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THE LIE-ALGEBRAIC DISCRETE APPROXIMATION

SCHEME FOR EVOLUTION EQUATIONS WITH

DIRICHLET/NEUMANN DATA

by Miros law Luśtyk

Abstract. In the paper we developed a new discrete approximation scheme
for the Cauchy-Dirichlet and Cauchy-Neumann problems, based on the
idea of including boundary conditions into polynomial interpolating func-
tional spaces and subsequently calculating the corresponding Heisenberg-
Weyl algebra quasi-representation. This discretization scheme being very
convenient for practical applications, at the same time leads to a rather
complicated final matrix expression suitable for computer calculations.

1. Introduction. This work is devoted to a new discrete approximation
method based on the Lie-algebraic discrete approximation approach devel-
oped in [1, 4] and its generalizations. This method can be usefully applied
to solving different problems of mechanical models using of both elliptic and
parabolic equations, for instance, the elastostatics, elastic vibration, heat and
mass transform. It is worth noticing from the very beginning that the rate
of convergence of this discrete approximation method is pretty high, which
stimulates development of such studies.

Below we shall briefly present a mathematical background of this Lie al-
gebraic discrete approximation scheme. Consider for simplicity the following
evolution equation in an open, connected, and bounded region Ω ⊂ R2:

(1) du/dt = A(t)u + f(t;x, y)
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with Cauchy-Dirichlet data

(2) u|t=0 = g, u|Γ = 0,

where Γ = ∂Ω :=
{
(x, y) ∈ R2 : ϕ(x, y) = 0

}
, ϕ ∈ C2(R2;R), u ∈ W q

p ⊂ B,
B is a Banach space, g ∈ B ∩W

q
p,0(Ω) and for all t ∈ R+, f(t) ∈ B′ and the

operator A(t) : W q
p (Ω) → B′ is given as

A := A(t) =
∑

i+j≤q(A)

aij(t;x, y)
∂i+j

∂xi∂yj
,

where q(A) < ∞ is the rank of operator A, with smooth enough coefficients, B′

is a Banach space. Space W
q
p,0(Ω) is a Sobolev space of the functions satisfying

the boundary condition u|Γ = 0.
Consider now the following differential operations ∂x := ∂

∂x , ∂y := ∂
∂y and

the multiplication x̂ := x, ŷ := y by independent variables x, y ∈ R, acting
naturally in W q

p (Ω) ⊂ B satisfying the relationships

[x, y] = [x, x] = [y, y] ≡ 0, [∂x, ∂x] = [∂y, ∂y] = [∂x, ∂y] ≡ 0,

[∂x, x] = [∂y, y] = 1, [∂y, x] = [∂x, y] = 0,
(3)

where [· , ·] is the usual commutator of operators in B. It follows from (3)
that the set of operators G := {1, x, ∂

∂x} ⊕ {1, y, ∂
∂y} forms a closed finite-

dimensional Heisenberg-Weyl algebra. Making use of the Lie-algebraic discrete
approximations scheme [2, 4] one gets from (1) a sequence of discrete evolution
systems of the type

(4) dun/dt = An(t)un + fn(t)

with un ∈ Bn, fn ∈ B
′
n, belonging to specially constructed approximated

Banach spaces, and whose solution can be found for each n ∈ N by some
known numerical method.

Suitable quasi-representations of the basic Heisenberg-Weyl algebra are cal-
culated exactly for a given (Lagrange or Hermite) boundary problem by means
of interpolation schemes applied to our Banach space B in which the operator
A acts. More detailed description of the method discussed can be found in
[4]. In paper [2] there was analyzed an approach to the Lie algebraic discrete
approximation scheme based on the idea of transforming boundary conditions
into the structure of the operator A via its representation. We developed here
a new discrete approximation of the Cauchy-Dirichlet problem [2, 4], based
on the idea of including boundary conditions into the corresponding interpo-
lating spaces and subsequently evaluating the corresponding Heisenberg-Weyl
algebra quasi-representation. This in particular, means that the boundary con-
dition of the Cauchy-Dirichlet problem (1) is included into this specially found
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quasi-representation, which is important for practical use of the method pro-
posed. It is necessary to notice that a similar approach can be also developed
for the Cauchy-Neumann problem or mixed Dirichet-Neumann problem.

2. Cauchy-Dirichlet problem. Consider the evolution equation (1)

du/dt = A(t)u + f(t;x, y)

in an open bounded region Ω ⊂ R2 with Cauchy-Dirichlet data (2), i.e.,

u|t=0 = g, u|Γ = 0.

Having performer the standard space extensions W
q(A)
p (Ω) ⊂ W

q(A)
p (D),

W q
p (Ω) ⊂ W q

p (D) where D ⊃ Ω is the minimum two-dimensional rectangle
containing Ω, one can define projectors Pn : B̃0 → B̃n,0 with B̃0 := W

q
p,0(D)

onto B̃n,0 :=
∏

n,0(D;R), n ∈ N , being interpolating polynomials of de-
gree n satisfying a priori the boundary condition of (2). If spaces B̃n,0, n ∈
N , are just chosen as Lagrangian interpolating ones with the nodes χn ={

(xj , yk) ∈ D : j = 0, nx, k = 0, ny

}
, n = nxny is the dimension of the space

B̃n,0, then one obtains the following equality for each u ∈ B̃n,0 ∩ C(D;R)

(5) (Pnu)(x, y) :=
∑

i=0,nx
j=0,ny

u(xi, yj)l
(n)
ij (x, y),

where by definition

(6) l
(n)
ij (x, y) := l

(nx)
i (x)⊗ l

(ny)
j (y)

for (x, y) ∈ D, i = 0, nx, j = 0, ny and

(7) l
(nx)
i (x) :=

ωnx(x)
(x− xi)ω′

nx
(xi)

, l
(ny)
j (y) :=

ωny(y)
(y − yj)ω′

ny
(yj)

,

where ωnx(x) :=
nx∏

k=0

(x− xk), ωny(y) :=
ny∏

k=0

(y − yk). Polynomials l
(nx)
i (x),

l
(ny)
j (y) are called the Lagrange influence polynomials.

The condition Pnu ∈ B̃n,0, n ∈ N , that is Pnu|Γ = 0 will be fulfilled
a priori when points (xj , yk) ∈ D, j = 0, nx, k = 0, ny, are chosen in the
following way:

(8)

{
xj : j = 0, nx

}
=

{
x̃j : j = 0, αx

}
∪

{
xj(k) : j(k) = 0, αy + βy

}
,{

yj : j = 0, ny

}
=

{
ỹj : j = 0, αy

}
∪

{
yj(k) : j(k) = 0, αx + βx

}
and ϕ(x̃j , yj(k)) = 0 = ϕ(ỹi, yi(k)) for all j = 0, αx, k = 0, αy, k ∈ N .
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Thus one gets numerical equalities nx = αx + αy + βx + 1, ny = αx +
αy + βy + 1, where by definition, points

{
xj : j = 0, αx

}
and

{
yj : j = 0, αy

}
are chosen, in general arbitrarily, for instance as zeros of ranks αx and αy ∈ N
Chebyshev’s polynomials. Now one can write down expression (5) in the fol-
lowing form

(9)

(Pnu)(x, y) =
∑

i=0,αx

j=0,αy

u(x̃i, ỹj)l
(n)
ij (x, y) +

∑
i+j=0,αx+βx

u(x̃i, yj)l
(n)
ij (x, y)+

+
∑

j+i=0,αy+βy

u(xi, ỹj)l
(n)
ij (x, y) +

∑
i=0,αy

j=0,αx

u(xi, yj)l
(n)
ij (x, y).

From this formula the fundamental basic quasi-representation of the Hei-
senberg-Weyl algebra G = {1, x, ∂x}⊕{1, y, ∂y} can be obtained. Namely in the
finite dimensional subspace Bn

∼= B̃n,0, n ∈ N , the multiplication operators
x, y : W q

p,0(D) → W q
p,0(D) and differential operators ∂

∂x , ∂
∂y : W q

p,0(D) →
W q−1

p,0 (D) possess the following matrix quasi-representations

(10)

x → X
(n)
0 = X(nx) ⊗ 1(ny) −X

(n)
,

y → Y
(n)
0 = 1(nx) ⊗ Y (ny) − Y

(n)
,

∂
∂x → Z

(n)
x = Z

(nx)
x ⊗ 1(ny) − Z

(n)
x ,

∂
∂y → Z

(n)
y = 1(nx) ⊗ Z

(ny)
y − Z

(n)
y ,

where

(11)

X(n) =
{

X
(n)
sr,ik = δsix

(nx)
i δriδik

}
i,s=0,nx

k,r=0,ny

,

Y (n) =
{

Y
(n)
sr,ik = δsiδiky

(ny)
k δrk

}
i,s=0,nx

k,r=0,ny

,

Z
(n)
x =

{
Z

(n)
x|sr,ik = Z

(nx)
x|si δriδik

}
i,s=0,nx

k,r=0,ny

,

Z
(n)
y =

{
Z

(n)
y|sr,ik = δsiZ

(ny)
y|rk δik

}
i,s=0,nx

k,r=0,ny

,
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with matrices X(nx), Y (ny), Z
(nx)
x , Z

(ny)
y being found in [4] and equal to the

following expressions

(12)

X(nx) = diag(x1, x2, ..., xnx) = [xi δ
(nx)
ji ],

Y (ny) = diag(y1, y2, ..., yny) = [yk δ
(ny)
sk ],

Z
(nx)
x =

[
δ
(nx)
ji

nx∑
m6=i

(xi − xm)−1 + (1− δ
(nx)
ji )(xi − xj)−1

]
,

Z
(ny)
y =

[
δ
(ny)
sk

ny∑
m6=k

(yk − ym)−1 + (1− δ
(ny)
sk )(yk − ys)−1

]
,

where i, j = 1, ..., nx, and s, k = 1, ..., ny. While computing matrices (11), one
needs to take into account that (8) holds.

With respect to representation (10) under the Dirichlet boundary condition
of (2), equation (1) takes the following discretized form in the space B̃n:

(13) dun/dt = An(t)un + fn(t),

where the finite dimensional matrix An(t) : Bn → Bn, n ∈ N, t ∈ R+, is
defined as

(14) An(t) := A(X(n)
0 , Y

(n)
0 , Z(n)

x , Z(n)
y ; t)

with use of the representation (10). Equation (13) is considered with the
Cauchy data

(15) un|t=0 = gn,

where the vector gn ∈ Bn, n ∈ N , and vector fn(t) ∈ Bn in (13) are found
by means of projection mapping (5) and representations (10). Solving Cauchy
problem (13), (15) in the space Bn, n ∈ N , one finds vector un(t) ∈ Bn, t ∈
R+ and by means of the inverse mapping π−1

n un(t) = ũn(x, y; t) ∈ B̃n.0 ⊂
B̃0, n ∈ N , an approximate solution to Cauchy-Dirichlet problem (1), (2).

From above and the approximation scheme convergence theorem given in
[6] we have the following theorem.

Theorem 1. The approximate solution of the problem (13), (15) exists
and converge to exact solution (1), (2).

A proof of this fact is analogous to the proof given in [6] (pp. 298–300) for
the approximation scheme convergence theorem.
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3. Cauchy-Neumann problem. Consider now equation (1) with the
Cauchy-Neumann data

(16) u|t=0 = g,
∂u

∂~n

∣∣∣∣
Γ

= 0,

where ~n ∈ R2 is the unit vector normal to a given boundary curve Γ, satisfying
the nondegeneracy condition ∇ϕ(x, y)|Γ 6= 0.

If a function u ∈ W q
p (Ω) ⊂ B fulfils the equation (1) with conditions

(16), then using the standard Sobolev space extension theorems [3, 5] one can
find an extension ũ ∈ W q

p (D), defined on the minimal rectangle D ⊃ Ω and
fulfilling condition (16) on the boundary Γ = ∂Ω. Define now a Banach space
B̃0 ⊂ W q

p (D) of the functions, which satisfy the Neumann condition (16) on
the curve Γ. Assume also that the Cauchy condition g ∈ B̃0 correspondingly
extended to a function g ∈ B̃0 is such that the equation (1) possesses a solution
u ∈ W q

p (D) ∩ B̃0. This means that one can apply the Hermite interpolation
method, described above, to the space B̃0.

Let spaces B̃n,0 ⊂ B̃0, n ∈ N , be finite-dimensional interpolating sub-
spaces with respect to the usual Hermite scheme, that is for each function u ∈
B̃0 there are defined the projection operators P̃n : B̃0 → B̃n,0 ⊂ B̃0, n ∈ N ,
acting as

(P̃nu)(x, y) =
nx,ny∑
i,j=0

u(xi, yj)l
(nx)
i,0 (x)l(ny)

j,0 (y) +
nx,ny∑
i,j=0

∂u

∂x
(xi, yj)l

(nx)
i,1 (x)l(ny)

j,0 (y)+

+
nx,ny∑
i,j=0

∂u

∂y
(xi, yj)l

(nx)
i,0 (x)l(ny)

j,1 (y) +
nx,ny∑
i,j=0

∂2u

∂x∂y
(xi, yj)l

(nx)
i,1 (x)l(ny)

j,1 (y).

(17)

Assume now also that for each u ∈ B̃0, n ∈ N , the following condition is
fulfilled: 〈∇ϕ,∇u〉|Γ = 0, that is

(18)
∂ϕ

∂x
(x, y)

∂u

∂x
(x, y) +

∂ϕ

∂y
(x, y)

∂u

∂y
(x, y) = 0
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for all (x, y) ∈ Γ. Condition (18) can by naturally included into (17), yielding
the elements Pnu ∈ B̃n,0, n ∈ N

(P̃nu)(x, y) =
nx,ny∑
i,j=0

u(xi, yj)l
(nx)
i,0 (x)l(ny)

j,0 (y) +
nx,ny∑
i,j=0

∂u

∂x
(xi, yj)l

(nx)
i,1 (x)l(ny)

j,0 (y)+

+
nx,ny∑
i,j=0

∂u

∂y
(xi, yj)l

(nx)
i,0 (x)l(ny)

j,1 (y) +
nx,ny∑
i,j=0

∂2u

∂x∂y
(xi, yj)l

(nx)
i,1 (x)l(ny)

j,1 (y)−

−
αx∑
i=0

∂u

∂y
(x̃i, yj(k))l

(nx)
i,0 (x)l(ny)

i,1 (y)−
αy∑
j=0

∂u

∂y
(xj(k), ỹj)l

(nx)
j,0 (x)l(ny)

j,1 (y)−

−
αx∑
i=0

∂u

∂x
(x̃i, yi(k))(

∂ϕ(x̃i, yi(k))
∂x

/
∂ϕ(x̃i, yi(k))

∂y
)l(nx)

i,0 (x)l(ny)
i,1 (y)−

−
αy∑
j=0

∂u

∂x
(xj , ỹj)(

∂ϕ(xj(k), ỹj)
∂x

/
∂ϕ(xj(k), ỹj)

∂y
)l(nx)

j,0 (x)l(ny)
j,1 (y),

(19)

where the following partition set was chosen:{
xj : j = 0, nx

}
=

{
x̃j : j = 0, αx

}
∪

{
xj(k) : j(k) = 0, αy + βy

}
,{

yj : j = 0, ny

}
=

{
ỹj : j = 0, αy

}
∪

{
yj(k) : j(k) = 0, αx + βx

}
,

i = 0, αx, j = 0, αy and ϕ(x̃i, yi(k)) = 0 = ϕ(xj(k), ỹj) for all nx = αx + αy +
βy + 1, ny = αx + αy + βx + 1.

As in the above analysis for the Cauchy-Dirichlet problem, from (19) one
gets the existence of such a representation for the base Heisenberg-Weyl algebra
G in the space B̃n,0, n ∈ N

(20)

x → X(n) = X(nx) ⊗ 1(ny) −X
(n)

,

y → Y (n) = 1(nx) ⊗ Y (ny) − Y
(n)

,
∂
∂x → Z

(n)
x = Z

(nx)
x ⊗ 1(ny) − Z

(n)
x ,

∂
∂y → Z

(n)
y = 1(nx) ⊗ Z

(ny)
y − Z

(n)
y ,

where matrices X
(n)

, Y
(n)

, Z
(n)
x and Z

(n)
y are found directly from expression

(19) in the tensor form analogously to the formula (11). Thus, having now
applied the quasi-representations (18) to the equation (1) projected upon the
subspace Bn

∼= B̃n,0, n ∈ N , one finds the following a finite dimensional
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evolution system of equations in the space Bn, n ∈ N

(21) dun/dt = An(t)un + fn(t),

where, by definition
(22) An := A(X(n), Y (n), Z(n)

x , Z(n)
y ; t) : Bn → Bn.

The initial condition for the system (21) is found directly with use of (19)
in the case when g ∈ B̃0

(23) un|t=0 = gn,

where gn := πnP̃ng ∈ Bn, n ∈ N . Having solved the Cauchy problem
(21), (23) in the space Bn, by means of the inverse mapping π−1

n un(t) =
ũn(x, y; t) ∈ B̃n,0 ⊂ B̃0 one gets an approximate analytical solution to the
Cauchy-Neumann problem (1), (16).

Now we can formulate the following theorem.

Theorem 2. The approximate solution of the problem (21), (23) exists
and converge to the exact solution (1), (16).

A Proof of this fact is also analogous to the proof given in [6].
It is easy to see that the described approximation scheme devised above

for the Cauchy-Dirichlete problem (1), (2) and the Cauchy-Neumann problem
(1), (16) is much more convenient in use than that in [4], leading at the same
time to a rather complicated matrix expression (21).
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