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A SOLUTION OF THE CAUCHY PROBLEM IN THE CLASS

OF ABSOLUTELY CONTINUOUS DISTRIBUTION–VALUED

FUNCTIONS

by Margareta Wiciak

Abstract. The aim of the paper is to give an exact formula for the solution
of an evolution problem with matrix coefficients, and initial condition and
external forces being tempered distributions.

1. Introduction. Let S be the Schwartz space,

S := {ϕ ∈ C∞(Rn,C) : P ·Dαϕ is bounded ∀α ∈ Nn ∀P ∈ P(Rn)},
where P(Rn) denotes the set of all polynomials Rn → R. S is a Fréchet space
with the topology induced by the family of seminorms

qm(ϕ) := sup
x∈Rn

sup
|α|≤m

(1 + |x|2)m|Dαϕ(x)|, m = 0, 1, 2, . . .

Write snS for the cone of all continuous seminorms on S. Let B be a complex
Banach space and D(Rn) stand for the space of all complex test functions on
Rn. A distribution T : D(Rn) → B (T ∈ D′(Rn;B)) is tempered when it has
the unique continuous extension T : S → B (T ∈ D′temp).

Let J be an interval in R. We will consider the Cauchy problem

(1)

{
d
dtu(t) =

∑
α
Aα(t) ◦Dαu(t) + f(t) for a.e. t ∈ J

u(t0) = u0

with given t0 ∈ J , initial condition u0 ∈ D′temp and external forces f : J 7→
D′temp. In order to prove the main theorem (Th. 17) on the existence and
uniqueness of (1) we use the method used by K. Holly in the case of scalar
coefficients Aα : J 7→ C, [4]. This method is based on the integration of func-
tions whose values are tempered distributions. In the second part of Section
2 we give a brief exposition of Holly’s theory ([3]) of absolutely continuous
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distribution-valued functions and their integrals (Def. 7 – Th. 16). In the first
part of Section 2 we will be concerned with the notion of the product of a
distribution and a vector-valued function. Having this product and a product
integral in a Fréchet space (see [6]), we obtain the exact formula (11) for the
solution of problem (1), being an extension of a similar formula in the scalar
case.

In the case of time-independed coefficients Aα, we rewrite the main theorem
as Theorem 22, replacing abstract assumption (9) with easy to check spectral
condition (25).

In Section 4, some applications are indicated.

2. Preliminaries. We begin by recalling the notion of the product of a
distribution and a scalar-valued function. Let Ω ∈ top Rn, T ∈ D′(Ω;B),
ψ ∈ C∞(Ω). Then

ψT : D(Ω) 3 ϕ def7−→ T (ϕψ) ∈ B.

Now we extend the product to the case of a vector-valued function. Assume
that B is a complex vector space. Let EndB denote the space of all linear
endomorphisms on B and {b1, . . . , bk} be the basis of EndB.

Definition 1. Let T ∈ D′(Ω;B), η ∈ C∞(Ω, EndB). Then

η · T :=
k∑

j=1

(b?j ◦ η) (bj ◦ T ).

The above definition does not depend on the choice of a basis of EndB.
Moreover, η ·T ∈ D′(Ω;B)) and for u ∈ L1

loc(Ω, B) there is η · [u] = [ηu], where
[u] denotes the regular distribution

[u](ϕ) :=
∫

Ω
u(x)ϕ(x)dx for ϕ ∈ D(Ω).

The product has properties analogous to those in the scalar case. We
have pointed out two of them which are strickly connected to a vector-valued
function.

Remark 2. Let T ∈ D′(Ω;B), η ∈ C∞(Ω, EndB) and ψ ∈ C∞(Ω,K).
Then

η · T =
k∑

j=1
bj ◦ ((b?j ◦ η)T ),

ψ(ηT ) = (ψη)T = η(ψT ).



33

Proof. We prove the first equality. The proof of the second is analogous.
Let ϕ ∈ D(Ω).

(ηT )(ϕ) =

 k∑
j=1

(b?j ◦ η)(bj ◦ T )

 (ϕ) =
k∑

j=1

(bj ◦ T )((b?j ◦ η)ϕ) =

=
k∑

j=1

bj(((b?j ◦ η)T )(ϕ)) =
k∑

j=1

(bj ◦ (b?j ◦ η)T )(ϕ).

As in the scalar case the following theorem holds.

Theorem 3. Let T ∈ D′temp, η ∈ C∞(Rn, EndB) be polynomially bounded
together with all of its derivatives. Then ηT ∈ D′temp and

ηT =
k∑

j=1

(b?j ◦ η) (bj ◦ T ).

Proof. Since bj ◦ T : S → B is linear continuous and b?j ◦ η : Rn → K is
polynomially bounded together with all of its derivatives for any j ∈ {1, . . . , k},
k∑

j=1
(b?j ◦ η) (bj ◦ T ) : S → B is also linear continuous. Clearly,

k∑
j=1

(b?j ◦ η) (bj ◦ T )|D(Rn) = ηT.

Let Hol := Hol(Cn, EndB) stand for the space of all EndB-valued holo-
morphic functions with the topology of local uniform convergence. Setting for
any h, f ∈ Hol: h · f : Ω 3 z

def7−→ h(z) ◦ f(z) ∈ EndB, Hol is a Fréchet
algebra (see [6]).

Definition 4. Let η ∈ Hol, T ∈ D′temp. Then

η · T := η|Rn · T.

Let K be a compact subset of Rn. Fix N ∈ N and consider the space

(2) X := {T ∈ D′temp : suppT ⊂ K, T is qN -continuous }.

Then X is a Banach space with the norm |T |X := |T |qN .
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Theorem 5.
(i) For any h ∈ Hol, the mapping

(3) h̃ : X 3 T def7−→
∑

β∈Nn

1
β!
Dβh(0) ◦ xβT ∈ X

is correctly defined, linear and continuous.
(ii) The map

˜: Hol 3 h def7−→ h̃ ∈ EndX
is a continuous homomorphism of algebras.

Proof. Let h ∈ Hol. Fix λ ∈ D(Rn) such that λ = 1 in the neighbourhood
of K. There is r > 0 such that suppλ ⊂ {|x| < r}. Fix r < R < ∞. Set

aβ :=
1
β!
Dβh(0) ∈ EndB. Let T ∈ X and ϕ ∈ S.

(4) |aβ ◦ xβT (ϕ)| = |(aβ ◦ xβT )(ϕ)| ≤ |aβ| · |T |qN · qN (λxβϕ).

By the Cauchy inequalities,

(5) |aβ| ≤
pR(h)
R|β|

,

where pR(h) := sup
|zi|<R, ∀i=1,...,n

‖h(z)‖End B <∞. And by Leibniz’s formula,

(6) qN (λxβϕ) ≤ max
|α|≤N

∑
γ≤α

(
α

γ

)
‖Dγ(λxβ)‖L∞(supp λ) · qN (ϕ).

Combining (4)–(6) we conclude that
∑

β∈Nn

1
β!

(
Dβh(0) ◦ xβT

)
(ϕ) is convergent

for all ϕ ∈ S and∣∣∣∣∣∣
∑

β∈Nn

1
β!

(
Dβh(0) ◦ xβT

)
(ϕ)

∣∣∣∣∣∣ ≤M · pR(h) · |T |qN · qN (ϕ),

where the constant M depends on N , R and r. This gives h̃(T ) ∈ X and
|h̃(T )|X ≤M · pR(h) · |T |X . In cosequence the map

X 3 T 7→ h̃(T ) ∈ X

is continuous and |h̃|End X ≤ M · pR(h), which proves that also h 7→ h̃ is
continuous.

An easy computation shows that if h1, h2 ∈ Hol then (h1 ·h2)̃ = h̃1 · h̃2.
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Theorem 6. If T ∈ D′(Rn;B), suppT is compact and if η ∈ Hol, η|Rn is
polynomially bounded together with all of its derivatives, then

η · T = η̃(T )

Proof. Let (bj)j=1,...,k be a basis of EndB. Then b?j ◦η ∈ Hol(Cn,C) and

(b?j ◦ η)(x) =
∑

β∈Nn

1
β!

(b?j ◦Dβη(0))xβ

for any x ∈ Rn. Let ϕ ∈ S. Since η|Rn is polynomially bounded with all of its
derivatives and suppT is compact, it follows that ηT is tempered and

(7) ηT (ϕ) =
k∑

j=1

∑
β∈Nn

1
β!

(b?j ◦Dβη(0)) · bj(T (xβϕ)).

On the other hand, in the proof of Theorem 5, we have proved that∑
β∈Nn

1
β!
|(Dβη(0) ◦ xβT )(ϕ)| is convergent, and, in consequence,

(8)
∑

β∈Nn

1
β!

(Dβη(0) ◦ xβT )(ϕ) =
k∑

j=1

∑
β∈Nn

1
β!

(b?j ◦Dβη(0)) · bj(T (xβϕ)).

Combining (7) and (8), by the arbitrariness of ϕ ∈ S, we finally obtain

η · T = η̃(T ).

Now turn to distribution-valued functions. Let B be a complex Banach
space. Let L(S, B) denote the space of all C-linear continuous operators of
S into B. Fixing q ∈ snS, we consider the space L((S, q), B) of all C-linear,
q-continuous S → B mappings. Note that it is a Banach space with the norm
|T |q := supq(ϕ)≤1 |T (ϕ)|. Clearly,

L(S, B) =
⋃

q∈snS
L((S, q), B) =

∞⋃
m=0

L((S, qm), B).

We equipped the space L(S, B) with an inductive topology, i.e. the strongest
locally convex topology such that for all q ∈ snS, canonical inclusions
L((S, q), B) ↪→ L(S, B) are continuous.

Let I be a closed interval in R.

Definition 7. A function χ : I → L(S, B) is summable iff there is q ∈
snS such that χ(I) ⊂ L((S, q), B) and the function χ : I → L((S, q), B) is
summable in the Bochner sense.
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Definition 8. Let χ : I → L(S, B) be summable and q ∈ snS be the

seminorm from Definition 7. If
(∫

I
χ(t)dt

)
q

denotes the Bochner integral of

χ : I → L((S, q), B), then

L(S, B) 3
∫

I
χ(t)dt :=

(∫
I
χ(t)dt

)
q

.

Obviously, the definition does not depend on the choice of q.

Definition 9. A function χ : I → D′temp is summable iff

χ : I 3 t 7→ χ(t) ∈ L(S, B)

is summable.

Clearly,
∫

I
χ(t)dt ∈ D′temp and

∫
I
χ(t)dt ⊂

∫
I
χ(t)dt.

Let (̂·) = F : D′temp → D′temp denote the Fourier transform.

Theorem 10. Let χ : I → D′temp be summable. Consider a multi-index
α ∈ Nn and a function η ∈ C∞(Rn,C) which is polynomially bounded with
all of its derivatives. Then the functions Dαχ : J 3 t 7→ Dαχ(t) ∈ D′temp,

ηχ : J 3 t 7→ ηχ(t) ∈ D′temp, χ̂ : J 3 t 7→ χ̂(t) ∈ D′temp are summable and

a):
∫

I
Dαχ(t)dt = Dα

∫
I
χ(t)dt ⊂

∫
I
Dαχ(t)dt,

b):
∫

I
(ηχ)(t)dt = η

∫
I
χ(t)dt ⊂

∫
I
ηχ(t)dt,

c):
∫

I
χ̂(t)dt = F

(∫
I
χ(t)dt

)
⊂
∫

I
χ̂(t)dt.

Definition 11. A function u : I → L(S, B) is absolutely continuous iff
there is a locally summamble χ : I → L(S, B) such that

∀t1, t2 ∈ I u(t2)− u(t1) =
∫ t2

t1

χ(τ)dτ.

Theorem 12. Let u : I → L(S, B). The following conditions are equi-
valent

(i) u is absolutely continuous;
(ii) there is q ∈ snS such that u(I) ⊂ L((S, q), B) and u : I → L((S, q), B)

is absolutely continuous and a.e. differentiable;
(iii) there is n ∈ N such that u(I) ⊂ L((S, qN ), B) and u : I → L((S, qN ), B)

is absolutely continuous and a.e. differentiable.
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Definition 13. A function u : I → D′temp is absolutely continuous iff

u : I 3 t 7→ u(t) ∈ L(S, B)

is absolutely continuous.

Let J be an arbitrary interval in R.

Definition 14. A function u : J → D′temp is absolutely continuous iff the
restriction uI is absolutely continuous for every closed subinterval I ⊂ J .

Remark 15. A function u : J → D′temp is absolutely continuous iff there
are t0 ∈ J and locally summable χ : J → D′temp such that

u(t) = u(t0) +
∫ t

t0

χ(τ)dτ ∀t ∈ J.

Moreover, the set {t ∈ domu′ : u′(t) 6= χ(t)} is Borelian and of measure
zero.

Theorem 16. Let u : J → D′temp be absolutely continuous. Consider
a multi-index α ∈ Nn and a function η ∈ C∞(Rn,C) polynomially bounded
with all its derivatives. Then the functions Dαu : J 3 t 7→ Dαu(t) ∈ D′temp,

ηu : J 3 t 7→ ηu(t) ∈ D′temp, û : J 3 t 7→ û(t) ∈ D′temp are absolutely
continuous and for a.e. t ∈ J :

a) (Dαu)′(t) = Dαu′(t),
b) (ηu)′(t) = ηu′(t),
c) û′(t) = û′(t).

3. Results. Let B be a complex vector space and J be an interval in R.

Theorem 17. Given are t0 ∈ J , u0 ∈ D′temp and a locally summable
f : J → D′temp. Consider a family of locally summable coefficients Aα : J →
EndB, (α ∈ Nn), such that #{α : Aα 6= 0} <∞ and

(9)
∀t1 ∈ J Rn 3 ξ 7→

t∏
s
e

∑
α

(iξ)αAα(τ)dτ
∈ EndB

is polynomially bounded together with all of its
derivatives, uniformly in (s, t) ∈ [t0, t]× [t0, t1].

Then there is the unique absolutely continuous function u : J → D′temp such
that

(10)

{
d
dtu(t) =

∑
α
Aα(t) ◦Dαu(t) + f(t) for a.e. t ∈ J

u(t0) = u0.
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Moreover, for each t ∈ J
(11)

u(t) = F−1

(
t∏
t0

e

∑
α

(iξ)αAα(τ)dτ
· û0

)
+
∫ t

t0

F−1

(
t∏
s

e

∑
α

(iξ)αAα(τ)dτ
· f̂(s)

)
ds.

t∏
s

e

∑
α

(iξ)αAα(τ)dτ
denotes the product integral. Let us denote

(12) J2(t0) := {(s, t) ∈ J × J : s ∈ [t0, t]}.
By the Leibniz formula, the following lemmas hold:

Lemma 18. Let η ∈ C∞(Rn, EndB) be polynomially bounded with all its
derivatives. For any N ∈ N there is N such that for all j = 1, . . . , k the map

(S, qN ) 3 ϕ def7−→ (b?j ◦ η)ϕ ∈ (S, qN )

is linear and continuous.

Lemma 19. Fix (s, t) ∈ J2(t0). Let us consider ηt
s ∈ C∞(Rn, EndB) such

that

(13)
∀t1 ∈ J Rn 3 ξ 7→ ηt

s(ξ) ∈ EndB
is polynomially bounded together with all of its
derivatives, uniformly in (s, t) ∈ [t0, t]× [t0, t1].

Additionally assume that

(14)
if (sν , tν)

ν→∞−→ (s, t) in J2(t0), then for every γ ∈ Nn

Dγηtν
sν

ν→∞−→ Dγηt
s almost uniformly in Rn.

Then for any N ∈ N there is N ∈ N such that for all j = 1, . . . , k the map

lj : J2(t0) 3 (s, t) def7−→ ls,tj ∈ L
(
(S, qN ), (S, qN )

)
,

ls,tj (ϕ) := (b?j ◦ ηt
s)ϕ for ϕ ∈ S

is continuous.

By the continuous dependence on the limits of integration for a product
integral (see [6]) we obtain

Remark 20. Let Aα : J −→ EndB (α ∈ Nn) be a finite family of locally
summable functions and

ηt
s : C 3 z def7−→

t∏
s

e

∑
α

(iz)αAα(τ)dτ
∈ Hol ∀(s, t) ∈ J2(t0).

Then ηt
s|Rn satisfies assumption (14).
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Corollary 21. If Aα ∈ EndB (α ∈ Nn) then

ηt
s(ξ) := e

(t−s)
∑
α

(iξ)αAα

∀ξ ∈ Rn ∀(s, t) ∈ J2(t0)

satisfies (14).
Proof of Theorem 17.
Step 1◦ We begin by proving that the right-hand side of (11) makes sense.

First, note that for any t ∈ J , s ∈ [t0, t] the mapping

(15) ηt
s : Rn 3 ξ def7−→

t∏
s

e

∑
α

(iξ)αAα(τ)dτ
∈ EndB

is polynomially bounded with all its derivatives, and so ηt
t0 · û0, ηt

s · f̂(s) are
tempered distributions.

Let t ∈ J . The function f[t0,t] : [t0, t] → D′temp is summable, thus by
Theorem 10, so is f̂[t0,t] : [t0, t] → D′temp. According to Definition 9 and

Definition 7 there is N ∈ N such that f̂([t0, t]) ⊂ L((S, qN ), B) and f̂ [t0,t] :
[t0, t] → L((S, qN ), B) is summable.

Fix j ∈ {1, . . . , k}. Due to Remark 20 and Lemma 19, there is N such that
lj(J2(t0)) ⊂ L((S, qN ), (S, qN )) and the map lj : J2(t0) → L((S, qN ), (S, qN ))
is continuous.

Consider the continuous bilinear mapping

(16) GN,N :

{
L((S, qN ), (S, qN ))× L((S, qN ), B) −→ L((S, qN ), B)

(E, T ) def7−→ T ◦ E.

Then the function

[t0, t] 3 s 7→ GN,N (ls,tj , f̂(s)) ∈ L((S, qN ), B)

is summable, and for s ∈ [t0, t], ϕ ∈ S there is(
GN,N

(
ls,tj , f̂(s)

))
(ϕ) =

(
f̂(s) ◦ ls,tj

)
(ϕ) = f̂(s)((b?j◦ηt

s)ϕ) = (b?j ◦ ηt
s)f̂(s)(ϕ).

Consequently,

[t0, t] 3 s 7→
k∑

j=1

bj ◦ (b?j ◦ ηt
s)f̂(s) ∈ L((S, qN ), B)

is summable, and by Definitions 7, 9, so is

[t0, t] 3 s 7→ ηt
s · f̂(s) ∈ D′temp(Rn;B).

Finally according to the Schwartz theorem and Theorem 10, the function

[t0, t] 3 s 7→ F−1(ηt
s · f̂(s)) ∈ D′temp

is well defined and summable.
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Step 2◦ Uniqueness.
Let u : J → D′temp be an absolutely continuous solution of problem (10). Fix

ψ ∈ D(Rn). Then on account of Theorem 16 the function v : J 3 t def7−→ ψû(t) ∈
D′temp is also absolutely continuous and for a.e. t ∈ J

(17) v′(t) =
∑
α

Aα(t) ◦ (iξ)αv(t) + ψf̂(t).

Fix t? ∈ J and denote I := [t0, t?]. Similarly as in Step 1o, there is N ∈ N such
that

v(I) ⊂ L((S, qN ), B) and vI : I → L((S, qN ), B) is absolutely
continuous, a.e. differentiable,

ψf̂(I) ⊂ L((S, qN ), B) and ψf̂ : I → L((S, qN ), B) is summable,

ψû0 ∈ L((S, qN ), B).

Consider the Banach space

X := {T ∈ D′temp : suppT ⊂ suppψ, T is qN − continuous}

with the norm |T |X := |T |qN (see (2)). Let ι : X 3 T 7→ T ∈ L((S, qN ), B)
be a canonical injection. ι(X) is a closed subspace of L((S, qN ), B). v(I) ⊂ X

hence v(I) ⊂ ι(X). Similarly ψf̂(I) ⊂ ι(X). Thus vI : I → ι(X) is absolutely
continuous, a.e. differentiable and ψf̂ I : I → ι(X) is summable.

Setting x := vI , we derive that the function x : I → X is absolutely
continuous, a.e. differentiable. Similarly ψf̂I : I → X is summable and
ψû0 ∈ X. Clearly,

(18) ẋ(t) = v′(t)

a.e. in I, where the derivative on the left-hand side is a derivative in topX
while the one on the right-hand side is a derivative in D′temp. Therefore by
(17), for a.e. t ∈ I, there is

ẋ(t) =
∑
α

Aα(t) ◦ (iξ)αx(t) + ψf̂(t) = Ãtx(t) + ψf̂(t),

where At(z) :=
∑
α

(iz)αAα(t) for z ∈ Cn. Obviously, At ∈ Hol. The mapping

˜: Hol→ EndX is defined as in Theorem 5 (ii), in particular ÃtT =
∑
α

Aα(t)◦

(iξ)αT for T ∈ X.
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Thus we have obtained the Cauchy problem in the Banach spaceX, treated
as a module over the Banach algebra EndX:

(19)
{

ẋ(t) = Ãtx(t) + ψf̂(t)
x(t0) = ψû0.

On account of Theorem 41, [6]

x(t) =
t∏
t0

eÃτ dτ (ψû0) +
∫ t

t0

t∏
s

eÃτ dτ (ψf̂(s))ds

is the unique absolutely continuous solution of problem (19). By Lemma 44,
[6] (comp. Th. 5 (ii)) and using notation (15)

x(t) =

(
t∏
t0

eAτ dτ

)̃
(ψû0) +

∫ t

t0

(
t∏
s

eAτ dτ

)̃
(ψf̂(s))ds =

= η̃t
t0

(ψû0) +
∫ t

t0

η̃t
s(ψf̂(s))ds.

Functions ηt
t0 , η

t
s are polynomially bounded together with all its derivatives,

distributions ψû0, ψf̂(s) have compact supports, so by Theorem 6

x(t) = ηt
t0 · (ψû0) +

∫ t

t0

ηt
s · (ψf̂(s))ds,

with
∫ t

t0

ηt
s · (ψf̂(s))ds being an integral in X. The function

[t0, t] 3 s 7→ ι(ηt
s · (ψf̂(s))) = ηt

s · (ψf̂(s)) ∈ L((S, qN ), B)

is summable in the sense of Bochner and

ι

(∫ t

t0

ηt
s · (ψf̂(s))ds

)
=
∫ t

t0

ηt
s · (ψf̂(s))ds.

In consequence, [t0, t] 3 s 7→ ηt
s · (ψf̂(s)) ∈ D′temp is summable and the integral∫ t

t0

ηt
s · (ψf̂(s))ds in the space of tempered distributions D′temp is equal to the

integral in X.
In Step 1◦ we have proved that the function

[t0, t] 3 s 7→ ηt
s · f̂(s) ∈ D′temp

is summable. By the arbitrariness of ψ ∈ D(Rn) and Remark 2, there is

û(t) = ηt
t0 · û0 +

∫ t

t0

ηt
s · f̂(s)ds
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for all t ∈ I (in particular for t?). Finally, by the Schwartz theorem,

u(t?) = F−1
(
ηt?

t0
· û0

)
+ F−1

(∫ t?

t0

ηt?
s · f̂(s)ds

)
.

As t? ∈ J is arbitrary and on account of Theorem 10

u(t) = F−1
(
ηt

t0 · û0

)
+
∫ t

t0

F−1
(
ηt

s · f̂(s)ds
)

∀t ∈ J.

Since every solution of (10) is of the form (11), we have proved the uniqueness.

Step 3◦ Existence.
We prove that the function

(20) u : J 3 t def7−→ F−1
(
ηt

t0 · û0

)
+
∫ t

t0

F−1
(
ηt

s · f̂(s)
)
ds ∈ D′temp

is an absolutely continuous solution of (10).
Let I ⊂ J be a closed interval such that t0 ∈ I. Clearly, u(t0) = u0.

In fact, we shall prove that for all t ∈ I û(t) = û0 +
∫ t

t0

χ(τ)dτ , where

(21) χ : I 3 t def7−→ At · û(t) + f̂(t) ∈ D′temp.

Applying the argument from Step 1◦, one can deduce that χ is summable.
Let t ∈ I and ψ ∈ D(Rn). There is N ∈ N such that û0 ∈ L((S, qN ), B)

and the function I 3 t 7→ f̂(t) ∈ L((S, qN ), B) is summable. Having N and ψ

we consider the space X, as in Step 1◦. Then ψû0 ∈ X and I 3 t 7→ ψf̂(t) ∈ X
is summable.

Similarly as in Step 2◦, the problem

(22)
{

ẋ(t) = Ãtx(t) + ψf̂(t)
x(t0) = ψû0

has the unique solution given for all t ∈ I by the formula

x(t) =

(
t∏
t0

eAτ dτ

)
· (ψû0) +

∫ t

t0

(
t∏
s

eAτ dτ

)
· (ψf̂(s))ds.

Thus remembering Remark 2 and definition (20) we obtain

(23) x(t) = ψû(t).

On the other hand, combining (22), (23) and (21) we obtain

(24) ẋ(t) = At · x(t) + ψf̂(t) = ψχ(t).
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The function x : I → X is absolutely continuous, a.e. differentiable, so by
(23), (24), for all t ∈ I, there holds

ψû(t) = x(t) = x(t0) +
∫ t

t0

ẋ(τ)dτ = ψû0 +
∫ t

t0

ψχ(τ)dτ.

Consequently,

∀t ∈ I : û(t) = û0 +
∫ t

t0

χ(τ)dτ,

since ψ ∈ D(Rn) is arbitrary. Therefore, by Remark 15, the function ûI : I →
D′temp is absolutely continuous and for a.e. t ∈ I

(ûI)′(t) = χ(t).

In consequence, so is û : J → D′temp , and for a.e. t ∈ J ,

û′(t) = At · û(t) + f̂(t) =
∑
α

Aα(t) ◦ (iξ)αû(t) + f̂(t),

since I is arbitrary. On account of Theorem 16, we finally have that u : J →
D′temp is absolutely continuous and for a.e. t ∈ J

u′(t) = F−1(û′(t)) =
∑
α

Aα(t) ◦Dαu(t) + f(t).

Thus u defined by (20) is a solution of (10).

In the case of time-independent coefficients Aα ∈ EndB, let us define

Λ1 := sup

{
Reλ : λ ∈ σ

(∑
α

(iξ)αAα

)
, ξ ∈ Rn

}
,

Λ−1 := inf

{
Reλ : λ ∈ σ

(∑
α

(iξ)αAα

)
, ξ ∈ Rn

}
,

with σ(A) denoting the spectrum of A ∈ EndB.

Theorem 22. Given are t0 ∈ J , u0 ∈ D′temp, locally summable f : J →
D′temp and a finite family of coefficients Aα ∈ EndB (α ∈ Nn). Suppose that

(25) for all t ∈ J \ {t0} Λsgn(t−t0) ∈ R.

Then there is the unique absolutely continuous function u : J → D′temp such
that

(26)

{
d
dtu(t) =

∑
α
Aα ◦Dαu(t) + f(t) for a.e. t ∈ J

u(t0) = u0.
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Moreover for each t ∈ J
(27)

u(t) = F−1

(
e
(t−t0)

∑
α

(iξ)αAα

· û0

)
+
∫ t

t0

F−1

(
e
(t−s)

∑
α

(iξ)αAα

· f̂(s)
)
ds.

Proof. First note that the theorem is a corollary of Theorem 17. Namely,
denoting as in the proof of Theorem 17, At ≡ A ∈ Hol for t ∈ J , with
A(z) :=

∑
α

(iz)αAα for z ∈ Cn, it suffices to note that At ◦ As = As ◦ At for

all s, t ∈ J and in consequence

t∏
s

eAτ dτ = e
∫ t

s Aτ dτ = e(t−s)A ∀s, t ∈ J.

The task is now to show that the family Aα satisfies condition (9). The proof
will be devided into 3 steps.

Step 1◦ First we prove that, for any t1 ∈ J , the function

(28) Rn 3 ξ 7→ e(t−s)
∑

α(iξ)αAα ∈ EndB

is polynomially bounded, uniformly in (s, t) ∈ [t0, t]× [t0, t1].
Fix t1 ∈ J . Let (s, t) ∈ [t0, t]× [t0, t1], ξ ∈ Rn. According to the lemma in

[2], p. 78, there is

(29)
∣∣∣e(t−s)

∑
α(iξ)αAα

∣∣∣ ≤ eΛ(t−s),ξ ·
dim B−1∑

j=0

(
2|t− s|

∣∣∣∣∣∑
α

(iξ)αAα

∣∣∣∣∣
)j

,

with Λ(t−s),ξ := sup

{
Reλ : λ ∈ σ

(
(t− s)

∑
α

(iξ)αAα

)}
.

Since
Λ(t−s),ξ ≤ |t1 − t0|max{|Λ1|, |Λ−1|} <∞,

there is a polynomial Q : Rn →]0,∞[ such that ∀(s, t) ∈ [t0, t]×[t0, t1] ∀ξ ∈ Rn∣∣∣e(t−s)
∑

α(iξ)αAα

∣∣∣ ≤ Q(ξ).

Step 2◦ We will prove polynomial boundedness of derivatives of function

(28) by induction. Let j = 1, . . . , n. We will estimate
∣∣∣∣ ∂∂ξj e(t−s)

∑
α(iξ)αAα

∣∣∣∣.
Let ξ ∈ Rn. There is R > 0 such that |ξ| < R. The mapping

A : [s, t]×G 3 (τ, ξ) def7−→
∑
α

(iξ)αAα ∈ EndB
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is τ -summable for any ξ ∈ G := {ξ ∈ Rn : |ξ| < R}. Its derivative ∂
∂ξj
A(τ, ξ)

is dominated by summable function ϕ, namely

ϕ : [s, t] 3 τ 7→ sup
|ξ|≤R

∣∣∣∣∣ ∂∂ξj ∑α (iξ)αAα

∣∣∣∣∣ .
Therefore, according to Theorem 45, [6]

(30)

∂

∂ξj

(
e(t−s)

∑
α(iξ)αAα

)
=

∫ t

s
e(t−r)

∑
α(iξ)αAα ◦ ∂

∂ξj

∑
α

(iξ)αAα ◦ e(r−s)
∑

α(iξ)αAαdr.

Since both (r, t) and (s, r) are elements of [t0, t]× [t0, t1], it follows from Step
1◦ that both ξ 7→ e(t−r)

∑
α(iξ)αAα and ξ 7→ e(r−s)

∑
α(iξ)αAα are polynomially

bounded. Finally, there is a polynomial Qej : Rn →]0,∞[ such that ∀(s, t) ∈

[t0, t]× [t0, t1] ∀ξ ∈ Rn

∣∣∣∣ ∂∂ξj e(t−s)
∑

α(iξ)αAα

∣∣∣∣ ≤ Qej (ξ).

Step 3◦ Assume that the function Rn 3 ξ 7→ Dγ
(
e(t−s)

∑
α(iξ)αAα

)
∈ EndB

is polynomially bounded, uniformly in (s, t) ∈ [t0, t] × [t0, t1] for γ ∈ Nn such
that |γ| ≤ k. Let β ∈ Nn be a multi-index such that |β| = k + 1. On account
of Theorem 49, [6]
(31)
Dβe(t−s)

∑
α(iξ)αAα =∑

β 6=γ≤β

(
β

γ

)∫ t

s
e(t−r)

∑
α(iξ)αAα ◦Dβ−γ

∑
α

(iξ)αAα ◦Dγe(r−s)
∑

α(iξ)αAαdr.

For every γ ≤ β and γ 6= β, there is a polynomial Qγ such that∣∣∣Dγe(r−s)
∑

α(iξ)αAαdr
∣∣∣ ≤ Qγ(ξ)

for any (s, r) ∈ [t0, t]× [t0, t1] and ξ ∈ Rn. Moreover, as in Step 1o, there is Q0

such that
∣∣∣e(t−r)

∑
α(iξ)αAα

∣∣∣ ≤ Q0(ξ) for all (r, t) ∈ [t0, t]× [t0, t1] and ξ ∈ Rn.
Thus∣∣∣Dβe(t−s)

∑
α(iξ)αAα

∣∣∣ ≤ ∑
β 6=γ≤β

(
β

γ

)
Q0(ξ) · |Dβ−γ

∑
α

(iξ)αAα| ·Qγ(ξ) · |t1 − t0|.
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By induction we finally conclude that ∀t1 ∈ J ∀β ∈ Nn ∃Qβ ∈ P(Rn), Qβ > 0
∀(s, t) ∈ [t0, t]× [t0, t1] ∀ξ ∈ Rn∣∣∣Dβe(t−s)

∑
α(iξ)αAα

∣∣∣ ≤ Qβ(ξ).

4. Examples.
4.1. Parabolic systems in the sense of Pietrowski.
Let B be a complex vector space and J be an interval in R. Let t0 ∈ J

and b ∈ N. Let us recall that the system

(32)
d

dt
u(t) =

∑
|α|≤2b

Aα ◦Dαu(t) + f(t)

is parabolic in the sense of Pietrowski iff ∃δ > 0 ∀ζ ∈ Rn, |ζ| = 1:

Reλ(ζ) ≤ −δ, where λ(ζ) ∈ σ

 ∑
|α|=2b

(iζ)αAα

 ,

see, e.g., [1].
We will prove that every system which is parabolic in the sense of Pietrowski
satisfies condition (25).

∑
|α|≤2b

(iξ)αAα = |ξ|2b

 ∑
|α|<2b

(iξ)α

|ξ|2b
Aα +

∑
|α|=2b

(iξ)α

|ξ|2b
Aα

 .

There is δ > 0 such that Reλ < −δ for any λ ∈ σ

 ∑
|α|=2b

(iξ)α

|ξ|2b
Aα

. On the

other hand, there is R > 0 such that σ

 ∑
|α|≤2b

(iξ)α

|ξ|2b
Aα

 ⊂ {Reλ < −δ} ⊂

{Reλ ≤ 0} for |ξ| ≥ R (see, e.g., [5], Th. 10.20). Therefore Λ1 < ∞, and
according to Theorem 22, there is the unique solution of system (32).

4.2. Dirac equation.
Consider the Dirac equation in Weyl’s representation

(33)
1
i

∂ψ

∂t
=

3∑
j=1

γj

(
1
i

∂

∂xj
−Aj(t)

)
ψ +m0βψ + V (t)ψ,

where the matrices

γj =
(
σj 0
0 −σj

)
, β =

(
0 I2
I2 0

)
,
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satisfy the relations

γjγk + γkγj = 2δjkI4 j, k = 1, 2, 3, 4, γ4 = β,

IN is the N ×N identity matrix,

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
are Pauli matrices, m0 is the rest mass, A1, A2, A3, V are components of an
external electromagnetic potential. Units were chosen so that c = h = 1.

Consider equation (33) together with the initial condition

(34) ψ(t0) = ψ0

where ψ0 ∈ D′temp(R3; C4). Observe that

A(ξ) =


iξ3 iξ1 + ξ2 im0 0

iξ1 − ξ2 −iξ3 0 im0

im0 0 −iξ3 −iξ1 − ξ2

0 im0 −iξ1 + ξ2 iξ3


and compute

det(A(ξ)− λI) =
(
|ξ|2 +m2

0 + λ2
)2
.

Thus eigenvalues of A(ξ) are

λ = ±i
√
m2

0 + |ξ|2

and ∀ξ ∈ Rn Reλ = 0. Therefore, Λ1,Λ−1 ∈ R.
Suppose first that Aj ≡ 0 ≡ V for j = 1, 2, 3. Then, according to Theorem 22,
the only solution of problem {(33), (34)} is

ψ(t) = F−1(e(t−t0)A(ξ) · ψ̂0).

In the case of non-zero potentials, supposing that Aj , V : J → C are locally
summable (j = 1, 2, 3), Theorem 22 gives the following integral formula for ψ:

ψ(t) = F−1(e(t−t0)A(ξ) · ψ̂0)

+
∫ t

t0

F−1

e(t−s)A(ξ) · i(V (s)ψ̂(s)−
3∑

j=1

γjAj(s)ψ̂(s))

 ds.
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4.3. Second-order time equations.
Let B, B1, B2 be complex Banach spaces. J is an interval in R. For

T1 ∈ D′(Rn;B1), T2 ∈ D′(Rn;B2), let us consider the distribution T14T2 ∈
D′(Rn;B1 ×B2)

T14T2 : D(Rn) 3 ϕ def7−→ (T1(ϕ), T2(ϕ)) ∈ B1 ×B2.

Clearly, if T1 ∈ D′temp(Rn;B1), T2 ∈ D′temp(Rn;B2) then T14T2 is tempered
and

T14T2 = T14T2.

Let functions x : J → D′temp(Rn;B1), y : J → D′temp(Rn;B2) be absolutely
continuous. Then

x4y : J 3 t def7−→ x(t)4 y(t) ∈ D′temp(Rn;B1 ×B2)

is absolutely continuous and for any t ∈ dom ẋ∩dom ẏ (the set of full measure
in J) there is

(x4y)′(t) = ẋ(t)4ẏ(t).

Definition 23. Given a map F : R×D′temp(Rn;B×B) ◦−→ D′temp(Rn;B).
A function x : J → D′temp(Rn;B) is a solution of the equation

(35) ẍ = F (t, x4ẋ)

iff
1◦ x : J → D′temp(Rn;B) is absolutely continuous, differentiable for all

t ∈ J and ẋ : J → D′temp(Rn;B) is absolutely continuous,
2◦ (t, x(t)4ẋ(t)) ∈ domF for any t ∈ J ,
3◦ ẍ(t) = F (t, x(t)4ẋ(t)) for a.e. t ∈ J .

Theorem 24. Let x : J → D′temp(Rn;B) satisfy condition 1◦. Denote
z := x4ẋ. x is a solution of (35) iff z is a solution of the equation ż = v(t, z),
where v : domF → D′temp(Rn; B× B) and v(t, y4ẏ) := ẏ4F (t, y4ẏ).

Proof. If x : J → D′temp(Rn;B) is a solution of (35) then z : J →
D′temp(Rn;B×B) is absolutely continuous, and for a.e. t ∈ J , ż(t) = ẋ(t)4ẍ(t).
Moreover,

v(t, x(t)4ẋ(t)) = ẋ(t)4F (t, x(t)4ẋ(t)) = ẋ(t)4ẍ(t) = ż(t)
for a.e. t ∈ J .

Conversely, if z is a solution of the equation ż = v(t, z) then (t, z(t)) ∈ domv
for any t ∈ J . Thus (t, x(t)4ẋ(t)) ∈ domF for any t ∈ J . Let us denote
Q(T ) := T2 for T = T14T2 ∈ D′temp(Rn;B ×B). Then

ẍ(t) = Q(ż(t)) = Q(ẋ(t)4F (t, x(t)4ẋ(t))) = F (t, x(t)4ẋ(t))

for a.e. t ∈ J .



49

Let us denote P (T ) := T1, Q(T ) := T2 for T = T14T2 ∈ D′temp(Rn;B×B).

Corollary 25. Let v(t, x4y) := y4F (t, x4y). Suppose that z : J →
D′temp(Rn;B×B) is a solution of the equation ż = v(t, z) and x = P (z). Then
z = x4ẋ and x is a solution of (35).

Proof. Since z : J → D′temp(Rn;B × B) is absolutely continuous, so are
x = P ◦ z, y := Q ◦ z : J → D′temp(Rn;B). Let t ∈ domż.

ẋ(t) = P (ż(t)) = P (v(t, z(t))) = P (y(t)4F (t, z(t))) = y(t).

Thus x is differentiable for any t ∈ J , ẋ is absolutely continuous and z = x4ẋ.
On account of Theorem 24, x is a solution of (35).

4.4. Wave equation.
Let c > 0, t0 = 0 ∈ J . Given u0, u1 ∈ D′temp(Rn; C) and locally summable

f : J → D′temp(Rn; C). Let us consider the Cauchy problem for the wave
equation

(36)


d2

dt2
u(t) = c2∆u(t) + f(t) for a.e. t ∈ J

u(0) = u0

u′(0) = u1.

Setting

w (= w14w2) : J 3 t def7−→ u(t)4u′(t) ∈ D′temp(Rn; C2)

we can rewrite (36) as the following first-order Cauchy problem:

(37)


w′(t) =

∑
|α|≤2

Aα ◦Dαw(t) + f̃(t) for a.e. t ∈ J

w(0) = w0,

where f̃(t) := 04f(t), w0 := u04u1 ∈ D′temp(Rn; C2),

A0 :=
(

0 1
0 0

)
, A2ej := c2

(
0 0
1 0

)
,

(ej)n
j=1 is the canonical basis in Rn,

Aα := 0 for all other multi-indices α. The eigenvalues of the matrix∑
|α|≤2

(iξ)αAα =
(

0 1
0 0

)
− c2|ξ|2

(
0 0
1 0

)
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are: −ic|ξ|, ic|ξ|, thus Λ1, Λ−1 = 0 ∈ R and according to Theorem 22, there is
the unique solution of problem (37) given by the formula

w(t) = F−1
(
et

∑
α(iξ)αAα · ŵ0

)
+
∫ t

0
F−1

(
e(t−s)

∑
α(iξ)αAα · ̂̃f(s)

)
ds.

Note that (∑
α

(iξ)αAα

)2ν

= (−c2|ξ|2)ν · I,(∑
α

(iξ)αAα

)2ν+1

= (−c2|ξ|2)ν ·

(∑
α

(iξ)αAα

)
for ν = 0, 1, 2, . . ., hence

eτ
∑

α(iξ)αAα =

 cos(τc|ξ|) sin(τc|ξ|)
c|ξ|

−c|ξ| sin(τc|ξ|) cos(τc|ξ|)

 .

On account of Cor. 25, we obtain the formula for the solution of (36):

(38)
u(t) = F−1 (cos(tc|ξ|) · û0) + F−1

(
sin(tc|ξ|)
c|ξ|

· û1

)
+

+
∫ t

0
F−1

(
sin((t− s)c|ξ|)

c|ξ|
· f̂(s)

)
ds.

Fixing f ≡ 0, u0 = 0, u1 = δ in (38), we obtain the formula for the fundamental
solution of the d’Alembert operator:

u(t) = F−1

(
sin(tc|ξ|)
c|ξ|

· δ̂
)

=
(

1
2π

)n
2

F−1

[
sin(tc|ξ|)
c|ξ|

]
,

where [ψ] denotes the regular distribution generated by ψ ∈ L1
loc(Rn), i.e.,

[ψ](ϕ) :=
∫

Rn

ψ(x)ϕ(x)dx ∀ϕ ∈ D(Rn).

4.5. Navier–Lamé equation.
Let t0 ∈ J ; positive numbers λ, µ are the Lamé constants. Given u0,

u1 ∈ D′temp(R3; C3) and locally summable f : J → D′temp(R3; C3). We are
looking for an absolutely continuous u : J → D′temp(R3; C3) such that

(39)


d2

dt2
u(t) = µ∆u(t) + (λ+ µ)∇ div u(t) + f(t) for a.e. t ∈ J
u(t0) = u0

u′(t0) = u1.
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For t ∈ J , denote

u(t) = u1(t)4u2(t)4u3(t), f(t) = f1(t)4f2(t)4f3(t).

The Navier–Lamé equation can now be written in the form

(40)
d2

dt2
uj(t) = µ∆uj(t) + (λ+ µ)

∂

∂xj

(
3∑

k=1

∂

∂xk
uk(t)

)
+ fj(t)

for j = 1, 2, 3 and a.e. t ∈ J . Settings

w1
j (t) := uj(t) w2

j (t) := u′j(t), w(t) := (w1
14w

1
24w

1
34w

2
14w

2
24w

2
3)(t)

for t ∈ J transform (40) into the following first-order system:

(41)


d

dt
w1

j (t) = w2
j

d

dt
w2

j (t) = µ∆w1
j (t) + (λ+ µ)

∂

∂xj

(
3∑

k=1

∂

∂xk
w1

k(t)

)
+ fj(t)

for j = 1, 2, 3 and a.e. t ∈ J . Denoting f̃(t) := 04f(t) ∈ D′temp(R3; C6)
(0 ∈ D′temp(Rn; C3)),

A0 :=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



Ajk :=


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.
.
.

. . . (3 + j)-th row
.
.

...
k-th column

Aej+ek
:= Ajk for j 6= k and A2ej := µAT

0 +(λ+µ)Ajj , where AT
0 is transposed

to A0, (ej)3j=1 is the canonical basis in R3, Aα = 0 for other multi-indices α,
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we finally obtain the matrix coefficient problem of (26)-type:

(42)


d

dt
w(t) =

∑
|α|≤2

Aα ◦Dαw(t) + f̃(t) for a.e. t ∈ J

w(t0) = u04u1.

Since

(43)
∑
|α|≤2

(iξ)αAα = A0 − µAT
0 |ξ|2 − (λ+ µ)

3∑
j,k=1

ξjξkAjk.

and
(ν2 + µ|ξ|2)2(ν2 + (2µ+ λ)|ξ|2) = 0,

is the characteristic equation of (43), the eigenvalues of the matrix are double:
i
√
µ|ξ|, −i√µ|ξ| and single: i

√
2µ+ λ|ξ|, −i

√
2µ+ λ|ξ|. Thus Re ν = 0 for ev-

ery ν ∈ σ (
∑

α(iξ)αAα), and according to Theorem 22, the solution of problem
(42) is given by (27).

4.6. Biparabolic equation.
Let us consider the operator

P 2 :=
(

∆− ∂

∂t

)(
∆− ∂

∂t

)
= ∆2 − 2

∂

∂t
∆ +

∂2

∂t2
.

Assume that u0, u1 ∈ D′temp(Rn; C) and f : [t0,+∞[→ D′temp(Rn; C) is locally
summable. Let us write the Cauchy problem for P 2:

(44)


d2

dt2
u(t) = 2

d

dt
∆u(t)−∆2u(t) + f(t) for a.e. t ∈ [t0,∞[

u(t0) = u0

u′(t0) = u1.

Setting

w(= w14w2) : [t0,∞[3 t def7−→ u(t)4u′(t) ∈ D′temp(Rn; C2),

(44) can be written as

(45)

 w′(t) =
∑
|α|≤4

Aα ◦Dαw(t) + f̃(t) for a.e. t ∈ [t0,∞[

w(t0) = u04u1,

where f̃ = 04f : [t0,∞[→ D′temp(Rn; C2), A0 :=
(

0 1
0 0

)
, A2ej :=

(
0 0
0 1

)
,

A2ej+2ek
:= 2Ajk for j 6= k, A4ej := Ajj , where Ajk :=

(
0 0
1 0

)
and Aα = 0



53

for other multi-indices α. The matrix∑
|α|≤4

(iξ)αAα =
(

0 1
−|ξ|4 −2|ξ|2

)
has non-positive eigenvalues λ = −|ξ|2, and according to Theorem 22, we
obtain the unique solution of (45) given by (27).
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