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ON THE WEIERSTRASS DIVISION

by Stanis law  Lojasiewicz∗, Tomasz Maszczyk and Kamil Rusek∗

Abstract. We propose some abstract counterparts of the classical We-
ierstrass Division Theorem starting from simple properties of topological
groups, rings and vector spaces together with rather elementary algebraic
notions. It is shown how to deduce from these results the classical versions
of the Weierstrass Division Theorem for formal and convergent power series.

1. Preliminaries. Let G be an abelian topological group which is sepa-
rated and sequentially complete.

A sequence {En}n∈N of subsets of G is said to be summable if

xn ∈ En, n = 0, 1, 2, . . . =⇒
∞∑

n=0

xn converges.

Then necessarily
∞⋂

n=0

En ⊂ {0}.

Every decreasing sequence of subgroups of an abelian group G determines
a unique topology in G for which it is a bases of neigbourhoods of zero and
the group operation is continuous. Moreover, if this topology is sequentially
complete then ∑

an converges ⇐⇒ an → 0.

In particular, each sequence of subsets of G which converges to zero (i.e.
each neighbourhood of zero contains almost all its terms) is summable.

The following lemma, inspired by an idea from [1], is fundamental for our
purposes.
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Lemma 1.1. Let G be a topological group which is separated and sequentially
complete. Suppose that f : G −→ G is a continuous endomorphism and {En}
is a summable sequence of subsets of G such that E0 = G and

(+) (idG−f)(En) ⊂ En+1, n = 0, 1, 2, . . . .

Then f is an automorphism of G.

Proof. Let x ∈ ker f . By (+) we have x ∈ En for n = 0, 1, 2, . . . . Hence
x = 0. Thus f is injective.

To prove surjectivity, take y ∈ G and define the sequence: u0 = y, un+1 =
un − f(un), n = 1, 2, . . . . Then un ∈ En, n = 0, 1, 2, . . . , so

∑∞
0 un converges.

Putting x :=
∑∞

0 un and using continuity of f we obtain f(x) =
∑∞

0 f(un) =∑∞
0 (un − un+1) = u0 = y. Therefore f is surjective and the lemma is proved.

2. Weierstrass elements and division. Let A be a commutative ring
and let H be its additive subgroup. An element ω of A which is not a zero
divisor in A is said to be a Weierstrass element, briefly: WEL (with respect to
H), if A = A ω ⊕H.

Each Weierstrass element determines two group homomorphisms

Qω : A −→ A and Rω : A −→ H

defined by the condition x = Qω(x) ω + Rω(x) for x ∈ A.
Note that even if A is a Banach algebra these mappings may not be con-

tinuous.

Example 2.1. Let A denote the Banach algebra of all bounded holomor-
phic functions on the unit disc with the supremum norm. Let ω = (1 − z)2

and let H be a linear supplement of A ω. Consider the sequence fn(z) =
(1− z)2(1 + 1

n − z)−1 of elements of A. Then Qω (fn)(z) = (1 + 1
n − z)−1 and

fn −→ f in A, where f(z) = 1− z, but the sequence Qω(fn) does not converge
in A.

Our first version of the Weierstrass Division Theorem (briefly: WDT) is
the following

Theorem 2.2. Let A be a commutative topological ring, separated and
sequentially complete. Fix an additive subgroup H of A and a summmable
sequence {En} of subsets of A such that E0 = A.

Let ω be a WEL such that the mapping Qω is continuous. Then every
ω′ ∈ A satisfying

(*) (ω − ω′)Qω(En) ⊂ En+1, n = 0, 1, 2, . . .

is also a WEL.
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Proof. By our assumptions both mappings Q = Qω : A −→ A and
R = Rω : A −→ H are continuous, which implies that the group isomorphism

f : A×H 3 (u, v) −→ u ω + v ∈ A

has a continuous inverse

f−1 : A 3 x −→ (Q(x), R(x)) ∈ A×H.

Clearly, it suffices to prove that the continuous mapping

g : A×H 3 (u, v) −→ u ω′ + v ∈ A

is an isomorphism of groups, provided that ω′ satisfies (*).
So, note that the mapping (f − g) ◦ f−1 : A −→ A is a continuous endo-

morphism of the group A and

(f − g)(f−1(x)) = (ω − ω′)Q(x) for x ∈ A.

Now (*) and the last equality imply that

(idA−g ◦ f−1)(En) ⊂ En+1, n = 0, 1, 2, . . . .

Therefore, by Lemma 1.1, the mapping g ◦ f−1 is an automorphism and hence
g is an isomorphism.

3. Weierstrass division in local rings. In the sequel we will consider
N := N ∪ {∞} as an additive monoid.

If A is an integral domain then a function o : A −→ N such that:

o(a) = ∞ ⇐⇒ a = 0,

o(ab) = o(a) + o(b),

o(a + b) ≥ min(o(a),o(b))

is said to be an order on A.
From this definition we easily derive the following properties:
(i) if a is a unit in A then o(a) = 0; if the inverse implication holds the

order is said to be strict;
(ii) o(−a) = o(a);
(iii) o(a) < o(b) =⇒ o(a + b) = o(a);
(iv) the relation ∼ defined on A \ 0 by

a ∼ b ⇐⇒ o(a− b) > o(a)

is an equivalence relation;
(v) a ∼ b =⇒ o(a) = o(b).

Example 3.1. If A = R[[X1, . . . , Xn]], where R is an integral domain, the
function A 3 f −→ ord(f) ∈ N is an order. It is strict if and only if R is a
field.
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Example 3.2. If (A,m) is a regular local ring then the function o :A → N,
where

o(a) :=

{
k, if a ∈ mk \mk+1

∞, if a = 0

is a strict order on A (see [4]).

If an order o does not vanish identically on the set A \ 0 then Ik =
{a : o(a) ≥ k} are non-zero ideals and A = I0 ⊃ I1 ⊃ I2 ⊃ . . . is a filtra-
tion on A, i.e. IiIj ⊂ Ii+j . It defines a linear topology on A, called o-topology,
which makes A into a separated topological ring. Moreover, if the order o is
strict then m := I1 = {a : o(a) > 0} is a unique maximal ideal in A, i.e. (A,m)
is a local ring. Since mk ⊂ Ik for each positive integer k, the o-topology is not
stronger than the m-adic topology. If A is noetherian and m-adically complete
then both topologies coincide (Chevalley’s theorem – see, for example, [4]).

Let us make the following obvious observation.

Proposition 3.3. Let H be an additive subgroup of an integral domain A
and let o be an order on A.

Then for any Weierstrass element ω ∈ A the following conditions are equiv-
alent:

(α) Qω(In+m) ⊂ In for n ∈ N where m := o(ω);

(β) Rω(In) ⊂ In for n ≥ m;

(γ) o(Rω(a)) ≥ o(a) for all a ∈ A.

A Weierstrass element with the above property is called strong, briefly:
SWEL (with respect to H and o).

Clearly, for such an element the mappings Qω and Rω are continuous with
respect to the o-topology.

A unit is a trivial example of a SWEL (with respect to any subgroup and
any order).

There is no distinction between WEL’s and SWEL’s in the ring K[[X]],
where K is a field (with respect to the standard order and any subgroup).
Unfortunately, this is not true in general. The following simple observation
will be useful for a counterexample.

Let an additive group A be a direct sum of two of its subgroups G and H
and let ϕ : H −→ G be a homomorphism of groups. Then, if we denote by
H ′ := {h + ϕ(h) : h ∈ H} the graph of ϕ, the group A is also the direct sum
of G and H ′.

Indeed, if a = g + h, g ∈ G, h ∈ H, then also a = (g − ϕ(h)) + (h + ϕ(h))
and G ∩H ′ = {0}.
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Example 3.4. (given by K. Nowak). Let A := K[[X, T ]], where K is a
field. We take ω := T and the subgroup H := K[[X]]. Evidently, ω is a SWEL
with respect to H and the standard order on A.

Put G := A ω and define the homomorphism

ϕ : H 3
∞∑

n=0

anXn −→ a2T ∈ G.

If H ′ denotes the graph of ϕ then according to the above remark the element
ω is still a WEL with respect to H ′ but not a SWEL.

Indeed, for the element X2 ∈ H we have

RH′
ω (X2) = RH

ω (X2) + ϕ(RH
ω (X2)) = X2 + T

and hence
ordRH′

ω (X2) = 1 < 2 = ord(X2).
A counterpart of the WDT is the following (see also [3]).

Theorem 3.5. Let A be an integral domain with an additive subgroup
H ⊂ A and with a strict order o such that the o-topology is sequentially com-
plete.

If ω, ω′ are two elements of A \ 0 such that ω ∼ ω′, then

ω is a SWEL ⇐⇒ ω′ is a SWEL.

Proof. Suppose that ω is a SWEL. If o(ω) = 0, then ω is a unit and so
is ω′. So let o(ω) = m > 0.

The sequence {En}, defined by E0 = A and En = Im+n for n ≥ 1 is
summable and by Proposition 3.3 together with earlier mentioned properties
of the order we verify that

(ω − ω′)Qω(En) ⊂ En+1 for n ∈ N.

Therefore ω′ is a WEL by Theorem 2.2 and we have the decomposition

(1) ω′ = Qω(ω′)ω + Rω(ω′).

Since ω is a SWEL and Rω(ω) = 0, we get

(2) o(Rω(ω′)) = o(Rω(ω − ω′)) ≥ o(ω − ω′) > o(ω′)

Fix an a ∈ A and, using (1), write the decomposition

a = Qω′(a)ω′ + Rω′(a) = Qω′(a)Qω(ω′)ω + Qω′(a)Rω(ω′) + Rω′(a).

If o(Qω′(a)ω′) < o(Rω′(a)), then o(a) = o(Qω′(a)ω′) < o(Rω′(a)). Assume
that o(Qω′(a)ω′) ≥ o(Rω′(a)) and decompose

Qω′(a)Rω(ω′) = q ω + r,
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where r ∈ H and, by (2),

o(r) = o(Rω(Qω′(a)Rω(ω′))) ≥ o(Qω′(a)Rω(ω′))

> o(Qω′(a)ω′) ≥ o(Rω′(a))
(3)

Finally we obtain the formula

a = [Qω′(a)Qω(ω′) + q]ω + r + Rω′(a),

where r + Rω′(a) ∈ H.
Therefore, in view of uniqueness of the decomposition,

Rω(a) = r + Rω′(a)

and by (3)
o(Rω(a)) = o(Rω′(a)) ≥ o(a).

Thus ω′ is a SWEL and the proof of Theorem 3.5 is completed.

We cannot replace in the statement of Theorem 3.5 SWEL’s by WEL’s. It
is seen from the following

Example 3.6. (given by K. Nowak). Keeping notations from Example 3.4
let ω := T and ω′ := T + X2.

Then ω ∼ ω′ and ω is a WEL with respect to the subgroup H ′ while ω′ is
not.

Indeed, if ω′ were a WEL then X2 = Qω′(X2)(T + X2) + Rω′(X2), where
Rω′(X2) = a0+a1X +a2(T +X2)+a3X

3+ . . . , aj ∈ K. Therefore Qω′(X2) =:
c ∈ K and a2 + c = 0, a contradiction.

Finally, let us show how Theorem 3.5 implies the classical WDT in the
formal case.

Theorem 3.7. Let K be a field. If F ∈ K[[X1 , . . . , Xn , T ]] is T -regular
of order m (i.e. F (0, . . . , 0, T ) = amTm + am+1T

m+1 + . . . with am 6= 0),
then for every G ∈ K[[X1 , . . . , Xn , T ]] there exists exactly one pair
Q ∈ K[[X1 , . . . , Xn , T ]], R ∈ K[[X1 , . . . , Xn ]][T ] with degT R < m, such that

G = QF + R.

Proof. Take some q > m and consider the following monomorphism of
the ring K[[X1 , . . . , Xn , T ]]:

h : U −→ U(X1
q, . . . , Xn

q, T ).

As A we take the image of K[[X1 , . . . , Xn , T ]], as H the additive subgroup of A
of polynomials with respect to T of degree < m, and as o the restriction to A
of the usual order. Then A is sequentially complete and separated. Evidently
ω = amTm is a SWEL. Since o(h(F ) − ω ) > m i.e. h(F ) ∼ ω, the element
h(F ) is a WEL according to Theorem 3.5.
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This means that h(G) = h(Q) h(F ) + h(R) i.e. G = QF + R, with a unique
pair: Q ∈ K[[X1 , . . . , Xn , T ]], R ∈ K[[X1 , . . . , Xn ]][T ] with degT R < m.

4. WDT for convergent power series. We need a slightly different
versions of Lemma 1.1 and Theorem 2.2.

The proof of Lemma 1.1 does work for the following

Lemma 4.1. Let M be a vector space over a field K of real or complex num-
bers which is a topological additive group, separated and sequentially complete.

Suppose that f : M −→ M is a continuous linear mapping and {En} is a
summable sequence of subsets of G with E0 absorbing1, such that

(++) (idG−f)(En) ⊂ En+1 , n = 0, 1, 2, . . . .

Then f is an automorphism of M .

The only difference is that in the surjectivity proof we get E0 ⊂ f(M), but
this implies that f(M) = M .

Now, repeating the proof of Theorem 2.2, we obtain

Theorem 4.2. Let A be a commutative algebra which is a topological ring,
separated and sequentially complete. Fix a vector subspace H of A and a sum-
mable sequence {En} of subsets of A with E0 absorbing.

Let ω be a WEL such that the mapping Qω is continuous. Then every
ω′ ∈ A satisfying

(**) (ω − ω′)Qω(En) ⊂ En+1, n = 0, 1, 2, . . .

is also a WEL.

As an immediate consequence we get

Theorem 4.3. Let A be a Banach algebra with a vector subspace H. Let
ω be a WEL such that the mapping Qω is continuous. Then every ω′ ∈ A
satisfying the inequality ‖(ω − ω′)Qω‖ =: Θ < 1 is also a WEL.

Moreover, both mappings Qω′ and Rω′ are also continuous and

max{‖Qω′‖, ‖Rω′‖} ≤ ε (1−Θ)−1,

where ε is a positive constant, depending only on ω and on a norm on A×H.

Proof. For the first statement it suffices to apply Theorem 4.2 with En =
{x ∈ A : ‖x‖ ≤ Θn}, n = 0, 1, . . . .

To verify the second statement, we need some standard properties of linear
endomorphisms of Banach spaces (see, for example, [2]).

Since ω′ is a WEL for A with respect to H the mapping

g : A×H 3 (u, v) −→ u ω′ + v ∈ A

1I.e. for every x ∈ M there exists t ∈ K \ 0 such that t x ∈ E0.
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is an isomorphism with the inverse

g−1 : A 3 u −→ (Qω′(u), Rω′(u)) ∈ A×H.

By the assumption, the mapping

f : A×H 3 (u, v) −→ u ω + v ∈ A

is also a continuous isomorphism with the continuous inverse

f−1 : A 3 u −→ (Qω(u), Rω(u)) ∈ A×H.

Thus
(f − g) ◦ f−1 = idA−g ◦ f−1 = (ω − ω′)Qω

is a continuous endomorphism of A and

‖(f − g) ◦ f−1‖ = Θ < 1.

Therefore, the mapping g ◦ f−1 is an automorphism of A and

‖(g ◦ f−1)−1‖ ≤ (1− ‖ idA−g ◦ f−1‖)−1 = (1−Θ)−1.

Since g−1 = f−1 ◦ (g ◦ f−1)−1, we conclude the proof.

In order to obtain WDT in the convergent series case as a consequence of
Theorem 4.3 we shall use the Grauert-Malgrange norms.

Given ρ > 0, σ > 0 we define

(#) ‖F‖ρ,σ =
∑

|apq|ρ|p|σ|q|

for any formal power series F =
∑

apqX
pY q ∈ K[[X1 , . . . , Xk

, Y1 , . . . , Yl
]]. One

checks easily that
‖F G‖ρ,σ ≤ ‖F‖ρ,σ‖G‖ρ,σ.

Then

A(ρ, σ) = {F ∈ K[[X1 , . . . , Xk
, Y1 , . . . , Yl

]] : ‖F‖ρ,σ < ∞}
is a Banach algebra with the norm ‖ · ‖ρ,σ (the restriction of (#) to A(ρ, σ)).
Observe that

(##)

{
ρ′ < ρ, σ′ < σ −→ A(ρ, σ) ⊂ A(ρ′, σ′),
K{X1 , . . . , Xk

, Y1 , . . . , Yl
} = ∪ρ>0,σ>0A(ρ, σ),

where K{X1 , . . . , Xk
, Y1 , . . . , Yl

} denotes the ring of convergent power series of
the variables X1 , . . . , Xk

, Y1 , . . . , Yl
(see [2]).

In particular, we have the Banach algebra

A(ρ) = {F ∈ K[[X1 , . . . , Xk
]] : ‖F‖ρ < ∞}

with the norm ‖ · ‖ρ which is the restriction of the function∑
apX

p −→
∑

|ap|ρ|p|.



57

It is easy to verify that

‖F‖ρ,σ ≤
∑

‖Aq‖ρ σ|q|

for F =
∑

AqY
q ∈ K{X1 , . . . , Xk

, Y1 , . . . , Yl
} and Aq ∈ K{X1 , . . . , Xk

}.
Now we shall show the classical WDT for convergent series.

Theorem 4.4. If F ∈ K{X1 , . . . , Xn , T} is T -regular of order m, then for
every G ∈ K{X1 , . . . , Xn , T} there exists exactly one pair Q ∈ K{X1 , . . . , Xn , T},
R ∈ K{X1 , . . . , Xn}[T ] with degT R < m, such that

G = QF + R.

Moreover, for every ρ′ > 0, σ′ > 0, there exist ρ > 0, s ≥ m + 1, ρs ≤ ρ′,
ρ ≤ σ′, and a constant κρ > 0 such that if G ∈ A(ρ′, σ′) then

max{‖Q‖, ‖R‖} ≤ κρ‖G‖,
where ‖ · ‖ = ‖ · ‖ρs,ρ.

Proof. We shall use Banach algebras A = A(ρs, ρ) (with the norm ‖ · ‖ =
‖ · ‖ρs,ρ), where ρ > 0 and s ≥ m + 1. If ρ is sufficiently small, then F =∑

ckT
k ∈ A with ck ∈ A(ρs), cν(0) = 0 for ν < m and cm invertible in A(ρs).

Then C = cmTm is a WEL with respect to the subspace H of polynomials in
T , of degree < m. Moreover, the mapping QC :

∑∞
0 aνT

ν −→ cm
−1

∑∞
m aνT

ν

is continuous and ‖QC‖ ≤ λ ρ−m, where λ = ‖cm
−1‖. Because F − C =∑m−1

0 cνT
ν +

∑∞
m+1 cν T ν and s ≥ m + 1, we have ‖F − C‖ ≤ Θ ρm+1 for

some positive decreasing function Θ of ρ. Taking ρ such that Θλρ < 1, we get
‖(F −C) QC‖ < 1 and hence F is also a WEL by Theorem 4.3. Thus, in view
of (##), the main statement of our theorem follows.

The second part of the theorem is an immediate consequence of the above
argument and estimations from Theorem 4.3.
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