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A FIBRE CRITERION FOR A POLYNOMIAL TO BELONG TO

AN IDEAL

by Marcin Dumnicki

Abstract. In the paper we generalize a fibre criterion for a polynomial f
to belong to a primary ideal I in the polynomial ring K[X, Y ]. We also
investigate the general case where the ideal I is not primary.

Let {X1, . . . , Xn} be any set of variables. We shall write K[X] instead
of K[X1, . . . , Xn]. If f ∈ K[X, Y ], where X and Y are sets of variables,
K is an algebraically closed field, Y = {Y1, . . . , Ym}, a ∈ Km, then fa :=
f(X1, . . . , Xn, a1, . . . , am). For a subset I of K[X, Y ] we define Ia = {fa | f ∈
I}. Of course, if I is an ideal then is Ia. We shall also write IY for I ∩K[Y ].

The following theorem was proved by Jarnicki-O’Carroll-Winiarski [2] (see
also preprint, proposition 12):

Let I be an ideal in K[X, Y ] such that I ∩ K[Y ] = (0), where K
is an algebraically closed field. Assume that for all a ∈ Km the
ideal Ia is proper and zero-dimentional. Then the following holds
true:

∀f ∈ K[X, Y ] ∀a ∈ Km fa ∈ Ia =⇒ f ∈ I. (∗)
We generalize the above to the following:

Theorem. Let K be an algebraically closed field, I be a primary ideal in
K[X, Y ]. Then the following conditions are equivalent:
(1) ∀f ∈ K[X, Y ] ∀a ∈ Km fa ∈ Ia =⇒ f ∈ I,
(2) IY is radical.

We also investigate the case where the ideal I is not primary. The origi-
nal proof by W. Jarnicki, L. O’Carroll and T. Winiarski uses comprehensive
Gröbner bases and cannot be carried over to the general case. Our approach
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makes use of reduced Gröbner bases, and is essentially based on a lemma on
specialization for a Gröbner basis. Although this lemma is well known, we give
its proof for the reader’s convenience. Another, purely algebraic proof of the
fibre criterion is presented by K. J. Nowak [3], who does not use the theory of
Gröbner bases.

We begin by recalling some basic definitions and facts concerning Gröbner
bases, which are used in the proof of the main result of this paper. For a
thorough introduction to the theory of Gröbner bases, we refer the reader to
[1].

Definition. A term is a product of the form Xe1
1 · · ·Xen

n , with ei ∈ N for
1 ≤ i ≤ n. We denote by T (X), or simply by T the set of all terms in these
variables.

Definition. A term order (denoted by �) is a linear order on T that
satisfies the following conditions:
(1) ∀t ∈ T 1 � t,
(2) ∀s, t1, t2 ∈ T t1 � t2 =⇒ t1s � t2s.

Definition. Let 1 ≤ i < n, T1 = T (X1, . . . , Xi), T2 = T (Xi+1, . . . , Xn),
and let �1 and �2 be term orders on T1 and T2 respectively. Any t ∈ T may
be written uniquely as t = t1t2 with ti ∈ Ti for i = 1, 2. Then term order � on
T defined as follows: s � t if
s1 ≺1 t1, or
(s1 = t1 and s2 �2 t2)
is called a block order on T where T1 � T2.

Definition. Let f ∈ K[X], f 6= 0, and let � be a term order on T . Write
the polynomial f in the following form:

f(X) =
∑
α

cαXα.

We define the support, leading term and leading coefficient of f as follows:

supp(f) = {Xα | cα 6= 0}

LT(f) = max(f)

LC(f) = the coefficient of LT(f) in f,

where max(f) denotes the maximal element, with respect to �, among terms
of f with non-zero coefficients. For f , g ∈ K[X] we say that f ≤ g if LT(f) �
LT(g).

Definition. Let P be a finite subset of K[X], f ∈ K[X]. We say that f
is reducible mod P if ∃p ∈ P and t ∈ supp(f) such that LT(p)|t. If f is not
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reducible mod P then we say that f is in normal form mod P . Assume that
f is reducible mod P , LT(p)|t for some t ∈ supp(f), and

g = LC(p)f − asp,

where s ∈ T satisfies LT(p)s = LT(f), and a is the coefficient of the term t in
the polynomial f . Than we say that f reduces to g mod P (notation f −→ g).

Definition. Let P be a finite subset of K[X], f ∈ K[X]. We say, that f
is top-reducible mod P if ∃p ∈ P such that LT(p)|LT(f).

Definition. For any polynomials g and f we say, that g is a normal form
of f mod P if g is in normal form mod P , and there exists g1, . . . , gr for some
r ∈ N such that g1 = f , gr = g, and

∀i ∈ {1, . . . , r − 1} gi −→ gi+1.

Definition. Let 0 6= f ∈ K[X], G a finite subset of K[X], 0 /∈ G. A
representation

f =
k∑

i=1

qigi

with polynomials 0 6= qi ∈ K[X] and gi ∈ G (1 ≤ i ≤ k) is called a standard
representation of f with respect to (w.r.t) G if

max{LT(qigi) | 1 ≤ i ≤ k} � LT(f).

Definition. By a Gröbner basis G (with respect to a term order �) we
mean a finite set of polynomials that satisfies one of the following equivalent
conditions: (cf. [1])

(1) ∀f ∈ I f 6= 0 =⇒ f is reducible mod G
(2) ∀f ∈ I f 6= 0 =⇒ f is top-reducible mod G
(3) ∀f ∈ K[X] f ∈ I ⇐⇒ some normal form of f = 0
(4) ∀f ∈ K[X] f ∈ I ⇐⇒ the unique normal form of f = 0
(5) ∀f ∈ I f 6= 0 =⇒ f has a standard representation w.r.t. G,

where I is the ideal generated by G.

We say that a Gröbner basis is reduced if for all 1 ≤ i ≤ r, gi is in normal form
mod G \ {gi}, and LC(gi) = 1.

Remark. Since the conditions (1) and (2) in the above definition are equiv-
alent, whenether we write that the polynomial is reducible we mean that is
top-reducible.

Now let I be an ideal in K[X], and let � be a term order on T . Then there
exists (exactly one) reduced Gröbner basis of I with respect to � (cf. [1]).
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Definition. Let f and g be in K[X], q be the least common multiple (lcm)
of LT(f) and LT(g) in T , and let s, t ∈ T such that LT(f)s = q, LT(g)t = q,
then we define the S-polynomial of f and g:

S-poly(f, g) = LC(g)sf − LC(f)tg.

The idea of the S-poly is to multiply leading terms of f and g by some terms
and coefficients in order to “cancel” them.

We will make use of the following well known theorem (cf. [1]):
Let G be a finite subset of K[X], 0 /∈ G, and let � be a term order on T .
Assume that for all g1, g2 ∈ G, S-poly(g1, g2) equals 0 or has a standard rep-
resentation with respect to G. Then G is a Gröbner basis.

All above definitions and theorems are classical and can be found in any
book about Gröbner bases. The next lemma is known, however is not so
classical.

We shall use the following notation to deal with Gröbner bases in K[X, Y ].
Every f ∈ K[X, Y ] can be written in the following form:

f =
∑

α∈Nn

Wα(Y )Xα.

If LT(f) = XβY δ, then we define

LTX(f) = Xβ, LCX(f) = Wβ(Y ).

For G ⊂ K[X, Y ] we shall write GX\Y = G \ (G ∩K[Y ]).
To prove the main theorem we need the following

Lemma. Let K be an algebraically closed field, I an ideal in K[X, Y ], and
let � be any block order on T (X, Y ) where Y � X. Let G be the reduced
Gröbner basis 1 of I with respect to �. We denote by V (IY ) the algebraic set
generated by IY in Km, where m is the number of variables Y . If IY is prime,
then there exists an non-empty, open (in Zariski topology) set U ⊂ V (IY ),
such that if a ∈ U then (GX\Y )a is a Gröbner basis of Ia with respect to the
restriction �X of � to T (X).

Remark. In the above lemma we take (GX\Y )a instead of Ga to avoid a
situation when 0 ∈ Ga. We recall the fact, that GY = G ∩K[Y ] is a Gröbner
basis of IY . We shall also write � instead of �X and �Y , because these
restrictions have only formal meaning.

1In fact, we do not need a reduced Gröbner basis, it is enough to have a minimal one.
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Proof. We want to prove the condition concerning the S-polynomials.
First observe that in our case V (IY ) is irreducible, and if we take an f ∈ K[Y ],
f /∈ IY , than there exists an open, non-empty dense subset Uf ⊂ V (IY ) such
that for a ∈ Uf f(a) 6= 0.
For gi and gj in GX\Y , define

S̃-poly(gi, gj) = LCX(gj)Xαgi − LCX(gj)Xβgi,

where
LTX(gi)Xα = LTX(gj)Xβ = lcm(LTX(gi),LTX(gj)).

We want to know that for a generic a

(1) S̃-poly(gi, gj)a = S-poly(gia, gja).

First observe that LCX(gi) /∈ IY . Otherwise LCX(gi) would be reducible mod
GY and, in fact, gi would be reducible mod G\{gi}. Now, if we take a belonging
to Ugi := ULCX(gi) and Ugj := ULCX(gj) we have

LT(gia) = LTX(gi), LT(gja) = LTX(gj),

because LCX(gi)(a) 6= 0 and LCX(gj)(a) 6= 0. Then the equality (1) holds for
a ∈ Ugi ∩ Ugj .

Reducing an S̃-poly(gi, gj) mod GY we obtain a polynomial Si,j which is
either 0 or not reducible mod GY , and

Si,j = S̃-poly(gi, gj) + q,

where q ∈ IY . From the above equality we have, for an a ∈ V (IY )

Si,ja = S̃-poly(gi, gj)a.

Because Si,j is not reducible mod GY , LCX(Si,j) /∈ GY and for a ∈ USi,j =
ULCX(Si,j) we have LCX(Si,j)(a) 6= 0. Si,j ∈ I, so it has the standard repre-
sentation

Si,j =
r∑

`=1

h`g`,

where for 1 ≤ ` ≤ r

LT(h`g`) � LT(Si,j).
For a ∈ USi,j we have

LT(h`ag`a) � LTX(h`g`) � LTX(Si,j) = LT(Si,ja),

and thus the representation

Si,ja =
r∑

`=1

h`ag`a
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(after deleting the components which become 0) is a standard representation.
Therefore

U =
⋂

(gi,gj)∈(GX\Y )2

USi,j ∩
⋂

gi∈GX\Y

Ugi

is a non-empty open set, required in the Lemma.

Now we state the following main theorem

Theorem 1. Let K be an algebraically closed field, I be a primary ideal in
K[X, Y ]. Then the following conditions are equivalent:
(1) ∀f ∈ K[X, Y ] ∀a ∈ Km fa ∈ Ia =⇒ f ∈ I,
(2) IY is radical.

Proof. To show (2) =⇒ (1), we assume that it is not true. Let G be a
reduced Gröbner basis of I with respect to a block order �, like in the Lemma.
Define the set

M := {f ∈ K[X, Y ] | f /∈ I, ∀a ∈ Km fa ∈ Ia}.

Then M 6= ∅, and we can choose a minimal element f0 of M with respect to
≤ (that means that LT(f0) is smaller or equal to leading term of any other
element in M with respect to �). Moreover, we take f0 which is in normal
form mod G. Take U from the previous Lemma (IY is prime because it is
primary and radical).

We have two cases:
Case 1. f0 /∈ K[Y ]. Take an a ∈ U such that LCX(f0)(a) 6= 0 (f0 is in normal
form mod G, so LCX(f0) is not reducible mod GY ). Then (f0)a ∈ Ia, (GX\Y )a

is a Gröbner basis of Ia, so for some i and some α we have the following:

LT((f0)a) = LT(gia)X
α.

But we can also see that

LTX(f0) = LTX(gi)Xα

and take
f ′ = LCX(gi)f0 − LCX(f0)Xαgi.

Then f ′ < f0 (the leading term of f0 is cancelled), ∀a ∈ Km f ′a ∈ Ia, hence
f ′ ∈ I (from the minimal choice of f0), and LCX(gi)f0 ∈ I. Now LCX(gi)

d ∈ I,
for some natural d (because I is primary) and LCX(gi) ∈ IY (because IY is
radical), a contradiction.
Case 2. f0 ∈ K[Y ]. For a ∈ U the ideal Ia is proper (1 is not reducible mod
(GX\Y )a since none of the gi ∈ GX\Y becomes a non-zero constant). Then
fa ∈ Ia means that for all a ∈ U fa = f(a) is zero. Hence f is zero on the
open, non-empty set in V (IY ), and then f ∈ rad(IY ) = IY ⊂ I, a contradiction.
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The proof of the converse implication is easy. Take any f /∈ IY , f ∈ rad(IY ).
Then
if f(a) = 0, then fa = f(a) ∈ Ia,
if f(a) 6= 0, then 0 6= fa

d ∈ Ia for some d, so Ia = (1), and fa ∈ Ia,
but f /∈ I.

The case of an arbitrary (possibly non-primary) ideal will be considered in
the following theorem

Theorem 2. Let K be an algebraically closed field, I any ideal in K[X, Y ],
I =

⋂r
k=1 Ik a primary decomposition of I. Then

(1) if ∀k 1 ≤ k ≤ r IkY is radical, then I has property (∗).
(2) if ∃k 1 ≤ k ≤ r, such that IkY is not radical, and Ik is the isolated
component of I, then I has not property (∗).

Proof. (1) Take an f ∈ K[X, Y ],∀a fa ∈ Ia. Then we have

Ia ⊂
r⋂

k=1

(Ik)a,

so ∀a, ∀k fa ∈ (Ik)a. From Theorem 1 we have ∀k f ∈ Ik, and consequently
f ∈ I.

(2) Take f ∈ K[Y ] such that f /∈ Ik, f ∈ rad(Ik). For all i ∈ {1, . . . , r} i 6= k
take gi ∈ Ii such that gi /∈ rad(Ik). (This is possible since Ik is isolated.) Let
g = g1 . . . gk−1gk+1 . . . gr. Then g /∈ radIk. Now if gf ∈ I then gf ∈ Ik, f /∈ Ik

=⇒ ∃d gd ∈ Ik =⇒ g ∈ rad(Ik), which is false. But fd ∈ Ik for some d, hence
gfd ∈ I. Now the theorem follows from the following lemma:

Lemma. Let I be an ideal in K[X, Y ] which has property (∗). Then

∀g ∈ K[X, Y ], ∀f ∈ K[Y ], ∀d ∈ N, d 6= 0 gfd ∈ I =⇒ gf ∈ I.

Proof. Take any a ∈ Km. Then

gaf
d
a = gaf(a)d ∈ Ia.

If f(a) = 0 then gafa = gaf(a) = 0 ∈ Ia, and otherwise 1
f(a) ∈ K gives

gaf(a) ∈ Ia. Property (∗) gives gf ∈ I, since we can do the same for an
arbitrary a.
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We can look at some simple examples in K[X, Y1, Y2]:
I = (X) has the property, is primary, IY = (0),
I = (X, Y1) has the property, is primary, but IY = (Y1),
I = (XY1

2) has not the property, is not primary,
I = (XY1) has the property, but is not primary,
I = (X, Y1

2) has not the property, is primary, but IY = (Y1
2),

I = (X, Y1
2 − Y2) has the property, is primary, but IY = (Y1

2 − Y2).
To observe that the assumption that the primary component is isolated

cannot be dropped, consider the following example of primary decomposition
K[X, Y ]:

(X2, XY ) = (X) ∩ (X2, XY, Y 2),
and the second component, which is embedded, contracted to K[Y ] is not
radical. However the decomposition

(X2, XY ) = (X) ∩ (X2, Y )

shows that the ideal (X2, XY ) has property (∗).
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