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THE GLEASON PROBLEM FOR A*(Q), H*(Q), Lipy(Q)

BY P1oTr KoT

Abstract. Let T'(2) be the algebra of functions holomorphic in . We
consider the following problem (known as the Gleason problem):

Let p be a point in ©. Does the maximal ideal in T'(2) consist of
functions vanishing at p generated by (z1 —p1), ..., (z2n —pn)? We give the
answer for star-shaped domains with more general situation than in [2].
Moreover we give some results for the Gleason problem in products of sets.

1. Introduction. For a given domain 2 in C", let A(Q2) be the algebra of
functions holomorphic in €2 and continuous on the closure of 2. We consider
the following problem (known as the Gleason Problem):

Let p be a point in §2. Does the maximal ideal in A(Q2) consist of functions
vanishing at p generated by (z1 — p1),..., (z2n — pn)?

This question was considered by A.M. Gleason [6] in the special case when
Q is the unit ball and p is the origin. The problem is interesting since the
ideals in a neighbourhood U of an algebraically finitely generated ideal in the
maximal ideal space of A(Q) are also finitely generated and consequently U
contains an analytic variety.

The Gleason problem, as well as other related division problems for function
algebras (AF(Q), H*(Q), Lip,c(Q)) were considered earlier by several authors,
e.g. [14], [9], [3], [4], [11], |5], [12], |8]. The results, which appeared in the
papers cited above, were usually the extensions of the results on the division
problems for algebras A(£2), H*(£2) in bounded stricly pseudoconvex domanis
with sufficiently smooth boundary. These results were derived with use of
theorems on the solution of the d-problem in stricly pseudoconvex domains
with boundary regularity, together with the use of some integral formulas,
invented originally for the solution of the d-problem in stricly pseudoconvex
domains by Lieb [10], Henkin [7] and Ramirez de Arellano [13]. In our paper
we would like, similarly to the case of stricly pseudoconvex domains, to extend
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the results on the solution of the Gleason problem in convex domains with a
Lip1+e-boundary, obtained by Backlund and Falstrom in [2], into the case of
more general function algebras.

We introduce a definition for the new Lipy, , algebra (for a definition see
below), which allows us to extend a result from |2] into convex domains with
a Jes Lip14c -boundary. Moreover we prove our results for algebras AF(Q),
H*(Q) and Lipy () (for a definition see below). We consider extending the
result of [2] into Lipyy(Q2) algebra to be the most important. We also give
the solution for the Gleason problem in some products of sets. It enables us to
give a natural example of sets which have a merely continuous boundary and
for which the Gleason problem has a solution.

2. Notation and Geometric Preliminaries. In this chapter we would
like to explain the geometric background for the new Lipy , algebra used
throughout the paper.

DEFINITION 2.1. Let ¢ : [0,1] — R4 be a continuous function such that:
L. ¢(0) =0,

2. p(z) < p(y) for all z <y <1,

3. fol @dn < +00,

4. there exists M > 0 such that if 0 < n < 1 and nln®(/2) < 1 then:

w(nin®(n/2)) < Mo(n).

DEFINITION 2.2. By O(2) we denote a set of all functions holomorphic on

Q. For a given multiindex o = (ayq,...,ap) we set |a| = a3 + ... + a, and
la . .
D = BZQ?W. Moreover for a non-negative integer k and ¢ > 0 we define:
0

AF(Q) == {h€O(Q): D*h is continuous on Q for all |a| <k},
H*(Q) := {h € Q) : D is bounded on Q for all |a| <k},
|Dh(z) — D*h(w)]

|2 = wl*

Lippye(U) = {he C*{TU): sup

w,zEU

< oo for all |a| < k}.

Now for a given continuous function ¢ satisfying the conditions 1 and 2
from Definition 2.1 we set:

Lipy, »(U) :=
{h e Ck(U) : lim |[D%h(z) — D*h(w)]
(w,2)— () o(lz —wl)

REMARK. If p(n) = m then ¢ satisfies all the conditions of Definition

and moreover Lipyi(U) C Lipy ,(U) for all € >0 .

=0 for x € U, |a| < k}.
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DEFINITION 2.3. For z,y € R™ we set
[, y] = {e+tly—2): 0<t<1)

LEMMA 2.4. Let r € Lipy,(U) where U is a convex subdomain of R". If
we define ¥, so that

(2.1) ) —r( :Z(g— )i + O (w, 2)|w — z|e(Jw — 2])

and Urlg(, ). ern =0, then Oy is a continuous function.

PRrROOF. Let h =w —z. Without the loss of generality we can assume that
|h| <1. We get r(z+h) —r(2) =3_; fl I (2 4 th)h;dt. We can calculate

Z

r(z 4 h) —r( Z@z] 2)h; —Z/ (az] (z 4 th)h; — g;(z)hj> dt.

Let
& |E@-Zw)
Ve = 2 oD
From the definition of Lipy ,(U) it follows that v is a continuous function and
W(x,z) =0 for z € U. Now we can estimate

2 (2 + th)h; — 2 (2)h; ‘ 2 (2 + th) - (z)‘
<
\h\w(\h\) N w(|thl)
for t € (0,1). From this there follows that
or
az (z +th)h; g(z)hj’ 1
|9r(z+ h, 2)| < / 2 dtg/w(z+th,z)dt.
Z Al (Ihl) 0
We conclude that 19 is continuous and 9, | rl{(z,2): 20y = 0 O

DEFINITION 2.5. Let ¢ be a function satisfying Definition [2.1] We define
1
£:(0,1 Bnﬂfn:min{IHQnQ,}ER
(0,1) (1) (n/2) ) +

LEMMA 2.6. Function £ has the following properties:

L lim, o+ n¢(n) = 0;
2. lim, o+ &(n) = oo;
1 1 .
3. fo —ng(n)dn < +00;
4. if 0 <n <1 and nln?(n/2) < 1 then &(n)e(né(n)) < M
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PrOOF. We have lim, o+ §(n) = oo because ¢(0) = 0. We can calculate
li < lim nln®*(n/2) = 0.
Jim, né(m) < lim, 51n"(n/2)

Now we can estimate:

Ememém) < WP*(n/2)Me(n) <M if £(n) =1n*(n/2),

. 1
EmemEm) < Syen®(n/2)) <M if g(n):m.

b oo Lo(n)
—d - 4 LAVLP) .
/0 né(n) ng/o n1n%(n/2) n+/o p 1S

DEFINITION 2.7. By K(z,7) we denote the ball in the C" with the centre
at z and radius r.

We need a geometric lemma describing precisely the properties of star-
shaped domains with a Lip; , boundary.

Moreover:

O

LEMMA 2.8. Let 2 be a domain in C" with a Lipy, boundary such that
[0, 2] is not tangent to OQ for every z € 0. Let z* € OQ and let e(z) be a unit
tangent vector to O at a point z € 0S). There exists €g € (0,1) so that for all

€(0,1),teC,ze€C" :if

e 0 <n<ep,

o 2|t| < n&(n),

o z € K(z%e9)NON
then we have the following property: (1 —n)z + te(z) € Q.

PROOF. Since (1) — oo and n&(n) — 0 as n — 0 we can choose €p so small
that 2|z| < &(n) and n&(n) < 1 for 0 < n < gp and z € K(z*,0) N IN. Let
zj = woj+ixj—1. We can assume that there exists a Lip; , (K (2%, €9))-defining
function r, so that QN K(z*,e0) = {2z € K(z*,20) : 7(2) < 0}. We can assume
that 0 ¢ K(z*,ep).

Let h=h(z,t,n)=te(z)—nz. Firstly we can easily see that lim., o h(z,t,n)=0.

It is enough to prove that r(z + h) < 0. By Lemma we have

r(2+h)— Z ax% +Z 8% 1 m(hj)+0,(z+h, 2)|h|o(|h]).

From this, because r(z) =0, it follows that

n

r(z+h) - B,
(= Z@xQ z)Re(zj) 273 4

o7 9r2j-1

<z>fm<zj>+z9r<z+h7z>(’f}‘mh\)).



99

Moreover |h| = |te(z) — nz| < n&(n) and:

I o1h) < €@me(hl) < Empme(m) < M

Because [0, z] is not tangent to 92 we can conclude that

(2.3) Z 8372 z)Re(z;) Z a@j ) (z)Im(z;) # 0.

Moreover from thls it follows that we can choose €y so small that z — nz € Q
for 0 < < egp and z € K(z%,9) NI Therefore

r(z = nz)
n
This argument is valid for all z € K (z*,£9) N9N. Because 9, is continuous and

9r(z,2) =0, by (2.2) and (2.4) it follows that

Eloir_r)lor(Z;_h)—ﬁr(z—&-h,z) (' | (]h\)

Now from property (2.3)) it can be concluded that

= 3r
_Z 8%2] z)Re(z;) Z axzj ; (z)Im(zj) <0

for all z € K(z*,e0) N 0. Now we can easily see that we can choose g so
small that:

_ Z or -(2)Re(2;) — 87'" (2)Im(zj) + 0 (2 + h, 2) (’?}‘w(\h\)) <0

(2.2)

(2.4) < 0.

= 8&?2] = axgj_l
for all z € K(2*,e9) NON. From this it follows that r(z 4+ h) < 0 for all desired
z € K(z*,e9) N 0L, which finishes the proof. O

3. Results for the Banach algebras A*(Q) and H*(Q). In this chapter
we would like to solve the Gleason problem for a star-shaped domain with
respect to zero and with Lip; , regularity on the boundary. We note that a
star-shaped domain with respect to each point in its interior is convex.

We use the technique of proof which is very close to that of the Backlund
and Félstrom paper (compare |2]). This technique of the proof will be used in
the next sections.

THEOREM 3.1. If Q is a bounded domain with a Lipy , boundary such that
[0,2) C Q and [0, 2] is not tangent to O for every z € 0N), then the Gleason
problem has a solution for the Banach algebra AF(Q) (resp. HF(Q)) with respect
to the point 0.
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PROOF. Let z* € 99, f € AF(Q) (resp. f € H*(Q) ). Assume that
f(0) = 0. We have f(z) = >.i", zifi(z) for fi(z fol 66 f(Az)d\. We will
prove that f; € A*(Q)(resp. f; € HF(Q) ).

Because 2 has a C'-boundary, there exist an open set U such that z* € U
and the continuous functions e',...,e" ! on U such that:

e ¢!(z) is a unit tangent vector to 92 for all z € 9NN U,
otzGUande( z)=¢€l(z) forallt >0, z€00NU,
1

e ¢!(2),...,e" 1(z) are linearly independent vectors for every z € U.

Let @ = (ai,...,ap) be a multiindex so that |o| < k. We define a(i) :=
(agy...,0; — 1,...,ap). We consider the system of n equations:

Y uDfi(z) = Df(z)— Y D*fi(z)
i=1 a; >0

i—1 @)D ) = /0 N ot (DY Az + tet (2)))] g A,
" .. 1 ,
2 6 1 Dafz ) = /0 )\\04a (Daf()\z—f-ten_l(z)))’t:() A\

Since the vectors e!(z),...,e"71(2), z are linearly independent for every
z € U, the above system of n equations has the unique solution D¢ fi, ..., D f,,.
Let A € (0,1). It follows from Lemma [2.8| that there exists g > 0 such that if

1— X< ey,

20t) < (1 =X)L = A),

z € K(z%,¢) N oL,

0<e<eg

then Az + tel(z) € Q. If for a given pair (g9,€): A,z and t satisfy the above
conditions we say that (A, z,t) is admissible for (g9,¢). Now let

R(eg,€) := {Az+ted(2) € Q: (N 2,t) is admissible for (eg,¢)}.

We can easily see that R(ep,¢) is compact.
Using Cauchy estimates we get:

0

( 2 SUPweR(e0,20) |Daf(w)|
ot

- (==

for 1 — A < g9, and z € K(z*,¢) N 9. Moreover if we denote

(3.1) Df(A\z +te’(2)))

t=0

DO f(Az +tel(2)) == D*f( Az + tel (2)) — D*f(A2* + te (%))
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then

< 2SupwER(so,e) Daf(w)‘
ST NE N
for 1 — XA <egpand z € K(z*,6) N9 Now let G := QN K(z* ¢p/2) and

(3.2) ’ 8815 <D0‘f(/\z + tej(z)))

t=0

1 8 .
Wi Gx[0,1]3 (2,8) — ¥(z,e) == /HAlalat (Df( Az +tel (2))) ],y dN-

If f € H*(Q) then because fol n%(n)dn < +00 we can conclude from that
limsup [¢(z,¢)| = 0.
z€G,e—0
Therefore 1) is bounded (we need the asumption that €2 is bounded) and from
this it follows that f; € HF(Q).
If f € A¥(Q) then

D" flw)| =0

lim sup
e—0,weR(eo,e)

moreover because fol —L_dn < 400 we can conclude from |D that ¢ is con-

n&(n)
tinuous at the point (z*, 1) and from this follows that D® f; is continuous at z*.
Therefore f; € A*(Q) and the proof is finished. O

4. Results for the Banach algebra Lip; ().
DEFINITION 4.1. For the sets S, T', Q C C"we define

ds(T) = weg,lgeT o =21,
= inf |w —
ds(z) Inf |w - 2],
Qs = (1-0)Q,
O = grad o D,

DEFINITION 4.2. We denote
ARQ) = {f € CF@)NOQ) :  sup  |Duf(2)|don(2)' < oo}

2€Q, |a|<k
for k € N, £ € (0,1).

REMARK 4.3. If D C R, f € CY(D), s € (0,1) then the following condi-
tions are equivalent

1. There exists M > 0 such that |gradf(z)|dop(z)!~* < M for all z € D.
2. There exists M > 0 such that |f(z) — f(w)| < M|z—w|® for all z, w € D.
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PRrOOF. This is a standard “Hardy-Littlewood” result; see [1]. O
REMARK 4.4. From the Remark 4.3 it follows that
A(9) = Lipeo(2) N 0()
fore € (0,1), k € N.

THEOREM 4.5. If  is a bounded domain with a Lip1 , boundary such that
[0,2) C Q and [0, 2] is not tangent to O for every z € O then the Gleason
problem has a solution for the Banach algebra A¥(Q) (k € N, 0 < e < 1) at the
point 0.

First we need the following lemmas:

LEMMA 4.6. If Q2 is a bounded domain with a C* boundary such that [0, 2]
18 not tangent to O for every z € 050, then there exists M > 0 such that:

9

- <M
dc’?Q(aQE) B

for alle € (0,1).

PROOF. Let r be a defining function for €.
Assume that there exists a sequence &, such that W — 00. From

this it follows that dgo((1 —£,)02) — 0 and €, — 0. We denote §,, := 1 — ¢,,.
There exist a,, and b, € 9Q such that dyq(6,09) = |dpan — by|. Because 0 is
a compact set we can asssume that b, — b € 9. This implies that a,, — b.

Because [0,b] is not tangent to 02 at the point b we have the following
inequality:

or
oz, (b)b; # 0.

Now because

doa(6,00)  |6pan — by .
1-6,  1-96,

we can conclude that a, + "fl v bn = afi(gb” —b.

There exists a sequence &, € [an, by (hmnaOO &, = b) such that

0=r(an) —r( Z ax —bp)i-

Now we can calculate

. or 1 81"

and we get a contradiction. O



103

DEFINITION 4.7. Let Q@ C C" be a domain such that [0,2) C Q for every
z € 09). We denote by w and ¢ the functions defined on 2\ {0} so that for
every z € 0\ {0} we have the following properties:

1. w(z) € 09
2. §(z) € [0,1);
3. z2=(1—-0(2)w(z).

LEMMA 4.8. Let @ C C" be a domain with Lipi, boundary such that
[0,2) C Q and [0, 2] is not tangent to O for every z € 0N. Let z* € 0 and let
e(z) be a unit tangent vector to O at the point z € 9. There exists g9 € (0,1)
so that for alln € (0,1),t € C, z € C" : if

® 17 < &p,
o zcw (K (2*e) NN,
o 2Jt] < (1 =4(2))nn)

then (1 —mn)z + te(w(z)) € Qy(z)-

PROOF. It follows from Lemma [2.§] that there exists g > 0 such that for
allpe (0,1),seC, ze C"if

e 7 < &,

o 2s| <n&(n),
o z € K(z",¢0)NON

then (1 —n)z + se(z) € Q.

If 2 € wH(K(2*,80) NON) then (1 — n)w(z) + se(w(z)) € Q. From this we
can conclude that (1 —n)(1 = d(2))w(z) + (1 — 0(2))se(w(z)) € (1 —d(2))Q.
Therefore (1 —n)z + (1 — 6(2))se(w(z)) € (). Now it is enough to denote
t:=s(1—0(z)). H

Now we can prove THEOREM

PROOF. Let z* € 092, f € Ak(Q) Let us assume that f(0) = 0. We have
f(z) =301 zifi(z) for fi(z) = 01 9z f(Az)dA\. We will prove that f; € AF(Q).

Because € has a C''-boundary, there exists an open set U such that z* € U
and there exist continuous functions e',...,e" ! on U such that:

e ci(z)isa unit vector tangent to 952 for all z € 9NN U,
o tzc U and e'(tz) =e€'(z) forall t >0, 2z € 0QNU,
e e!(z2),...,e" 1(2) are linearly independent vectors for every z € U.
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Let a = (o, ..., ) be a multiindex such that |o| < k. We define a(i) :=
(ag,...,0; —1,... ). Now we can consider the system of n equations:

Y z0afi(2) = 0uf(z) = Y Fa@wfi(z) = (D*fi(2),..., D" fu(2)),
=1

a; >0

S ed@hs) = [ D (B0t @)| o

0 t=0

> @ufilz) = /Olwﬂgt <5af()\z+te"_1(z)))‘ X,

=1 =0
Since the vectors el(z),...,e"71(2), z are linearly independent for every
z € U, the above system of n equations has the unique solution 9y f1, ..., Oq fn-

Let A € (0,1). From Lemma [4.8) it follows that there exists €9 € (0, 1) so that
forall A € (0;1),t € C, z€ C" : if

e 1— )\ <egy,

o 2 cw (K (2 e0) NN,

o 2/t < (1 —6(2))(1 =X)L —N)
then Az +te(w(z)) € Q). Moreover we can assume that K(z*,e9) C U.

Because f € AF(Q), from Lemma it follows that there exists T such
that

o [8af(2)|don(z)' "¢ < T for all 2 € ,

6

m S T fOI' all 5 S (0, 1),
o SUbseqlel <T.

Let z € Q\ {0}. If w € Q5(,) then

dag(aﬂg(z)) < dpa(w).

Moreover dgq(z) < |w(z) — z| = [6(2)w(z)] and |w(z)| < T. We can estimate:
(4.1)
1 1 Tl—e T1—5|w(z)|1—5 Tl—eTl—e

< < — .
daa(w)1=¢ = dan(0Q5:))17¢ ~ d(2)17¢ () w(2)|17¢ T daa(z)tC

Now let 2z € w1 (K (2*,0) NON) N be such that §(z) < 1/2. We can calculate

- 1 T3—2¢
sup ‘8af(w)‘ <T sup o () < ()
'LUGQ(;(Z) 'LUEQ(;(Z) 0N w 00 z
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Now from Cauchy estimate for z € Q with 6(z) < 1/2 we get:

9 28Upyeq; . /; (w)
'675 (Baf(rz + tel (2 )))\ _ 'dn < (1—5(2))?1<1A)g(1_‘»
4T3—2e

<
T (=81 = Ndaa(2)' ¢
for 1—gg < A< 1, 2 € w (K (2%,60)NON) and 2|t| < (1—5(2))(1—=N)E(1—N)
Because fol mdn < 400 then it is clear that there exists M > 0 such that

1
0 [/~ ~ M
4.2 lel+1 2 (5, J R
(4.2) /0 N (G f(he +te (z))))tzod/\‘_dag(z)l_€
Moreover because
T 2
IDfi(2))? < /Zt“'Da f(t2) dtg N (tz)‘ dt

1 2
T
< — ) dt
- /o (daﬂ(t2)1‘€>
therefore by (4.1]) it follows that:

3—2¢
(43)  [(D"f(2),-, D ulz '<¢ / dm Eh ) "5

for all z € 2. We can conclude from and ( that f; € AF(Q). O

5. Gleason Problem in products of sets. For a given multiindex o =
(a1, .y n), B=(P1,..., Bm) we denote |a| = a1 + ... + an, |B] = 01+ .. + B

and D*F = 82?1...8;!:;;@1“.811}[37,1 Moreover let d, g:=grad oD¥P Ifa; >0
then a(i) := (a1,...,0; — 1,... ap).

COROLLARY b5.1. Let Q9 C C™ be a bounded domain. Let us assume
that the Gleason problem has a solution for the Banach algebra A* () (resp.
H* () ) at the point 0. IfQy C C" is a bounded domain with a Lip1,, boundary
such that [0,2) C Q1 and [0, z] is not tangent to O for every z € 9y then
the Gleason problem has a solution for the Banach algebra AF(Qq x Qg) (resp.
HE(Qy x Q9)) at the point 0.

PROOF. For x € Q1 x Q9 we denote x = (x1,x2) for z1 € Q1 and x5 € Qo.
Let f € AF(Q x Q) (resp. f € HF(Qy x Q). We have f(z,w) — f(0,w) =
S zifi(z,w) for fi(z,w) = fol a%if()\z,w)d)\. Because f(z,w) — f(0,0) =
f(z,w) — £(0,w)+ f(0,w) — f(0,0) it is enough to prove that f; € A¥(Qy x Q2)
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(resp. f; € HF(Q1 x Q). Without the loss of generality we can assume that
fi(0,w) =0 for all w € Q.
Let (z*,w*) € 0(Q1 x Q). We consider the system of n equations:

n

ZziDo"ﬁfi(z,w) = D¥Pf(z,w) Z DYDBf (2 w),

i=1 i=1,a;>0
Zn: 1 a,B _ la| ¥ 0 a,B
e; (2) DY fi(z,w) = )\ D*P f(\z 4 tel (2),w) d,
i—1 0 ot t=0
1 ;
Ze” L) DB fy(z,w) = / Ao & (Daﬂ Fz+ te”*l(z),w))) d,
0 ot t=0
where el,...,e" ! are linearly independent vectors chosen for the set Q; as in
the proof of Theorem
We denote

DB f(\z +tel (2),w) := D*Pf(Az + tel (2), w) — D¥P f(A2* + tel (2), w).

Let €9, R(ep,€) be the same as in the proof in the Theorem Using the same
arguments (as in the proof in the Theorem [3.1)) we can obtain main estimates:

0 2Supv R(g0,20),wEN }Da?ﬁf(v’wﬂ
DB F(\z + ted ER(g0,60),wEN2
875( J(z 416 (z),w )>t:0— 1—NEA—N)
and
a,B T
0 BT j QSupveR(so,s),wGQQ D f(vv w)‘
ot (D FOz +1e7(2), )) o - 1 - NEL—N)

for 1 — XA <egpand z € K(z*,¢) NoN.

From this it follows that fol Aol B (DB f(Az 4 tel(z),w))|,_,d\ €
AR(Q x Qy) and DYDBfi(z w) € AF(Q x Q) (resp. DYDPfi(z,w) €
H*(Q x Q2) and [ M12 (D¥Pf(Az + tel(z),w))|,_, dXN € HF(Q x Q).
Therefore we can conclude that f; € AF(Qy x Q) (vesp. f; € HF(Qy xQp)). O

COROLLARY 5.2. Let Q9 C C™ be a bounded domain. Let us assume that
the Gleason problem has a solution for the Banach algebra A*(Qs) (respectively
H*(Qs)) at the point 0. IfQy C C is a bounded domain, 0 € Qy then the Gleason
problem has a solution for the Banach algebra A*(Qy x Q) (resp. HF(Q1 x Q)
at the point 0.

PROOF. Let f € AF(Q x Q) (vesp. f € HF(Qy x Q). For (z,w) €
Q1 x Q9 we denote h(z,w) := 2(f(z,w) — f(0,w)). Let g9 be so small that
K(0,2¢9) C Q. It is enough to show that h € AF(K(0,e9) x Q2) (resp.
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h € HF(K(0,e0) x 2)). We can write f(z,w) — f(0,w) = zfol %f()\z,w)d/\.
From this it follows that h(z,w) = 01 %f()\z,w)d)\. Now from the Cauchy
estimate we obtain

o (Dw frz w)) _ 25UPuer(02zp) wens [DM (v, w)]

0z ’ U €0
for zp € K(0,g9), A € (0,1). Therefore, like in the proof in Theorem (3.1} we
can conclude the required properties. ]

Now we would like to prove some results for A¥(Q) algebra.

DEFINITION 5.3. Let © C C* be a domain such that [0,z) C Q for every
z € Q. We denote by wg and dq the functions defined on €\ {0} so that for
every z € O\ {0} we have the following properties:

1. wa(z) € 09,

2. dq(z) €[0,1),

3. z=(1—0q(2))wa(z).

Moreover we denote dq(0) = 1.

DEFINITION 5.4. For z,y € CF we set
(x,y) ={x+tly—z): 0<t <1}

DEFINITION 5.5. For sets S, T', 2 C C™we define

ds(T) = weggeT o =21,
= inf —
ds(z) inf |w - 2],
Qs = (1-0)Q,
50[”3 .= grad o D,

LEMMA 5.6. If Q1 C C" and Qo C C™ are open, bounded domains so that
[0,2;) C Q; for all x; € Q; (i =1,2) then

(5.1) min dpo, (50€%) < da(0,x0,) (60(h X 22))

for all 6 € (0,1).

PROOF. Let 2 := ;) x Q. Let 6 € (0,1). There exist w,z € 0§ such
that dpa(60S2) = |z — dw|. We can write z = (z1,22) and w = (wy,w2) for

zi,w; € ;. Without the loss of generality we can assume that wy € 0€;.
If wy € 025 then because z; € 0 or z9 € 0f)s, we may estimate

m%g daQZ(MQ,) S \/|2’1 — 511)1‘2 + |Z2 - (511)2‘2 = ‘Z — 5w\ = daQ(5aQ),
=1,




108

which completes in this case. If z; € 0§21 then we may estimate

do, (6091) < |21 — dwi| < V|21 — dwi|? + |29 — dwa|? = |2 — dw| = dpq(609)

which completes in this case.

Now we assume that wy € 9 and 21 € 1. We conclude that z9 € 9.

If (320, w2) N 0N = O then (1z9,ws) C Qo but from this it follows that
%zg € Qy and we have a contradiction: 2o € [0, %22) C Q.

If there exists w3 € (%22, wy) N Oy then dws € (z2,0ws) and we have the
following estimate:

daQZ((San) < |2:2 — (511}3| < ‘ZQ — (5w2] < \/‘Zl — 5w1\2 + ‘252 — (5w2]2
= |z — dw| = dga(d00N)
which completes the proof. O
LEMMA 5.7. Let Q := Q1 X ... X Qp where Q; C C™ are open bounded
domains with C* boundaries. If [0,2;) C Q; for all x; € Q; and [0, ;] is not

tangent to 0SY; for every x; € 0 (i = 1,2,...,k) then there exists T > 0 such
that:

1)
' <
don000) =

for all 6 € (0,1).

PrROOF. From Lemma it follows that there exists T' > 0 such that

o

— <7

dagi(éaQi) -
for all § € (0,1). Now by Lemma [5.6] we may estimate

J J
< <T
dpo(6082) — min;—;  j daq, (60€%;) —

for all § € (0,1). O

LEMMA 5.8. Let Qy C C™ be a bounded domain such that [0,w) C Qo for
every w € 0. Let Q1 C C"be a bounded domain with a Lipy , boundary such
that [0,z) C Q1 and [0, z] is not tangent to Oy for every z € 0. By e(z)
we denote a unit tangent vector to 01 at the point z € 0. Moreover let
Q:=Q x Q. There exists g € (0,1) such that if

e e (0,60) CR,

o 2y, we N, 20g(z,w) < 1,

o t € C, 8|t <n&(n).

then (1 —n)z + te(wg, (2)) € (1 — da(z,w))Q1 and w € (1 — dg(z,w))Qs,
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PROOF. If z € Q then there exists ;1 € Q; and x2 € s so that z =
(z1,22). Now we denote (x); = z; for i = 1,2. We have the following
equality: (1 — dq(x))(wa(z))i = z; = w(l — dq,(zi))wa,(x;). From this, be-
cause (wq(z)); € Q;, it follows that 1 — dg,(z;) < 1 — dg(x) and therefore
Sa(x) < 0, (x;) forx € Q, i = 1,2. Now we may calculate w € (1—dg, (w))Q2 C
(1 — 6 (z,w))Q for all z € Oy, w € Q.

Because lim,_g7¢(n) = 0 there exists €1 > 0 so that if
ne @7 51)7
z € Qq, 400, (2) > 3,
teC, 8[t| <nsn),

w € Qo, 20q(z,w) < 1

then
1
1 —6q, (1 —n)z+te(wa,(2))) < 5 < 1 —0q(z,w)
and therefore (1 —n)z + te(wq, (2)) € (1 — da(z, w))Q.
Now let us assume that 49, (z) < 3. If 8|t < n&(n) then 2/t < (1 —
90, (2))n&(n) and therefore by Lemma [4.8| we may conclude that there exists €2
so that if

e 7 S @752)7
o z €, 4dqg,(z) <3,
o teC, 8Jt| <nén)
then (1 —n)z + te(wq, (2)) € (1 —dq,(2))2 C (1 — da(z,w))Q.
Now it is enough to define gy := min{e;, e2}. O

THEOREM 5.9. Let 3 C C" be a bounded domain with a Lip}a boundary
such that [0,z) C Q1 and [0,z] is not tangent to 0 for every z € 09.
Moreover let Qo = S~21 X ... X ﬁk C C™ for bounded domains §~2, with C!
boundaries such that [0,w) C Q; and [0,w)] is not tangent to 8 for every
w e 0. If f € A(Qy x Q) then there exists f; € AF(Q x Q) such that
f(zw) = f0,w) =320 zifi(z,w).

PROOF. Let  := Q; x Q5. From Lemma [5.7] it follows that we can choose

T>Osothatmngorall(;e(O,l).

Let o = (a1, ...,ap) and 8 = (B, ..., Bm) be a multiindex such that |« +
|B] < k. We denote (z,w) € Qiff z € Q and w € Q. Let (2*,w*) € 0.
Moreover let f € AF(Q). We have f(z,w) — f(0,w) = ", zifi(z,w) for
filzow) = [ 2 f(Az,w)dA. Tt is enough to show that f; € AF(€). Now
without the loss of generality we may assume that f(0,w) = 0 for all w € Q.
Because €7 has a C'-boundary, there exist an open set U C C" such that
2* € U and continuous functions e',...,e" ! on U such that:
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e ¢'(z) is a unit tangen‘p vector to 9§y for all z € 901 NU,
otzeUande( z)=¢"(z) forallt >0, z€ 0 NU,
e cl(2),...,e" !(2) are linearly independent vectors for every z € U.

We denote Fn)\ (21, ey Zn, 2015 - oos Zntm) = (AZ1, ooy A2 Znt 1, oy Zntm) and
w(f) = (f1, - fn,0,...,0). Now we can consider the system of n equations:

n

Zzié\a”@fi(z,w) = aﬁf zZ,w) Z 8 a,pfi(z,w) — D¥Pr(f)(z,w),
=1 ;>0

~ 1 I~
Ze}(z)@aﬂfi(z,w) = /0 Al g, <8at (8a,/@f()‘z + tel(z),w)) ‘tO) dA,

) - A
Zey_l(z)f)a,ﬂfz‘(z,w) - /0 NUEn <§t (8a’ﬂf()\z+ten1(2)’w)>’t0> d)\.

Since the vectors el(2),...,e" 1(z), 2z are linearly independent for r_every
z € U the above system of n equations has the unique solution 8a Bf1s 3000
There exists T such that
o 1005/ (7)|doq(T)1=¢ < T for all 7 € Q,
o
e sup,.cq|7| <T.

Let p € 2\ {0}. We denote w := wq and § := dqg. If 7 € 5, then

daQ(ﬁQg(u)) < d@Q(T).

Moreover dyq(p) < |w(p) — ] = [6(p)w(p)| and |w(p)| < T. We may estimate:
(5.2)
1 1 Tl—e T1_6|C¢J(,U,)|1_€ Tl—eTl—e

< < — .
doa(T)1=¢ = do(0Q5(,) ¢ — d(u)t=c  o(u)tclw(p)| = ~ daa(p)t=

We may calculate

~ T372€
sup ‘8 Bf(T) ’ <T sup - <
7€ () o TEQs () doq (1)1~ daa ()t

_6'

By Lemma there exists g € (0, 1) such that if

e 7 6@350) Cl&v
o 2 €O, we y, 200(z,w) < 1,
o t€C, 8Jt| <ns(n)

then (1 —n)z + te(wq, (2)) € (1 — da(z,w)) and w € (1 — da(z,w))Qs.
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Now from the Cauchy estimate for g < A < 1 and p = (u1, p2) € w H(UN
Q) with 20(u) < 1 we get:

< 8 SupTEQ(g(u) 50476f(7—)‘

= TN
8T3—2€

< .

T (=€ = Ndoa(p)'

Because fol %(n)dn < 400, it is clear that there exists M > 0 such that

1 o /~ ; M
o g J S Gl
/0 Aol ((% (aaﬁf(Am + te (Nl)yﬂZ))‘t:()) d/\' = doa(u)—

for all u € w1 (U N Q) with 26(u) < 1
Moreover because

‘gt <§0¢ﬂf(>\u1 + tej(ul)aﬂz))‘

t=0

(5.3)

2 m 2
a 0
‘D B fi(z,w) Daﬂ fltz,w)| + Zl DB wif(tz,w) dt
by (5.2)) we may estimate:
Ly 2
‘(Daﬂfl(z,w),.._7D0‘ﬁfn+m(z,w))‘ < (n+m)/ (%ﬂf(tz,w)‘ dt
0

IN

W*””/ol (w%)dt

Vn 4+ mT? %

doq(z,w)l—¢
for all (z,w) € 2. We may conclude from (5.3) and (5.2)) that f; € A¥(Q). O
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