively simple curves. Eventually
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we hope that this generalization will allow us to determine families of good
algebraic-geometric codes in a way more simple and explicit than it can be
done so far.

In the first part of this paper we will provide the necessary details about
duality theory for general curves over finite (or more generally perfect) fields,
and in particular we will recall the construction of residues using regular dif-
ferential forms and traces. This can be done very explicitly and constructively
and the theorems known for smooth curves hold in this context with only mi-
nor modifications. In the second part of this paper these results are applied to
construct codes and estimate their parameters.

1. Regular differential forms and residues. The theory of residues
for algebraic varieties over perfect fields has been described in various degrees
of generality and in various degrees of explicity, cf. [13], [16], [21], [9]. In
most cases this requires a lot of preparation, and often these approaches are
not constructive. In case of curves over finite fields we can give a very short
description. This approach is based on a corresponding description in the
smooth case, as it is carried out for instance in [10].

Let k be a finite field (or more generally a perfect field) of positive char-
acteristics p > 0. Furthermore let K/k be a field extension (not necessarily
finitely generated) such that dimK Ω1

K/k = 1.

Remark 1.1. i) Let K/k be an algebraic function field of transcendence
degree 1. Then dimK Ω1

K/k = 1.
ii) Let K/k be an algebraic function field of transcendence degree 1, let v

be a (discrete) valuation of K/k and let K̂ be the completion of K with respect
to v. Then dimk Ω1

K̂/k
= 1. In fact, as k is perfect, in this situation K̂/K̂p is

finite of degree p, K̂ = K̂p[t] where we may choose t to be a regular parameter
of v, and therefore

Ω1
K̂/k

= Ω1
K̂/K̂p = K̂dt.

In the above situation let L/K be a finite and separable field extension.
Then Ω1

L/k = L⊗K Ω1
K/k canonically, and therefore we can define a trace

σL/K : Ω1
L/k −→ Ω1

K/k

by σL/K(l ⊗ ω) = TrL/K(l) · ω for l ∈ L and ω ∈ Ω1
K/k, where TrL/K : L → K

denotes the canonical trace of the field extension L/K. More generally, if L/K
is a finite étale extension, then L = L1 × · · · × Ln with finite separable field
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extensions Li/K, and Ω1
L/k = Ω1

L1/k × · · · × Ω1
Ln/k, and we define

σL/K((ω1, . . . , ωn)) =
n∑

i=1

σLi/K(ωi)

and this definition now also extends in an obvious way to the case that K is a
direct product of such field extensions of k.

Theorem 1.2. i) If M/L is another étale extension, then

σM/K = σL/K ◦ σM/K .

ii) σL/K ◦ dL/k = dK/k ◦ TrL/K .
iii) For l ∈ L× we have

σL/K

(
dL/k(y)

y

)
=

dK/k(NL/K(y))
NL/K(y)

where NL/K : L → K is the canonical norm.
iv) σL/K induces an L-linear isomorphism

σ : Ω1
L/k −→ HomK(L,Ω1

K/k), ω 7−→ (l 7−→ σL/K(lω)).

Proof. i) is clear by construction.
ii) and iii): We may assume that K and L are fields. Let N be the normal

closure of L/K (i.e. if we write L = K[x] for some primitive element x with
minimal polynomial f(X) over K, then N is a splitting field of f(X) over
K). Then L ⊗K N/N is a finite étale extension, L ⊗K N = N × · · · × N
is a direct product of n := [L : K] copies of N , and Ω1

L⊗KN/k = Ω1
N/k ×

· · · × Ω1
N/k. Furthermore the compatibility of the canonical trace of a finite

projective algebra with base change implies that the diagram

Ω1
L/k

ι=can−−−−→ Ω1
L⊗KN/k

σL/K

y yσL⊗KN/N

Ω1
K/k

ι=can−−−−→ Ω1
N/k

commutes. As N/K is separable, ι is injective, and as

σL⊗KN/N ((ω1, . . . , ωn)) =
n∑

i=1

ωi.

ii) and iii) follow immediately.
iv) As both sides are L-vectorspaces of dimension 1, it suffices to show that

σ 6= 0. This is however clear, as TrL/K , hence also σL/K , is surjective.
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Suppose now that R/k is an affine domain of dimension 1, and let L = Q(R)
be its field of fractions. Furthermore let P := k[t] → R be a separating
noetherian normalization (i.e. t is a separating transcendence basis of L/k and
R is finite as a module over P ; note that such a normalization always exists, cf.
[13]), and let K = k(t) = Q(k[t]). Then the above assumptions are satisfied in
this situation, and a trace σL/K is defined. Thus we get a canonical injection

ιR : HomP (R,Ω1
P/k) ↪→ HomK(L,Ω1

K/k)
σ−1

−−−−→ Ω1
L/k

and we define, following [14], the module of regular differential forms of R/k
to be

ω1
R/k := im(ιR).

Remark 1.3. i) ω1
R/k = {ω ∈ Ω1

L/k : σL/K(rω) ∈ Ω1
P/k for all r ∈ R}.

ii) The definition of ω1
R/k does not depend on the special choice of a sepa-

rating noetherian normalization k[t] → R.
iii) If f ∈ R then (

ω1
R/k

)
f

= ω1
Rf /k.

In particular for any p ∈ Spec(R) the module

ω1
Rp/k :=

(
ω1

R/k

)
p

is an invariant of the algebra Rp/k only. If R̂ denotes the completion of Rp,
and if t ∈ R̂ is a separating parameter (i.e. a nonzerodivisor contained in the
maximal ideal of R̂ such that Q(R̂) is étale over k((t))), then

(∗) P := k[[t]] ↪→ R̂

is finite and σ
Q(R̂)/Q(P )

induces an isomorphism

σ : ω̂1
Rp/k −→ HomP (R̂,Ω1

P/k).

Thus we will write ω1
R̂/k

:= ω̂1
Rp/k, and we note that this is an invariant of

R̂/k, which can be defined directly as generalized complementary module,
using noetherian normalizations of type (∗) (cf. [13], [9]).

iv) If R = k[T1, . . . , Td]/I where I ⊆ P := k[T1, . . . , Td] is locally generated
by a regular sequence, then

ω1
R/k = HomR(

d−1∧
I/I2, R)⊗R Ωd

P/k/IΩd
P/k.

v) There exists a canonical map
cR/k : Ω1

R/k → ω1
R/k

which is an isomorphism if and only if R/k is smooth.
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Proof. The proofs of these properties can be found in [14], [8] or [13].

Definition. An algebraic curve over k is a projective reduced and irre-
ducible scheme X/k of dimension 1.

Remark 1.4. Let X/k be an algebraic curve.
i) X has a unique generic point ξ and L := OX,ξ is an algebraic field

extension of k of transcendence degree 1, called the field of rational functions
of X/k.

ii) X is covered by finitely many open affine subsets Ui = Spec(Ri) (i =
1, . . . , n), with affine reduced and irreducible algebras Ri/k of dimension 1,
and the modules ω1

Ri/k glue to define a sheaf ω1
X/k.

iii) There exists a graded domain S =
⊕
n∈N

Sn, finitely generated over k,

with S0 = k and S = S0[S1] such that

X = Proj(S).

In this case ω2
S/k is a well-defined, graded submodule of Ω2

Q(S)/k, and

ω1
X/k = ω̃2

S/k

is the OX -module associated with it (cf. [7]).

Let X/k be a curve with field L of rational functions, let x ∈ X be a
closed point and set R := OX,x. Then R is a local domain of dimension 1 with
maximal ideal m = mx and R̂, its m-adic completion, is a reduced local ring
whose full ring of fractions we denote by L̂. By p1, . . . , pl we denote the minimal
primes of R̂, and by Ri := R̂/pi the analytic branches of X at x (i = 1, . . . , l).
If Ri is the integral closure of Ri in Q(Ri) = Li, then by Cohen’s structure
theorem Ri = κi[[ti]] for a uniquely determined coefficient subfield κi ⊆ Ri

which is a finite and separable extension of k. In this situation we have (as
in 1.1)

Ω1
Li/k = Ω1

Li/Lp
i

= Ω1
Li/κi((t

p
i )) = Lidti

and therefore any ωi ∈ Ω1
Li/k has a unique representation

ωi = fidti for some fi =
∑
n∈Z

a(i)
n tni ∈ Li.

Whereas fi depends on the choice of ti, it is well known that

Lemma 1.5. a
(i)
−1 is independent of the special choice of ti.

Proof. [12], (17.1), see also [20], (2.2.19).
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Definition. For ωi ∈ Ω1
Li/k set

ResRi/k(ωi) := ResRi/k(ωi) := Trκi/k(a
(i)
−1)

and for ω ∈ Ω1
L̂/k

with image ωi ∈ Ω1
Li/k set

Res
R̂/k

(ω) :=
l∑

i=1

ResRi/k(ωi).

Finally for ω ∈ Ω1
L/k with image ω̂ ∈ Ω1

L̂/k
we define

ResX/k,x(ω) = Res
R̂/k

(ω̂)

and call it the residue of ω at x.

Proposition 1.6 (trace formula). i) Let P ⊆ R be a finite generically étale
extension of complete semi-local rings such that dim(P ) = dim(R) = 1 and
assume that P and R are reduced and residually finite over k. Let L = Q(R)
and K = Q(P ). Then

ResR/k(ω) = ResP/k(σL/K(ω)).

ii) Let π : X → Y be a finite map of algebraic curves such that the corre-
sponding extension K ↪→ L of rational function fields is separable. Let y ∈ Y
be a point and let ω ∈ Ω1

L/k be a meromorphic differential form on X. Then∑
x∈π−1(y)

ResX/k,x(ω) = ResY/k,y(σL/K(ω)).

Proof. It obviously suffices to prove i).
i) Let t ∈ P be an element such that k[[t]] ⊆ P is finite and generically étale.

Such a t exists as Ω1
K/k hat K-dimension 1 by [12], (13.10). As σL/k((t)) =

σK/k((t)) ◦ σL/K it suffices to prove the trace formula for k[[t]] ⊆ P and k[[t]] ⊆
R, i.e. we may assume that P = k[[t]]. Let R1, . . . , Rl be the analytic branches
of R. Then

ResR/k(ω) =
l∑

i=1

ResRi/k(ωi) =
l∑

i=1

ResRi/k(ωi)

and

σL/K(ω) =
l∑

i=1

σLi/K(ωi)

and we may replace R by Ri and thus assume that R = κ[[τ ]] for some finite
separable extension κ/k. Then we have

k[[t]] ⊆ κ[[t]] ⊆ κ[[τ ]]
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and it suffices to consider the two cases k[[t]] ⊆ κ[[t]] and κ[[t]] ⊆ κ[[τ ]] sepa-
rately.

1.) P = k[[t]] ⊆ κ[t]] = R. Then we have

Ω1
L/k = κ⊗k Ω1

K/k and σL/K = Trκ/k ⊗k idΩ1
K/k

and form this the claim is immediate.
2.) P = κ[[t]] ⊆ κ[[τ ]] = R. We may assume that ω = dτ

τm for some m ∈ N.
Let v be the valuation of R and let n = v(t) (i.e. t ·R = τn ·R).

α) p - n: In this case there exists a regular parameter τ ′ of R such that
(τ ′)n = at for some a ∈ κ×. We may replace τ by τ ′ and t by at and thus
assume that Tn−t is the minimal polynomial of τ over K. Writing−m = ρn+λ
for some ρ ∈ Z and some λ ∈ {0, . . . , n− 1}, we get

σL/K

(
dτ

τm

)
= σL/K

(
tρ

τλ

nτn−1
dt

)
=

{
tρdt if λ = n− 1
0 otherwise

and the claim follows.
β) p|n: Let again ω = dτ

τm . Assume first that p - (m− 1). Then ω = df for
some f ∈ L, and therefore

ResR/k(df) = 0
and (using 1.2 ii)

ResP/k(σL/K(df)) = ResP/k(dTrL/K(f)) = 0

(as can be seen easily by differentiating the Laurent series expansion of
TrL/K(f)). Thus we are left with the case that m = ep + 1 for some e ∈ N. If
e = 0 then

σL/K

(
dτ

τ

)
=

dNL/K(τ)
NL/K(τ)

and as NL/K(τ) is a regular parameter of P , the claim follows. If e > 0
we have to show that ResP/k(σL/K

(
dτ

τep+1

)
) = 0. If C−1 : Ω1

L/k → Ω1
L/k/dL

denotes the Cartier operator (given by C−1(fdτ) = fpτp−1dτ + dL), then
clearly ResR/k(C−1(ω)) = ResR/k(ω)p, and σL/K ◦ C−1 = C−1 ◦ σL/K . Hence
we may apply the inverse of the Cartier-Operator and it suffices to show that

ResP/k(σL/K

(
dτ

τ e+1

)
) = 0.

If p - e we are done again by the above case, and if p|e we continue this
procedure successively till we reach the case p - e.
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Proposition 1.7. ω1
X/k,x ⊆ ker(ResX/k,x).

Proof. By the trace formula for residues and the construction of ω1
X/k it

suffices to prove this for X = P1
k, in which case it is obvious.

Theorem 1.8 (residue theorem). If ω ∈ Ω1
L/k then

∑
x∈X

ResX/k,x(ω) = 0.

Proof. Again apply the trace formula to reduce to the case X = P1
k. In

this case it is well known and also easy to see by using expansion of rational
functions by partial fractions (cf. [15], I, thm. 8).

Remark 1.9. The above construction of resdiues via power series expan-
sion is very convenient from a mathematical point of view, however from a
constructive point of view it is very difficult to handle. There are however
other methods to calculate residues that are much better adapted to construc-
tive approaches (see for instance [1] or [11]). In particular in case of an alge-
braic curve given by homogeneous equations (i.e. in terms of its homogeneous
coordinate ring) the situation is fairly well understood.

2. Local and global duality. Duality theory for algebraic varieties and
more generally for morphisms of schemes has been studied to a great extend
over the last few decades. Duality theory for curves is contained in this as a
very special situation. However in this case (as in §1) the whole theory can
be developed very explicitly and very constructively. This is of interest in
particular with respect to applications such as the construction of algebraic
codes. Thus we include a short description of duality for curves (though it
again is a special case of general Grothendieck duality theory; see also [16],
[13], [21]). We also derive the version of the Riemann-Roch theorem needed
in §3. Our definition of degree is a special case of the one used in [17], where
the Riemann-Roch theorem is treated in terms of standard bases and with
techniques going back to F.K. Schmidt and P. Roquette.

So let again k be a perfect field of positive characteristic, let X/k be an
algebraic curve, let x ∈ X be a closed point and let R = ÔX,x. As in 1.3
iii) we write ω1

R/k for ω̂1
OX,x/k, the completion of ω1

OX,x/k. Furthermore let M

be a torsion free and finite R-module (i.e. each non-zerodivisor of R is also a
non-zerodivisor of M), and set M∨ := HomR(M,ω1

R/k)
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Theorem 2.1 (local duality). In the above situation for any local parameter
π of R and any n ∈ N the pairing

ρn,π : M/πnM ×M∨/πnM∨ −→ k

given by ρn,π(m + πnM,λ + πnM∨) = ResR/k

(
λ(m)
πn

)
is non-degenerate.

Proof. First we assume R = k[[π]]. In this case M is already free as
an R-module, and we may assume that M = R. Then M/πnM = R/πnR
has a k-basis 1, π, . . . , πn−1 and M∨/πnM∨ = Ω1

R/k/πnΩ1
R/k has a k-basis

dπ, πdπ, . . . , πn−1dπ. As

ρn,π(πi, πjdπ) = ResR/k

(
πi+jdπ

πn

)
=

{
1 if i + j = n− 1
0 otherwise

the claim follows in this case.
In general, the map P = k[[π]] → R is finite and it induces by 1.3 iii) and

the Hom-Tensor-adjointness an isomorphism

σ : M∨ = HomR(M,ω1
R/k) −→ HomP (M,ω1

P/k) = M∗

and via σ the pairing ρn,π gets identified with

ρP
n,π : M/πnM ×M∗/πnM∗ −→ k

by the trace formula, hence is non-degenerate.

Now let again X/k by a curve with field of rational functions L. Viewing
Ω1

L/k as a constant sheaf on X we obtain an exact sequence

(∗) 0 −→ ω1
X/k −→ Ω1

L/k −→ Ω1
L/k/ω1

X/k −→ 0

where Ω1
L/k/ω1

X/k =
⊕

x∈X Ω1
L/k/ω1

X/k,x (the latter being viewed as a direct
sum of skyscraper sheaves, supported on {x}). In particular (∗) is an injective
resolution I• of ω1

X/k and the maps ResX/k,x induce by 1.7 a morphism

Tr : Γ(X, Ω1
L/k/ω1

X/k) =
⊕
x∈X

Ω1
L/k/ω1

X/k,x −→ k

given by Tr((ωx)) =
∑

x∈X ResX/k,x(ωx). By the residue theorem, Tr gives a
morphism Γ(X, I•) → k of complexes, hence induces a map∫

X
: H1(X, ω1

X/k) −→ k

in cohomology, which we call the global integral of X/k.
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Theorem 2.2 (global duality). For each coherent OX-module M the global
integral

∫
X defines an isomorphism

δM : HomOX
(M, ω1

X/k) −→ Homk(H1(X,M), k)

α 7−→
∫

X
◦H1(X, α).

Proof. i) Let X = P1
k and let M = OX(ρ) for some ρ ∈ Z. Then

ω1
X/k = OX(−2). Thus if ρ ≥ −1 both sides vanish, and we are done. If

ρ ≤ −2, then
HomOX

(M, ω1
X/k) = Γ(X,OX(−ρ− 2))

with k-basis 1, t, . . . , t−ρ−2 and H1(X,OX(ρ)) has a k-basis
[

dt
t

]
, . . . ,

[
dt

t−ρ−1

]
,

where we describe H1(X,M) as the cokernel of the map

ϕ : Γ(U,M)⊕ Γ(U ′,M) −→ Γ(U ∩ U ′,M), (a, b) 7−→ b− a

where U = Spec(k[t]) and where U ′ = Spec(k[1t ]). As
∫
X

[
tjdt
ti

]
= δi,j+1 the

claim follows in this case.
ii) Let X = P1

k. If M =
⊕r

i=1OX(ρi) the claim follows obviously from i).
If M is arbitrary, it has a presentation

F1 −→ F0 −→M −→ 0

with Fl =
⊕rl

j=1OX(ρl,j) and the claim follows from the five-lemma and the
right-exactness of H1(X,−).

iii) Let X be arbitrary. Then there exists a finite map π : X → P1
k =

P, which is generically étale, and we have via the trace on the level of the
corresponding rational function fields

HomOX
(M, ω1

X/k) = HomOX
(M,HomOP(π∗OX , ω1

P/k)) = HomOP(π∗M, ω1
P/k)

and
Homk(H1(X,M), k) = Homk(H1(P, π∗M), k).

Via these isomorphisms δX
M gets identified with δP

π∗M by the trace formula for
global integrals (which is immediate from the trace formula for residues), and
the theorem follows.

Let again X/k be an arbitrary curve and let L be the field of rational
functions on the curve X.

Definition. F(X) := {L ⊆ L : L is a finitely generated OX -module and
L 6= (0)} is called the semi-group of fractional ideals of OX .

Let L ∈ F(X). Then both OX/L ∩ OX and (L + OX)/OX are coherent
torsion sheaves on X.
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Definition. deg(L) := dimk H0(X, (L+OX)/OX)−dimk H0(X,OX/L∩
OX) is called the degree of L.

Remark 2.3. i) This definition of the degree of a fractional ideal is also
used in [17], where also a variant of the Riemann-Roch theorem for coherent
torsion-free sheaves of higher rank can be found.

ii) As dimL Ω1
L/k = 1, there exists an isomorphism ϕ : Ω1

L/k → L. Via ϕ

we may view KX := ϕ(ω1
X/k) as a fractional ideal (the canonical ideal of X).

Though KX itself depends on ϕ, its degree deg(KX) does not.

Remark 2.4 (Properties of deg(F)). Let F ∈ F(X) be a fractional ideal.
i) We have

deg(F) =
∑
x∈X

[dimk((Fx +OX,x)/OX,x)− dimk(OX,x/Fx ∩ OX,x)]

=
∑
x∈X

[dimk(Fx/Fx ∩ OX,x)− dimk(OX,x/Fx ∩ OX,x)]

=
∑
x∈X

[dimk((Fx +OX,x)/OX,x)− dimk((Fx +OX,x)/Fx)] .

ii) If F is the fractional ideal of a principal Cartier divisor, i.e. F = OX · f
for some f ∈ L, then

deg(F) = 0.

iii) If F ∼= L, then deg(F) = deg(L).
iv) If F ⊆ L, then deg(F) ≤ deg(L). More precisely

deg(L)− deg(F) =
∑
x∈X

dimk(Lx/Fx).

v) If L is an invertible sheaf, then F ⊗OX
L ∈ F(X) and

deg(F ⊗ L) = deg(F) + deg(L).

Proof. i) is clear by the very definition.
ii) By [2], (A.3.1) we reduce to the case that X is a regular curve, and in

this situation the assertion is well-known (and easy to prove).
iii) Any isomorphism F ∼= L is induced by some isomorphism f : L → L

(i.e. f ∈ L×). Thus it is easy to see that it suffices to show: If G ⊆ L is a free
OX -module (of rank 1), then∑

x∈X

[dimk((Lx +OX,x)/OX,x)− dimk(OX,x/Lx ∩ OX,x)] =∑
x∈X

[dimk((Lx + Gx)/Gx)− dimk(Gx/Lx ∩ Gx)] .
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For this note first that

(Lx +OX,x)/OX,x = Lx/Lx ∩ OX,x

(Lx + Gx)/Gx = Lx/Lx ∩ Gx.

As

dimk(Lx/Lx ∩ OX,x ∩ Gx)− dimk(OX,x/OX,x ∩ Lx ∩ Gx)

= dimk(Lx/Lx ∩ OX,x)− dimk(OX,x/OX,x ∩ Lx)

the claim follows.
iv) In this situation we have

deg(L) =
∑
x∈X

[dimk(Lx/OX,x ∩ Lx)− dimk(OX,x/OX,x ∩ Lx)]

=
∑
x∈X

[dimk(Lx/OX,x ∩ Fx)− dimk(OX,x/OX,x ∩ Fx)]

=
∑
x∈X

dimk(Lx/Fx) + deg(F).

v) It suffices to show that for each x ∈ X:

dimk(Fx ⊗ Lx/OX,x ∩ Fx ⊗ Lx)− dimk(OX,x/OX,x ∩ Fx ⊗ Lx)

=dimk Fx/OX,x ∩ Fx)− dimk(OX,x/OX,x ∩ Fx)

+ dim(Lx/Lx ∩ OX,x)− dimk(OX,x/Lx ∩ OX,x).

In view of iii) (resp. the calculations in its proof) we may assume that OX,x ⊆
Fx and OX,x ⊆ Lx. Furthermore write Lx = g · OX,x. Then

dimk(Fx ⊗ Lx/OX,x)− dimk(Fx/OX,x)

= dimk(Fx · g/OX,x)− dimk(Fx · g/OX,x · g) = dimk(OX,x · g/OX,x)

and the claim follows.

Corollary 2.5. If H0(X,F) 6= (0), then deg(F) ≥ 0.

Proof. Let f ∈ H0(X,F) and let L = OX · f be the principal Cartier
divisor determined by f . Then we have a canonical inclusion L ⊆ F , implying

deg(F) ≥ deg(L) = 0

by 2.4.

Definition. gX = dimk H0(X, ω1
X/k) is called the genus of X.

hX := dimk H0(X,OX) is called the dimension of regular functions on X.

For a fractional ideal L ∈ F(X) we set

L∨ := HomOX
(L, ω1

X/k)
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Theorem 2.6 (Riemann-Roch). Let L be a fractional ideal of X. Then

dimk H0(X,L) = dimk H0(X,L∨) + deg(L)− gX + hX .

Proof. i) By the duality theorem we have to show

χ(L) = deg(L)− gX + hX

where χ(L) = dimk H0(X,L) − dimk H1(X,L) denotes the Euler-characteris-
tics of L.

ii) We may assume that L ⊆ OX or that OX ⊆ L: This follows form the
long exact cohomology sequence associated to

0 → OX ∩ L → L → L/L ∩ OX
∼= (L+OX)/OX → 0.

iii) If OX ⊆ L ⊆ L′ with L′/L ∼= κ(x) for some x ∈ X, then 2.6 holds for L
if and only if it holds true for L′. This follows from the long exact cohomology
sequence associated to

0 −→ L −→ L′ −→ κ(x) −→ 0

(where here κ(x) denotes the skyscraper sheaf whose stalk at x is equal to
κ(x)), and the fact, that deg(L′) = deg(L) + [κ(x) : k]. A similar statement
we have for L′ ⊆ L ⊆ OX .

iv) The Riemann-Roch-theorem holds for OX by the very definition.
From i) – iv) it follows by induction, that 2.6 holds in general.

Lemma 2.7 (cf. [14], (4.19)). For each F ∈ F(X) the canonical map

α : F −→ HomOX
(HomOX

(F , ω1
X/k), ω

1
X/k) = F∨∨

is an isomorphism

Proof. The assertion is local in X, so we may assume that X = Spec(R),
that F = M̃ for some fractional R-module M ⊆ L, and that there exists a
separating noetherian normalization

P := k[t] −→ R.

Via Hom-Tensor adjointness, α corresponds to the canonical map

α̃ : M −→ HomP (HomP (M,Ω1
P/k),Ω

1
P/k).

As M is torsion-free as a P -module, it is P -projective, and therefore α̃ is
obviously bijective.

Corollary 2.8. deg(L∨) = 2(gX − hX)− deg(L).
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Proof. By the Riemann-Roch theorem (applied twice) and 2.7 we have

dimk H0(X,L∨) = dimk H0(X,L∨∨) + deg(L∨)− (gX − hX)

=dimk H0(X,L) + deg(L∨)− (gX − hX)

=dimk H0(X,L∨) + deg(L)− (gX − hX) + deg(L∨)− (gX − hX)

and from this the corollary follows.

Corollary 2.9. If deg(L) > 2(gX − hX) then

dimk H0(X,L) = deg(L)− (gX − hX).

Proof. In this situation we have that deg(L∨) < 0, hence by 2.5:
dimk H0(X,L∨) = 0. Thus the corollary follows from the Riemann-Roch the-
orem.

3. Residual representation of codes. Let k = Fq be a finite field with
q = pe elements, let X/k be an algebraic curve and let L be its field of rational
functions. A Cartier divisor D on X is a family {(Ui, fi)} consisting of open
affine subsets Ui ⊆ X and meromorphic functions fi ∈ L \ {0} such that

fi

fj
∈ O∗

X(Ui ∩ Uj) for all i, j.

By DivC(X) we denote the collection of Cartier divisors on X, where we iden-
tify two Cartier divisors D = {(Ui, fi)}i∈I and D′ = {(Vj , gj)}j∈J if there
exists a common refinement {Wl}l∈L of {Ui}i∈I and {Vj}j∈J (together with

α : L → I and β : L → J) such that fα(l)|Wl

gβ(l)|Wl
∈ O∗

X(Wl) for all l ∈ L.
Associated with a Cartier-divisor {(Ui, fi)} we have an invertible sheaf

L(D) ⊆ L defined by

L(D)(V ) := {g ∈ L : g ∈ 1
fi
OX,x for all x ∈ V ∩ Ui and all i}

for V ⊆ X open.

Remark 3.1. The map

L : DivC(X) −→ F(X), D 7−→ L(D)

defines a bijection onto the subset of invertible fractional ideals.

The divisor D is called effective, if OX,x ⊆ L(D)x for all x ∈ X, and in
this case

degx(D) := dimk(L(D)x/OX,x)
is called the local degree of D at x. In this situation we have that fi ∈ OX,x

for all x ∈ Ui, and we call the image of fi in OX,x a local equation for D at x
and denote it by fx.
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Remark 3.2. The local equation fx ∈ OX,x of D at x is – up to a unit of
OX,x – independent of the special choice of an i with x ∈ Ui.

For a fractional ideal F ∈ (X) we define its support by

sup(F) := {x ∈ X : Fx 6= OX,x}
and for a Cartier-divisor D we set

sup(D) := sup(L(D)).

Remark 3.3. sup(F) ⊆ X is a proper, closed subset of X (hence in par-
ticular it is finite) for all fractional ideals F ∈ F(X).

As in §2 we define F∨ := HomOX
(F , ω1

X/k), and we note that this sheaf is
canonically contained in the constant sheaf HomL(L,Ω1

L/k) = Ω1
L/k.

Let D be an effective Cartier-divisor of degree n and let F be a fractional
ideal with sup(F) ∩ sup(D) = ∅. For x ∈ sup(D) let n(x) be the local degree
of D at x, and let fx ∈ OX,x be a local equation for D at x. Then n(x)
= dimk(OX,x/fxOX,x), and we choose t

(x)
1 , . . . , t

(x)
n(x) ∈ OX,x in such a way,

that their residue classes in OX,x/fxOX,x form a k-basis of this space. Let
sup(D) = {x1, . . . , xm} and define

C := CD,F ,t : H0(X,F∨ ⊗ L(D)) −→ Fn
q = Fn(x1)

q ⊕ · · · ⊕ Fn(xm)
q

by
CD,F ,t(ω) = (ρx1,t(ω), . . . , ρxm,t(ω))

where
ρxj ,t(ω) = (ResX/k,xj

(t(xj)
1 ω), . . . ,ResX/k,xj

(t(xj)

n(xj)
ω)).

Definition. CΩ(D,F , t) := im(CD,F ,t) ⊆ Fn
q is called the algebraic-geo-

metric code defined by F and D (and t = (t(x1)
1 , . . . , t

(xm)
n(xm))).

Remark 3.4. Assume that X is a smooth curve and L = L(E) with a
divisor E =

∑n
i=1 xi and with κ(xi) = Fq. Then we have n(x) = 1 for any

x ∈ sup(E), and we may take t
(x)
1 = 1 for all x ∈ sup(E). Then CΩ(E,F) :=

CΩ(E,F , t) is the usual residual Goppa-Code (cf. [18], [20]).

Remark 3.5. Let x ∈ sup(D) and let fx be a local equation of D at x. As

F∨ ⊗ L(D)x = f−1
x · ω1

X/k,x

we obtain a well-defined map

px : H0(X,F∨ ⊗ L(D)) −→ ω1
X/k,x/fx · ω1

X/k,x

given by
px(ω) = fxω + fx · ω1

X/k,x.
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By local duality we furthermore get an isomorphism

ω1
X/k,x/fx · ω1

X/k,x −→ Homk(OX,x/fx · OX,x, k)

given by

ω + fx · ω1
X/k,x 7−→ (a 7−→ ResX/k,x

(
aω

fx

)
)

and thus the map
qx,t : ω1

X/k,x/fx · ω1
X/k,x −→ Fn(x)

q

defined by

qx,t(ω + fx · ω1
X/k,x) =

ResX/k,x

(
t
(x)
1 ω

fx

)
, . . . ,ResX/k,x

 t
(x)
n(x)ω

fx


is bijective with

ρx,t = qx,t ◦ px.

In particular ω ∈ ker(ρx,t) if and only if ω ∈ ker(px).

Proposition 3.6. In the above situation

ker(CD,F ,t) = H0(X,F∨).

In particular CD,F ,t is injective, whenever deg(F) > 2gX − 2hX , and
CΩ(D,F , t) is an [deg(D),deg(D)+gX −hX −deg(F)]q-code whenever 2(gX −
hX) < deg(F) < n.

Proof. Let ω ∈ H0(X,F∨ ⊗ L(D)) with px(ω) = 0 for all x ∈ sup(D).
Then by the very definition of px we have:

ω ∈ H0(X,F∨ ⊗ L(D)) ∩
⋂

x∈sup(D)

ω1
X/k,x

= H0(X,F∨ ⊗ L(D)) ∩
⋂

x∈sup(D)

F∨
x

(as F∨
x = ω1

X/k,x for all x ∈ sup(D))

=
⋂

x∈X\sup(D)

(F∨ ⊗ L(D))x ∩
⋂

x∈sup(D)

(F∨ ⊗ L(D))x ∩
⋂

x∈sup(D)

F∨
x

=
⋂

x∈X

F∨
x

= H0(X,F∨)

and in view of 2.9 and 2.10 the claim follows.
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Theorem 3.7. Let D be an effective Cartier divisor on X, let F be a
fractional ideal with sup(F)∩ sup(D) = ∅ and let sup(D) = {x1, . . . , xm}. For
i = 1, . . . ,m set n(x) := degx(L(D)) = dimk(L(D)x/OX,x) and define

ρ := max{l ∈ N : there exist i1, . . . , il

with
l∑

µ=1

n(xiµ) ≤ n− deg(F) + 2(gX − hX)}.

Then
d(CΩ(D,F , t)) ≥ m− ρ.

Definition. d∗(D,F) := m−ρ is called the designed distance of CΩ(D,F).

Proof. For x ∈ sup(L(D)) denote by I(x) the skyscraper sheaf with

I(x)x = (F∨ ⊗ L(D))x/F∨
x I(x)y = 0 for y 6= x.

As sup(F) ∩ sup(D) = ∅ we have

dimk H0(X, I(x)) = n(x).

Furthermore the canonical map

F∨ ⊗ L(D) −→ I(x)

is a surjection of sheaves, whose kernel is a fractional ideal which we denote by
K(x). By 2.4 iv) we get that deg(K(x)) = deg(F∨⊗L(D))−n(x). Inductively
we define for any points x1, . . . , xδ ∈ sup(D) the sheaf K(x1, . . . , xδ) as the
kernel of the canonical surjection

K(x1, . . . , xδ−1) −→ I(xδ)

and we obtain deg(K(x1, . . . , xδ)) = deg(F∨ ⊗ L(D))−
∑δ

i=1 n(xi).
Now assume that ω ∈ H0(X,F∨⊗L(D))\{0} and let x1, . . . , xδ ∈ sup(D)

such that pxi(ω) = 0 for i = 1, . . . , δ. Then

ω ∈ H0(X,K(x1, . . . , xδ)) \ {0}

hence by 2.5

deg(F∨ ⊗ L(D))−
δ∑

i=1

n(xi) = deg(K(x1, . . . , xδ)) ≥ 0

and therefore and by 2.8 and 2.4 δ ≤ ρ. By the local duality theorem this
implies

d(CΩ(D,F , t)) ≥ m− ρ.
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Corollary 3.8. Let X be a curve of genus gX (possible singular) and let
D be a Cartier divisor with sup(D) = {x1, . . . , xn} (n > 0) and n(xi) = 1 for
i = 1, . . . , n. Let F be a fractional ideal with sup(D) ∩ sup(F) = ∅ and with
2gX − 2 < deg(F) < n, and let C = CΩ(D,F , t). Then C is an [n, k, d]q-Code
with

– n = deg(D).
– k = n− deg(F) + gX − 1.
– d ≥ deg(F)− 2gX + 2.

Proof. It remains to note that hX = 1 as X has an Fq-rational point.

Example 3.9. Let D be a Cartier divisor on x with sup(D) = {x1, . . . , xm}
and assume that n(xi) = 2 for i = 1, . . . ,m. Then

d(CΩ(D,F , t)) ≥ m− dm + gX − hX − deg(F)
2

+ 1e

where for an a ∈ R we set

dae = min{n ∈ Z : n ≥ a}.

Crucial for any type of code is the availability of a decoding algorithm.
To find such an algorithm it is usually necessary to know the dual code. For
this let F , D and (for any x ∈ sup(D)) t

(x)
1 , . . . , t

(x)
n(x) be as at the beginning of

this section. Let f ∈ H0(X,F) and let x ∈ sup(D). Then Fx = OX,x, and
therefore we get a well-defined canonical morphism

εx : H0(X,F) −→ OX,x −→ OX,x/dxOX,x

where dx is a local equation of D at x. Thus we get a unique representation

εx(f) = ax(1, f) · t(x)
1 + · · ·+ ax(n(x), f) · t(x)

n(x)

and we define
δx,t : H0(X,F) −→ Fn(x)

q

by δx,t(f) = (ax(1, f), . . . , ax(n(x), f)) and

EvD,F ,t : H0(X,F) −→ Fn
q = Fn(x1)

q ⊕ · · · ⊕ Fn(xm)
q

by EvD,F ,t(f) = (δx1,t(f), . . . , δxm,t(f)).

Definition. C(D,F , t) := im(EvD,F ,t).

Remark. In case X/Fq is a smooth curve, D =
∑n

i=1 xi is a divisor with
Fq-rational points xi and t

(x)
1 = 1 for all x ∈ sup(D), the code C(D,F , t) is

the geometric Goppa-Code as constructed in [18], II.2.1; see also [20], 3.1.1.
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On Fn
q we have a canonical non-degenerate pairing (standard inner product)

〈 , 〉 : Fn
q × Fn

q −→ Fn
q

given by 〈(a1, . . . , an), (b1, . . . , bn)〉 =
∑n

i=1 aibi.

Theorem 3.10. C(D,F , t) is the code dual to CΩ(D,F , t) with respect to
the standard inner product of Fn

q .

Proof. Let f ∈ H0(X,F) and let ω ∈ H0(X,F∨ ⊗ L(−D)).
i) If x ∈ X \ sup(D) then f · ω ∈ ω1

X/k,x: This is clear as we have via the
canonical identification L⊗ Ω1

L/k = Ω1
L/k:

f · ω ∈ H0(X,F ⊗ F∨ ⊗ L(−D)) ⊆ H0(X, ω1
X/k ⊗ L(−D)).

ii) Let x ∈ sup(D) and write

ρx,t(ω) = (ResX/k,x(t(x)
1 ω), . . . ,ResX/k,x(t(x)

n(x)ω))

and

δx,t(f) = (ax(1, f), . . . , ax(n(x), f)).

Then

n(x)∑
j=1

ax(j, f) ResX/k,x(t(x)
j ω)) =ResX/k,x

n(x)∑
j=1

t
(x)
j ax(j, f)ω


=ResX/k,x(fω).

Thus with sup(D) = {x1, . . . , xm} and with

CD,F ,t(ω) = (r1, . . . , rn), EvD,F ,t(f) = (a1, . . . , an)

we have
n∑

i=1

airi =
m∑

j=1

ResX/k,xj
(fω)

=
∑
x∈X

ResX/k,x(fω)

= 0

by the residue theorem. Thus

C(D,F , t) ⊆ CΩ(D,F , t)⊥.
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iv) As in 3.6 one shows that ker(EvD,F ,t) = H0(X,F⊗L(−D)). Combining
this with the above we conclude (using the Riemann-Roch theorem and 2.4 v)):

dimk CΩ(D,F , t) = dimk H0(X,F∨ ⊗ L(D))− dimk H0(X,F∨)

= dimk H0(X,F ⊗ L(−D)) + deg(F∨ ⊗ L(D))− (gX − hX)

−
[
dimk H0(X,F) + deg(F∨)− (gX − hX)

]
= deg(L(D)) + dimk H0(X,F ⊗ L(−D))− dimk H0(X,F)

= n− dimk C(D,F , t)

and from this we conclude by counting dimensions

CΩ(D,F , t)⊥ = C(D,F , t).

Remark 3.11. Using 3.10 one can try to generalize the basic decoding
algorithm for the geometric Goppa Codes (cf. [20], (3.3.1) resp. [18], VII.5)
to the more general situation of this section. In this situation the syndrome
has to be defined by

[b, f ] :=
m∑

j=1

n(xj)∑
ij=1

bj,ijaxj (ij , f).

Suppose that h1, . . . , ht is an Fq-basis of H1(X,F). If a = c + e is the
received word where c ∈ CΩ(F , D) is the word originally sent and where
e = (ej,ij )j=1,...,m;ij=1,...,n(xj) is an error-vector, then e is a solution of

(∗)
m∑

j=1

n(xj)∑
ij=1

axj (ij , hτ )Zj,ij = [a, hτ ] for all τ ∈ {1, . . . , t}.

If we assume that ‖e‖ ≤ t < 1
2d∗(D,F) (for some fixed t), then e is the unique

solution of (∗) of weight at most t, and if we can find this unique solution of
minimal weight, we can correct a and recover the original word c.

The system (∗) however has many other solutions. If n(x) = 1 for all x ∈
sup(D) (and X possible singular), then one can use an auxiliary Cartier-divisor
F1 = L(F1) (just as in [18], VII.5 or [20], (3.3.1) and under the assumptions
stated there) to reduce (∗) to a system of linear equations, having e as its
unique solution. In the general case we are (so far) not yet able to make this
reduction. If we set

n(D) := {n(x) : x ∈ sup(D)}
then we need to find an auxiliary Cartier-divisor F1 = L(F1) satisfying

(1) sup(F1) ∩ sup(D) = ∅.
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(2) deg(F1) < deg(F)− 2(gX − hX)− t · n(D).
(3) dimk H0(X,F1) > t · n(D).

In this situation we can find an error-locating function g (similarly to [18],
[20]), and if n(x) = n(D) and OX,x/dxOX,x is a field for all x ∈ sup(D), then
we can modify the basic decoding algorithm to cover our present situation as
well. In general however we are not yet able to bound the total number of
zeroes of EvD,F ,t(g).

Example 3.12. Let X = P1
Fq

and let P1
Fq

(Fq) = {a1, . . . , aq,∞}. In this
situation all fractional ideals of X are given by Weil divisors and conversely.
Let D =

∑q
j=1 2xj and let F = l · ∞ for some l ≥ 0. The field of rational

functions of X is L = Fq(t), and X has an open affine cover consisting of the
two rings R = Fq[t] and R′ = Fq[1t ], where Spec(R) is the finite part of X,
and where we identify the finite Fq-rational points ai ∈ P1

Fq
(Fq) with the prime

ideals (t−ai) ⊆ R. For each a ∈ sup(D) we have n(a) = 2, and we may choose

t
(a)
1 = 1, t

(a)
2 = t− a.

The space H0(X,F∨ ⊗ L(D)) has an Fq-basis

dt

g(t)
, t

dt

g(t)
, . . . , t2q−l−2 dt

g(t)

with g(t) =
∏q

i=1(t− ai)2 and in this situation we have

– ResX/k,ai

(
dt

g(t)

)
=

∑
j 6=i

−2
ai−aj∏

j 6=i(ai−aj)2
.

– ResX/k,ai

(
tλdt
g(t)

)
= aλ−1

i

(
λ−

∑
j 6=i

2ai
ai−aj∏

j 6=i(ai−aj)2

)
( if λ > 0).

– ResX/k,ai

(
(t− ai) tλdt

g(t)

)
= aλ

i∏
j 6=i(ai−aj)2

.

Thus – up to equivalence – a generating matrix of CΩ(D,F , t) if given by
the matrix G with

G =



∑
j 6=1

−2
aj−a1

1
∑

j 6=2
−2

aj−a2
1 . . .

1−
∑

j 6=1
2a1

aj−a1
a1 1−

∑
j 6=2

2a2
aj−a2

a2 . . .

a1

(
2−

∑
j 6=1

2a1
aj−a1

)
a2

1 a2

(
2−

∑
j 6=2

2a2
aj−a2

)
a2

2 . . .

...
...

...
...

. . .

al−1
1

(
l −
∑

j 6=1
2a1

aj−a1

)
al

1 al−1
2

(
l −
∑

j 6=2
2a2

aj−a2

)
al

2 . . .


.
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The minimum distance of this code satisfies the a–priori bound

d(CΩ) ≥ q − dq − l

2
e.

If we concatenate CΩ(D,F , t) (in the obvious way) with a [3, 2, 2]q-parity check
code, then the minimum distance of the resulting code C satisfies

d(C) ≥ 2b l

2
c.

Example 3.13. Let again X = P1
Fq

, let D be as in 3.12, and let F be
an arbitrary divisor of degree l on X with sup(D) ∩ sup(F) = ∅. Then F =
l ·∞+(f) where (f) denotes the principal divisor associated to f ∈ Fq(t)× for
a suitable f . Then H0(X,F∨ ⊗ L(D)) has an Fq-basis

dt

f(t)g(t)
, t

dt

f(t)g(t)
, . . . , t2q−l−2 dt

f(t)g(t)

with g(t) as in 3.12, and the associated code CΩ(D,F , t) can be described
similarly, using

– ResX/k,ai

(
tλdt

f(t)g(t)

)
= aλ−1

i

(
λ−

∑
j 6=i

2ai
ai−aj∏

j 6=i(ai−aj)2·f(ai)
− aλ

i∏
j 6=i(ai−aj)2·f(ai)2

)
– ResX/k,ai

(
(t− ai) tλdt

f(t)g(t)

)
= aλ

i∏
j 6=i(ai−aj)2·f(ai)

.

Problem 3.14. Assume we are in the situation of 3.12/3.13.
i) What is the actual minimum distance of the codes of 3.12 resp. 3.13?
ii) Is there a canonical choice of a divisor F (i.e. of a rational function

f ∈ Fq(t)) in 3.13 which maximizes the minimum distance of CΩ(D,F , t)?
iii) Is there a canonical choice of a basis t

(a)
1 , t

(a)
2 of OX,a/m2

a in 3.12/3.13
which maximizes the minimum distance of CΩ(D,F , t)?

Example 3.15. Let S := Fp2 [X, Y, Z]/(Xp+1 +Y p+1−Zp+1) and set C :=
Proj(S). Then C is a maximal curve with genus g = p(p−1)

2 and p2+1+p2(p−1)
points rational over Fp2 (Hermitian curve). Here we have

ωC = OC(p− 2)

and if we fix ∞ as a distinguished point and take F = OC(a ·∞), then we have

Γ(C,OC(m · (p + 1) · ∞)) = Γ(C,OC(m)) = Sm

is the homogeneous component of degree m of S. Thus in this situation
algebraic-geometric codes can be constructed and calculated rather explic-
itly. This however can also be achieved using calculations from F. K. Schmidt
(cf. [18]).
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Example 3.16. More generally let

S = Fq[X0, . . . , Xn]/(F1, . . . , Fn−1)

be a (reduced and irreducible) complete intersection with homogeneous poly-
nomials F1, . . . , Fn−1 and let C = Proj(S). If di = deg(Fi), then

ωC = OC(−n− 1 +
n−1∑
i=1

di).

Furthermore if G ∈ S is a homogeneous non-zerodivisor of degree l, if D :=
V+(G) and if E = V+(Xa

0 ) then

H0(C,L(E)∨ ⊗ L(D)) ∼= S∑
di+l−a−n−1.

In this situation also residues can be calculated very explicitly and algorith-
mically, cf. [1], and thus algebraic-geometric codes may be viewed as being
pretty well understood in this situation.

Garcia and Stichtenoth have provided explicit examples of towers of func-
tion fields {Ln} over Fq2 such that the corresponding nonsingular models Cn

satisfy

(∗)
#Cn(Fq2)

g(Cn)
−→ q − 1 as n →∞

(cf. [3]). The nonsingular models Cn however are very hard to determine. It is
fairly easy to find global complete intersections C ′

n ⊆ Pn with field of rational
functions Ln, however all the obvious choices for C ′

n do not satisfy (∗). This
raises the following

Question 3.17. Is it possible to (explicitly) find families of global complete
intersections Cn ⊆ Pn

Fq2
with the following properties:

(1) g(Cn) −→∞ as n →∞.

(2)
#Cn(Fq2 )

g(Cn) −→ q − 1 as n →∞.

Remark 3.18. For general algebraic varieties (or even curves) no good
general constructive approach to residues is known so far. In case X = P1

Fq

we can describe residues rather explicitly in terms of derivatives and canonical
traces TrFqm/Fq

. Also in case of plane curves (or more generally globally com-
plete intersection curves) fairly explicit algorithms to calculate residues can
be developed (cf. [11]). Note in this context, that any function field L/Fq of
transcendence degree 1 has a (possibly singular) model X/Fq in P2

Fq
.
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5. Haché G., Construction effective des Codes Géométriques, These, Paris, 1996.
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