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NONLOCAL PROBLEM FOR THE HYPERBOLIC SYSTEM OF
DIFFERENTIAL EQUATION OF THE FIRST ORDER

BY LECH ZAREBA

Abstract. In the present paper we consider the nonlocal problem for the
system of hyperbolic equations of the first order in two independet variables
in the case when nonlinear functions satisfy Caratheodory assumptions.
Some conditions for uniqueness and existence of a solution are obtained.

Nonlocal problems for hyperbolic equations of the first order describe the
dynamic of population [I]-[3]. During the last thirty years the existence and
uniqueness of the solution of nonlocal problems for the system of hyperbolic
equations have been considered in a number of papers [4]-[8]. The authors as-
sumed that the nonlinear functions satisfy the Lipschitz condition with respect
to the unknown functions. In this paper we consider the nonlocal problem
for the system of hyperbolic equations of the first order in two independent
variables in the case when nonlinear functions satisfy Caratheodory conditions.

We shall consider the system of hyperbolic equation of the form

ug(x,t) + A(z)ug(x,t) + C(x, t)u(z, t) +

b
(1) b Glou) 4+ / Q(E, Du(e, t)de = F(x,1)

in the domain
Qr ={(z,t) : 0<z<¢c, 0<t<T}, T<o0,
For this system we put the following boundary and initial conditions:

(2) u(0,t) = Au(c,t)

(3) u(z,0) = @(z)
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where A, C,Q, A are square matrices of order n, and
U = (ulv"-vun)Tv G: (gl)"'ygn)T

F:(flv"'vfn)Ta (D:(gblw--)d)n)Ty 0<a<b<e

For equation , we consider the following conditions:

(A) AeCL([0,c]); detA(x) #£0, A(z) = Al(x)
for every £ € R™ and z € [0, c|;
A(e) — APA(0)A = 0.

(G) The function G is continous with respect to ¢ for almost all
x € (0,¢) and measurable with respect to z for every £ € R"

and satisfies the following inequalities:

(G(@"af) - G(%M)af - :u) > G0|§ - M’pv
where 2 < p < 00, Gg > 0,

0@ 61, )] S G1 3 [ Gy >0
]:

for i =1,...,n and for every £ € R™ and almost all = € (0, ¢).
By (+,-) we denote the scalar product in R".

)

DEFINITION 1. We call a function u a solution of problem f if

1 1
u€ Wy((0,7); L*(0,¢)),  ug € Ly (Qr) + Li(Qr), T =]
and v satisfies (1)), (2), for almost all (z,t) € Qrp.
Denote
Qo= sup [Q(z, 1)
a<z<b,0<t<T
where || - || is the Euclidean norm of the matrix Q.

THEOREM 1. If the conditions , hold and C,Q € L:5(Q2r) then the
problem f has at most one solution.

PRroOOF. To obtain a contradiction, suppose that there exist two solutions
u', u? of the problem f such that u! # u?. Denote u = u! —u?. It is easy
to show that for every 7 € (0,T] the following equality is satisfied

/[(ut(x,t),u(ac,t)) + (A(z)ug(z,t), u(x, t)) +

(4) + (C(z, t)ulz, t),u(z, ) + (G(z,u') — Gz, u?), u(x,t))+

b
+ /(Q(ﬁ,t)u(f,t),u(:v,t))dé e Mdxdt =0
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where A > 0 and u(x,0) = 0. Hence if we consider the respective components
of the last equality we will have

L = /(ut(x,t),u(x,t))e)‘tdxdt =

1 (&
2/u(m,t)|26)‘tdxdt+2/|u(a:,7')|26/\7dm.
0

and

/(A(x)ux(m, t),u(zx,t))e Mdrdt =
o
1

5 / (A(@)u(z, t), u(z, t))ze N dedt

Qr

5 /(Ax(a:)u(x,t),u(x,t))e_’\tda:dt.
Q.
From we have

1
I, > —2A1/|u(z,t)|26_”dazdt,
o

where Ay = sup || Az ()] Since C' € L25(Q27), we obtain

[0,c

Is = /(C(w,t)u(x,t),u(:):,t))e_)‘tdxdt > co/\u(ac,t)|2e_’\tdxdt.
Q.

Q.
By (G)

Iy = /(G(waul) — G(z,u?), u(z,t))e Mdrdt > 0,
Q.

and since Q € LS (Qr), we have
b
Is= | [(Q(&thul&,t), ulx,t))dée N dudt <
/]

b
—At
</ / IQUE. Ollu(e, Dldeuta, e~ dadt <

<

w\»—u?

Qo(c(b—a)+1) / lu(z,t)|? e~ Mdadt.
Q.
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Thus we get the following inequality

[t nPear +
(5) o0
+ (A +2¢0 — A1 — Qo(c(b—a) + 1)) / lu(z, t)2e Mdzdt <0
Q.

for 7 € (0,T]. We choose A such that
A+ 2¢c — A —Qo(C(b—a)-f-l) > 0.
Then

[uteop <0, te@m)
0

which means that u(z,t) = 0 for almost all (z,t) € Q.
This completes the proof of Theorem O

Denote by J the Jacobian matrix of the function G(z,u)

ij=1
Let W% be the closure of the function space CL([0,¢]), satisfying with
respect to the norm of the space Wi (0, c).

THEOREM 2. Suppose that the conditions and hold and
C,C,Q,Qy € LYS(Qr); FLFy € L2(Q7); @ € WA’Q(O,C). Moreover, assume
that
(6) (J(z,p)€,€) =0
for every p, & € R™ and almost every x € (0,¢). Then there exists a solution of

the problem —.

ProOOF. Consider the following problem for eigenfunctions:
(7) y' =Xy,

(8) y(0) = Ay(e); ¥'(c) = ATy(0)
where y = (y1,...,9n)". Then there exists an orthogonal system of eigenfunc-
tions {w(z)}, wk(z) = (Wi(z),...,wk(z))T, of the problem (7), (§), which is a

n
basis of the space L2(0,c). We consider a sequence of functions of the form

N
uN(z,t) =Y O (tuw(x)
k=1
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for N = 1,2, ... where the functions C{", ..., C’]]\\,f constitute the solution of the
following Cauchy problem:

/[(Uiv(l‘,t)vwk(fﬁ)) + (A(z)uy (1), wh(x)) +

0
+ (C(z, t)ul (2, 1), w*(2)) + (G(z,u™), w" (x))
(9) b
+ [(@te.0u 0. ut(@)de-
- (F(a:,t),wk(x))] de =0 for k=1,..,N,
with
(10) cNOy=¢Y for k=1,..,N,
where
N
oV (z) =) o w(z)
k=1
and

\\@N—cbuwz,l(o —0 if N — oo

)

Observe that the assumptions of Theorem 2 guarantee the existence of the
solution of the problem (@, , which is differentiable in the interval (0,7).
Multiplying (9) by the functions C}¥(t)e=*', respectively, then summing by k
from 1 to N and integrating with respect to ¢t from 0 to 7, 7 € (0, 7] we obtain

/[(ui\[(x7 ), uN (z,t) + (A(z)ud (2, ), ul (2, 1)) +
- (C(z, t)u® (z, 1), u™ (2,1)) + (G(z,u),u™ (2, 1))+
(11) b
+ [(@e0u .00 (@ 0)de

— (F(z,t),uN (z, t))] e Mdzdt = 0.
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As in the proof of Theorem [I] we obtain

Is = /[(Uiv(x,t)7uN($7t)) + (A(aj)u;]pv(ﬂf,t),uN(x7t)) I

Q,
b

+ (C(z, t)ul (z, ), u (2, 1)) + /(Q(ﬁ,t)uN(f,t),uN(a:,t))d§ e Mde >

a
C C
1 1
> 5 [ W@ e - 5 [ 18¥ @)Pdes
0 0

+ (A4 2co — A1 — Qo(c(b —a) + 1)) / [u (z,t)|?e Mdxdt.

Qr

N

Moreover, from we have

I7 = /(G(%UN),UN(a:,t))eAtdmdt >
Q,
> Go/(|uN(x,t)\pe)‘td;cdt
Q,

and

Iy = /(F(:U,t),uN(x,t))e”dxdt <
1 .
B / |F(xz,t)|2e Mdzdt + 3 / [ (z,t)|2e Mdxdt.
Q. o

If we choose now
A =max{A; + Qo(c(b—a) + 1)+ 1 — 2¢, 3}

then from the estimates of Ig, I7, Ig and , for N large enough, we obtain the
following inequality
C

2G0/ |uN(x,t)|pe)‘td:rdt+/\UN(x,T)Fda:e)‘T <
(12) o 0

< (2 / @ () [2dx + / \F(a:,t)ﬁdxdt>
0 Qr

where 7 € [0,T]. Differentiating (9) with respect to ¢, then multiplying by
functions C,?é (t)e=™, respectively, summing by k from 1 to N and integrating
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by ¢ from 0 to 7 we obtain

/[(ug(%t)wf\[(%t))+(A($)Uivt($vt)vulfv(ﬂf,t))+

T

b

+ (O tyul (@, 1), u (z,1)) + / Q€ Y (€.), ul¥ (€., ))dé—

(P ), u (2, 8)) + (Cila, tyu (a, ), ul (2, 1)+
+ (J (2, u™ Yu (2, ), uf (2, )
b

+ [@ie e e @, t))dg} M dadt — 0.

a

(13)

Again, it is easy to estimate

Iy = /{(ug(fc,t)auiv(x,t))+(A(x)uﬁ(x,t)7ui‘7(x7t))+

b

HC (@, tyuy (2, 0), uf (,1)) +/(Q(Eat)UiV(&t)anV(%t))dE—

a

—(Fy(z, t),ul (z, t))] e Mdxdt >
1 / 1 /
> 3 / jul¥ (z, )2 dx — 5 / lul¥ (,0)|?dx —
0 0

1 1
—5 / |Fy (2, 1)) e Mdxdt + 5(/\ +2c0— A1 —1—
Q.
—Qo(c(b—a)+1)) / |ulN (z,t)[2e Mdzdt.
Q

Next, from the assumptions of Theorem [2] we have

Lo = / (Cola, ) (2, 1), u (1))~ dadt <
&,
< /(|U£V($7t)|2+Sup||Ct(117775)||2|UN(1»‘775)|2)€_Md96d75,

1
2 T
Q-
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Qr

and

b
hy = [ [(@i(&. 00" €0 u¥ (wt)dgdodt < 5 [ [l (o) +
Q, a

Qr
+ osup (@i, )P (e(b - a) + 1) [uN (z, t)]Pe M dadt.
a<z<b,0<t<T

To estimate the integral

we again use @D Hence we obtain

C

/ [w (2, 0)P + (Alx)u (z.0), uf (z,0) +

0
b

(14) + (G (2,0) + [(QU€ 0™ (6.0, v, 0)) s+

a

+ (C(z,0)uN (z,0), u) (x,0)) — (F(x,0),u] (z,0))|dz = 0.

Thus

c

113 = /|:(A(l’)uiv(l',0),uiv(l',0)) + (C(x,O)uN(:B,O),uiV(:E,O)) +

0
b

(Gl u), ul (2,0)) + / (Q(E, 0™ (£,0), ul (,0))de —

- (F($,O),U£V(l‘,0)):| dx < ;/ lul¥ (z,0)|*dz+
0

C

+ 5 [(12@)P +[@.(2)P)de,
0
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where the constant p1 depends on matrices A, C, @, the function F(z,0) and
constants G1, n,p. From we obtain the following estimation

C

(15) [ 1 @ 0)Pds < [(2@P + [0,(w) ),
0

0

From the estimates of the integrals Iy, I1g, I11, I12 and from , we obtain
the inequality

Cc c

/\Uiv(x,T)Fdx < pi2 [/(Ifb(:v)l2 +|@a(2)[*)d +
0 0

+ [ (|F(x,t)|? + | Fy(x, t)|?)dxdt
/ |

for 7 € (0,T], where the constanst py does not depend on N. Moreover, from

the assumptions and

/fgz'(x,uN)\qdacdt < /(Glz lulN [P~ dzdt <
Q-

i=1

.

(17)
< ug/(\uN(m,t)\pdxdt < g
o

for 7 € (0,7], i = 1,...,n. By inequalities , , there exists a

subsequence {u™(x,t)} of the sequence {u!¥(x,t)} such that

u™ — u  weakly in  LZ2(Qr)

u* — uy  weakly in L2 (Q7)

G(z,u™) - w weakly in LI (Qr)

when m — oo.
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Now we consider a sequence {y,,} defined by the formula

+ / e M(G(z,v), u™(z,t) — v(z,t))dzdt —
Qr

—/e_’\t(G(x,um),v(ac,t))dxdt—|—

Qr
+ / e M (Gla,u™), u™ (1)) dadt = / o {(F(x,t%um(fv’t)) *
Qr il

—i—%(Am(x)um(x,t),um(m,t)) — (C(z, t)u™(x,t), u™(z,t)) —
b
_(u;n(x7t)7um(x7t)) - /(Q(f,t)um(ﬁ,t),um(x,t))dﬁ] dxdt —
- /e_kt[(G(!Eav),um(ffat) —v(z,t)) + (G(z,u™),v(z,t))]dzdt,
Qr

where v is an arbitrary function in L (Q7). It is easy to prove that for the
same A the following inequality holds

0 = [ (Pla0)u(e) + (A uto, 0., 1) -
Qp

- g(u(m,t), u(z,t)) — (C(z, t)u(x, t),u(x,t))—

b c
- [ @t t). e,y s + 5 [ 10

a 0

- /e)‘t[(w, v) + (G(z,v),u(z,t) — v(x,t))|dzdt
Q,

1
- 2/€AT‘U(.CC,T)‘QCZ$.

0
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On the other hand, from (9)) we obtain that for every v € Wzl(QT) the follow-
ing equality holds

/ e_)\t |:(Ut(37, t)? U(JJ, t)) - (Am(ac)u(x, t>’ ’U(i, t)) o
Qr
(19) — (A(x)u(x,t), va(z, 1)) + (Cla, t)ulx, t), v(z, 1)) -
b

- /(Q(&,t)u(f,t),v(l‘,t))df + (w,v(z,t)) — (F(x,t),v(x,t))|dedt = 0.

a

Using and we find that u, € L2(Qr) + LL(Qr). Thus u € LS(Qr).
Then if we put the function v instead of the function v in (19) we obtain

/e_M [;\(u(x,t),u(asjt)) — %(Ax(x)u(az,t),u(x,t)) +
Qr
b
+ (Ol utes ) e 0) — (@6 ute 1), ula )de

+ (w,u(x,t)) — (F(x,t), u(:c,t))] dxdt+

C

1 1 f
+ 3 /e_AT|u(x,T)|2daz ~3 / |®(z)|*dx = 0.
0

0
Adding and we get
(21) /(w — G(z,v),u(z, t) — v(x, t))e Mdedt > 0.
Qp

Let v=u—aw, a >0, w € W\ﬁl(QT) Then

/(w — G(z,u), w)e Mdxdt =0

Qp
for every w € L} (Qr), which means that

w=G(z,u).

From we obtain that u is the solution of the problem 7, which com-
pletes the proof of Theorem [2} O
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