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A SOLUTION OF THE CAUCHY PROBLEM IN THE CLASS
OF ABSOLUTELY CONTINUOUS DISTRIBUTION-VALUED
FUNCTIONS

BY MARGARETA WICIAK

Abstract. The aim of the paper is to give an exact formula for the solution
of an evolution problem with matrix coefficients, and initial condition and
external forces being tempered distributions.

1. Introduction. Let S be the Schwartz space,
S:={peC?®R",C): P-D% is bounded Va € N* VP € P(R")},

where P(R™) denotes the set of all polynomials R” — R. § is a Fréchet space
with the topology induced by the family of seminorms
4n(@) == sup sup (1+ )" D% (@), m=0,12,...
z€R"™ |a|<m

Write snS for the cone of all continuous seminorms on S. Let B be a complex
Banach space and D(R™) stand for the space of all complex test functions on
R™. A distribution 7' : D(R") — B (T € D/(R™; B)) is tempered when it has
the unique continuous extension T': S — B (T € Dj,,,,)-

Let J be an interval in R. We will consider the Cauchy problem

{ %u(t) = > Au(t) o D(t) + f(t) forae. teJ
e
u(to) = uo

with given #o € J, initial condition ug € Dj,,, and external forces f : J
Diemp- In order to prove the main theorem (Th. on the existence and
uniqueness of we use the method used by K. Holly in the case of scalar
coefficients A, : J +— C, [4]. This method is based on the integration of func-

tions whose values are tempered distributions. In the second part of Section
we give a brief exposition of Holly’s theory ([3]) of absolutely continuous

(1)



32

distribution-valued functions and their integrals (Def.[7]— Th. [L6). In the first
part of Section [2| we will be concerned with the notion of the product of a
distribution and a vector-valued function. Having this product and a product
integral in a Fréchet space (see [6]), we obtain the exact formula for the
solution of problem , being an extension of a similar formula in the scalar
case.

In the case of time-independed coefficients A, we rewrite the main theorem
as Theorem replacing abstract assumption @ with easy to check spectral
condition

In Section [ some applications are indicated.

2. Preliminaries. We begin by recalling the notion of the product of a
distribution and a scalar-valued function. Let Q € topR", T' € D'(); B),
P € C*(2). Then

WT: D)3 o T(py) € B.

Now we extend the product to the case of a vector-valued function. Assume
that B is a complex vector space. Let End B denote the space of all linear
endomorphisms on B and {by,...,b;} be the basis of End B.

DEFINITION 1. Let T € D'(Q; B), n € C*(Q, End B). Then

k
n-T:= Z(b; on)(bjoT).
j=1

The above definition does not depend on the choice of a basis of End B.
Moreover, n-T € D'(; B)) and for u € L], (Q, B) there is n- [u] = [nu], where
[u] denotes the regular distribution

[u](p) := /Qu(x)gp(a:)dx for p € D(Q).

The product has properties analogous to those in the scalar case. We
have pointed out two of them which are strickly connected to a vector-valued
function.

REMARK 2. Let T' € D'(;B), n € C®(Q, End B) and 9 € C*(Q,K).
Then
k

n-T =32 bjo((bjon)T),
7j=1
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PROOF. We prove the first equality. The proof of the second is analogous.
Let ¢ € D(Q).

k
(B om)(bjoT) | (9) = Y (bj o T)(] o n)p) =

Jj=1

k
(nT)(p) =

J

—_

k
= Z bj (b5 o m)T)(p)) = Z(bj o (bj on)T)(p)-

Jj=1 J=1

As in the scalar case the following theorem holds.

THEOREM 3. Let T' € Diypy, 1 € C°(R™, End B) be polynomially bounded
together with all of its derivatives. Then 0T € Dy,,,, and

k
nT = Z(b; on)(bjoT).
=1

PROOF. Since bj oT : & — B is linear continuous and b; on:R" - Kis
polynomially bounded together with all of its derivatives for any j € {1,...,k},
k

> (b; on) (bjo T) : S — B is also linear continuous. Clearly,
j=1

k

Z(b]*' o) (bj o T)pwny = 1T
j=1

O]

Let Hol := Hol(C", End B) stand for the space of all End B-valued holo-

morphic functions with the topology of local uniform convergence. Setting for
def

any h,f € Hol: h-f:Q >z h(z)o f(z) € EndB, Hol is a Fréchet
algebra (see [6]).
DEFINITION 4. Let € Hol, T € Dj,,,,- Then
n-T :=ngn-T.
Let K be a compact subset of R". Fix N € N and consider the space
(2) X :={T €Dj,y,,: suppT C K, T is qy-continuous }.

Then X is a Banach space with the norm |T'|x := [Ty -
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THEOREM 5.
(i) For any h € Hol, the mapping
~ 1
(3) h:X 5T % Y = D(0)0a’T € X
BEN™ Al

s correctly defined, linear and continuous.
(ii) The map
" Hol 3 h 2% € Bnd X

is a continuous homomorphism of algebras.

PRrROOF. Let h € Hol. Fix A € D(R") such that A = 1 in the neighbourhood
of K. There is r > 0 such that supp A C {|]z| < r}. Fix r < R < co. Set

1
%;:B#ﬁhm)eEth]mtTeX%md¢€S.

(4) lag 0 29T (p)| = |(ag 0 2"T) ()| < lag| - [Tlgy - an(Az").
By the Cauchy inequalities,
pr(h)
<

where ppg(h) = sup lh(2)||Ena B < 00. And by Leibniz’s formula,
|zi|<R,Vi=1,...,n

(0%
© a0 < max 3 (C)ID7 00 e (),
- r<a

1 .
Combining (4))—(6) we conclude that Z i (Dﬁh(O) o x’gT) () is convergent

BeENn
for all ¢ € S and
L (s BT =
§225<L)h@)ox7v(¢)S]w.pR@)waN.mﬂ¢%

BeNn

where the constant M depends on N, R and r. This gives h(T) € X and
|M(T)|x <M -pr(h)-|T|x. In cosequence the map

Xs3T—hT)eX

is continuous and \iL\ pndx < M - pr(h), which proves that also h +— h is
continuous. - .
An easy computation shows that if hi, hy € Hol then (hy-ho) = hy-hy. O
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THEOREM 6. If T € D'(R™; B), suppT is compact and if n € Hol, Nrn 8
polynomially bounded together with all of its derivatives, then

n-T=10(T)
PROOF. Let (bj);j=1,. k be a basis of End B. Then b} on € Hol(C",C) and

5 on(e) = Y- (55 0 D'n(0))a’

BeNn

for any x € R". Let ¢ € S. Since ngn is polynomially bounded with all of its
derivatives and supp T is compact it follows that T is tempered and

(7) Z Z 7 b 0 D(0)) - b; (T (27 ¢)).

j=1 peNr
On the other hand, in the proof of Theorem [5] we have proved that

Z @ (DPn(0) 0 2°T)(¢)| is convergent, and, in consequence,
BeN™

® > 6,(Dﬁ n(0) o Z Z i b 0 D1(0)) - b;(T(2")).

BENT j=1 BeNn
Combining and , by the arbitrariness of ¢ € S, we finally obtain
n-T=q(T).

O]

Now turn to distribution-valued functions. Let B be a complex Banach
space. Let L£(S, B) denote the space of all C-linear continuous operators of
S into B. Fixing ¢ € snS, we consider the space L((S, q), B) of all C-linear,
g-continuous § — B mappings. Note that it is a Banach space with the norm
Tq := SUPg(p)<1 [T (). Clearly,

= U £((S, 9, U L((S, qm),
g€snS
We equipped the space £(S, B) with an inductive topology, i.e. the strongest
locally convex topology such that for all ¢ € sn S, canonical inclusions
L((S,q),B) — L(S, B) are continuous.
Let I be a closed interval in R.

DEFINITION 7. A function x : I — L(S, B) is summable iff there is g €
sn S such that x(I) € L((S,q),B) and the function x : I — L((S,q),B) is
summable in the Bochner sense.



36

DEFINITION 8. Let x : I — L(S,B) be summable and ¢ € snS be the

seminorm from DeﬁnitionH If < / X(t)dt> denotes the Bochner integral of
I

q
x: 1= L((S,q), B), then

£(S,B) 5 /1 (bt = ( /1 X(t)dt)q.

Obviously, the definition does not depend on the choice of q.

/

temp 1S summable iff

DEFINITION 9. A function x : [ — D

Y:I15t— x() € £(S, B)

is summable.

Clearly, / x(t)dt € Dj,,,, and / x(t)dt C / x(t)dt.
1 1 I
Let (-) = F : Di,,., — Dj

temp temp denote the Fourier transform.

THEOREM 10. Let x : I — Dy, be summable. Consider a multi-index

a € N" and a function n € C®(R"™,C) which is polynomially bounded with
all of its derivatives. Then the functions D% : J 3 t — DX(t) € Dy,

p—

nx :J 3t = nx(t) € Digpp, X : J 3t = x(t) € Dypyyyy are summable and
a): /Dax(t)dt:Do‘/X(t)dt C /Dax(t)dt,
I I I

b): / (n)(t)dt = / x(B)dt © / X,

c): /If((t)dt =F (/Ix(t)dt> C /If((t)dt.

DEFINITION 11. A function u : I — L(S, B) is absolutely continuous iff
there is a locally summamble x : I — L(S, B) such that

to
Vinty € 1 u(ty) — u(t) :/ x(r)dr.
t1
THEOREM 12. Let u : I — L(S,B). The following conditions are equi-
valent
(i) w is absolutely continuous;
(ii) there is ¢ € snS such that uw(l) C L((S,q),B) and v : I — L((S,q),B)
s absolutely continuous and a.e. differentiable;
(iii) there is n € N such that w(I) C L((S,qn),B) andu: I — L((S,qn), B)

s absolutely continuous and a.e. differentiable.
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DEFINITION 13. A function w : I — D)

temp 15 absolutely continuous iff

u:I>t—u(t)eL(S,B)
is absolutely continuous.
Let J be an arbitrary interval in R.

DEFINITION 14. A function u : J — Dy, is absolutely continuous iff the
restriction uy is absolutely continuous for every closed subinterval I C J.

REMARK 15. A function u : J — Dj,,,, is absolutely continuous iff there
are to € J and locally summable y : J — D, such that

temp

u(t) = u(to) + /t x(r)ydr  Vte.

to

Moreover, the set {t € domwu' : u/(t) # x(t)} is Borelian and of measure
Z€ro.

THEOREM 16. Let u : J — Dy, be absolutely continuous. Consider
a multi-index « € N" and a function n € C>®(R"™,C) polynomially bounded
with all its derivatives. Then the functions D%u : J > t — D%u(t) € D,

temp’
nu s J 3t nut) € Digpy, @ : J 3t = u(t) € Dy, are absolutely
continuous and for a.e. t € J:

a) (D) (t) = D*u/(¢t),

b) (nu)/(t) = ' (1),

c) o' (t) = u/(t).

3. Results. Let B be a complex vector space and J be an interval in R.

THEOREM 17. Given are to € J, ug € Dy, and a locally summable
[ +J = Doy Consider a family of locally summable coefficients Aq = J —
End B, (o € N"), such that #{a : Ay # 0} < 00 and

t 3(i§)* Aa(r)dr

Vit e J R*"> ¢ []e= € EndB
9) is polynomially bounded together with all of its
derivatives, uniformly in (s,t) € [to,t] X [to,t1].
Then there is the unique absolutely continuous function u : J — Digp,, such
that
(10) { du(t) = Y Aa(t)oD(t) + f(t) forae teJ
u(to) = Uug.
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Moreover, for each t € J

(11)
€)Y Aq (T)dT t t €)Y A (T)dT ~
_E9°4a(r) ﬁa>+/ pa <H6§(£> (7) .f(s)> .
to s

u(t) = F! (
b (i) Aa(r)dr
[Ie*

t
to

denotes the product integral. Let us denote

(12) J2(tg) :=={(s,t) € I x J: s € [to,t]}.
By the Leibniz formula, the following lemmas hold:

LEMMA 18. Let n € C*°(R"™, End B) be polynomially bounded with all its
derivatives. For any N € N there is N such that for oll j =1,...,k the map

def
(S.qx) 3 ¢ — (b on)p € (S, qn)
is linear and continuous.

LEMMA 19. Fiz (s,t) € J2(to). Let us consider nt € C*°(R"™, End B) such
that
Yty e J R" > ¢ —ni(€) € EndB
(13) is polynomially bounded together with all of its
deriwatives, uniformly in (s,t) € [to,t] X [to,t1].
Additionally assume that

(14) if (su,t,) =3 (s,t) in J*(tg), then for everyy € N*

DYnlr =3 Dt almost uniformly in R™.

Then for any N € N there is N € N such that for all j = 1,...,k the map

iz 2 (to) 3 (s,0) 2% 1" € £((S,ax). (S,aw)) »

15(@) = (b5 onl)p for p€S
1S continuous.

By the continuous dependence on the limits of integration for a product
integral (see [6]) we obtain

REMARK 20. Let A, : J — End B (o € N") be a finite family of locally
summable functions and

! 12)*Aq(T)dT
nt:C3z e, e%:( e () € Hol V(s,t) € J2(to).

S

Then n!|gn satisfies assumption (14)).
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COROLLARY 21. If Ay € End B (o € N") then
(t=5) > ()% Aa
(&) =e 7 VEER™ V(s t) € J3(to)
satisfies .
PROOF OF THEOREM 17|
Step 1° We begin by proving that the right-hand side of makes sense.
First, note that for any t € J, s € [to, t] the mapping

¢ &) Aq(T)dT
def, Heg(ﬁ) ()

(15) nh: R"3 €65 € EndB

S

is polynomially bounded with all its derivatives, and so n}, - do, 1} - f(s) are
tempered distributions.
Let t € J. The function fi, 4 : [to,t] — Djepyp is summable, thus by

Theorem so is f[tmt] . [to,t] — D According to Definition |§| and

temp
Definition 7| there is N € N such that f([to,t]) € £((S,qn),B) and f[to,t] :
[to,t] — L((S,qn), B) is summable.

Fix j € {1,...,k}. Due to Remark and Lemma there is N such that
Li(J2(to)) € L((S,qx), (S, an)) and the map I; : J*(to) — L((S,q), (S, qn))

is continuous.
Consider the continuous bilinear mapping

. . L((S’W)?(SvQN))X‘C((S)QN)aB) I E((87QN)’B)
(16) Gy : (E,7) <% ToF.

Then the function
[t0,1] 5 s = Gy y (13", £(5)) € L((S, qx), B)

is summable, and for s € [to, ], ¢ € S there is

(G (57)) (0) = ()0 5") () = Fls)(@oml)0) = (b7 0 n) (5 (0):

Consequently,

to, ] 9%2“ o) f(s) € L((S, qx), B)

is summable, and by Deﬁmtlons [7, [0} so is
[t07t] S5 772 ’ f(s) € D;temp(Rn; B)
Finally according to the Schwartz theorem and Theorem the function
[to,1] 5 5= F (0 - (5)) € Dierny

is well defined and summable.
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Step 2° Uniqueness.
Let u : J — Dj,,,, be an absolutely continuous solution of problem . Fix

Y € D(R™). Then on account of Theorem |16/the function v : J 5 ¢ (el Yau(t) €

Diemyp is also absolutely continuous and for a.e. t € .J
(17) V() = 3 Aalt) o (i€)70(t) +w f (2).

Fix t, € J and denote I := [tg, t,]. Similarly as in Step 1°, there is N € N such
that

v(I) C L((S,qn),B) and  ©7: 1 — L((S,qn), B) is absolutely
continuous, a.e. differentiable,

%(I) C L((S,qn), B) and w : I — L((S,qn), B) is summable,
m € ﬁ((87QN)7B)
Consider the Banach space

X ={TeD suppT C supp, T is gy — continuous}

r
temp *
with the norm |T|x := [T]yy (see (2)). Let ¢ : X 5T — T € L((S,qn), B)
be a canonical injection. ¢(X) is a closed subspace of L((S,qn), B). v(I) C X
hence (1) C «(X). Similarly 1/}f([)£ t(X). Thus vy : I — «(X) is absolutely
continuous, a.e. differentiable and ¢ f; : I — ¢(X) is summable.

Setting x := vy, we derive that the function x : I — X is absolutely

continuous, a.e. differentiable. Similarly ¢f; : I — X is summable and
Yug € X. Clearly,

(18) i(t) = ' (1)

a.e. in I, where the derivative on the left-hand side is a derivative in top X
while the one on the right-hand side is a derivative in Dj,,,,. Therefore by
, for a.e. t € I, there is

A~

B(t) =Y Aalt) 0 (i€) 2 (t) + ¥ f (1) = A(t) + ¥ f (D),

where Au(z) := Z(iz)aAa(t) for z € C™. Obviously, A; € Hol. The mapping

"t 'Hol — End X is defined as in Theorem (i), in particular A, T = Z Aq(t)o
()T for T € X.
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Thus we have obtained the Cauchy problem in the Banach space X, treated
as a module over the Banach algebra End X:

B(t) = Aw(t)+¢f()
(19) { x(tg) = Y.
On account of Theorem 41, [6]

HeA d‘r /t HeATdT(lbfA(S))dS

is the unique absolutely continuous solution of problem . By Lemma 44,
[6] (comp. Th. [5[ (ii)) and using notation (15|

(e )

:ﬁﬂmw+/%wﬂmw

Functions nto, nt are polynomially bounded together with all its derivatives,
distributions g, ¥ f (s) have compact supports, so by Theorem|§|

ﬂw=%«wm+/nawﬂmw

to

t
with / nt - (1 f(s))ds being an integral in X. The function

to

[to,t] 35— t(n - (L f () = nt - (©f(s)) € L((S,qn), B)

is summable in the sense of Bochner and

(A}?wﬂmw)zéyywﬂmw

In consequence, [to, ] 3 s — nt- (W f(s)) € Diemyp is summable and the integral

t
/ nt - (¢ f(s))ds in the space of tempered distributions Diemyp 1s equal to the
to

integral in X.

In Step 1° we have proved that the function

[tﬂut] S8 772 : f(S) € Dzlfemp
is summable. By the arbitrariness of ¢ € D(R") and Remark [2] there is

t
at) = nj, - to +/ .- f(s)ds

to
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for all ¢ € I (in particular for t,). Finally, by the Schwartz theorem,

ts .
w(tl) = F (ol -itg) + F1 ( [ f<s>ds) |

to

As t, € J is arbitrary and on account of Theorem

t
u(t) =F 1 (n, - o) +/t Ft (nﬁ : f(s)ds) Vt e J.

Since every solution of is of the form , we have proved the uniqueness.

Step 3° Existence.
We prove that the function

t
(20) u:J>Dt (e, F1 (nfo -ﬂo) +/ F1 (772 . f(s)) ds € Déemp
to
is an absolutely continuous solution of .
Let I C J be a closed interval such that ¢y € I. Clearly,
t
In fact, we shall prove that for all t € I a(t) = Gy + / x(7)dr, where
to

’U,(to) = Uup.

(21) X It 2% A at) + f(t) € D

temp*

Applying the argument from Step 1°, one can deduce that x is summable.
Let t € I and ¢ € D(R™). There is N € N such that 1y € L((S,qn), B)

and the function I 3 ¢ — f(t) € £((S,qn), B) is summable. Having N and ¢
we consider the space X, as in Step 1°. Then iy € X and I 5t — o f(t) € X
is summable.

Similarly as in Step 2°, the problem

B(t) = Auw(t) +pf(t)
(22) {x(to) = o

has the unique solution given for all ¢ € I by the formula

t t t
x(t) = (H e“f) - (Wito) + / (H e“‘*”) (@ f(s))ds.
to to s
Thus remembering Remark [2| and definition we obtain
(23) x(t) = pu(t).
On the other hand, combining , and we obtain
(24) () = Ap - 2(t) + 0 f () = ¥x(8).
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The function x : I — X is absolutely continuous, a.e. differentiable, so by

(23), (24])), for all t € I, there holds
t t
Ya(t) = x(t) = z(to) + / z(r)dr =g+ | Yx(r)dr.
to

to
Consequently,

t
Vtel: u(t) = g —i—/ x(7)dr,

to
since 1 € D(R™) is arbitrary. Therefore, by Remark the function 4y : I —
Diepmyp is absolutely continuous and for a.e. t € I

()’ (t) = Xx(t)-

/
temp

i/(t) = Ag - a(t) + f(t) = > Aalt) o (i§)*a(t) + f(t),

In consequence, sois 4 : J — D and for a.e. t € J,

since [ is arbitrary. On account of Theorem we finally have that v : J —
Diemyp is absolutely continuous and for a.e. t € .J

u'(t) = F N (1) = Y Aalt) o D*ult) + f(1).

Thus v defined by is a solution of .

In the case of time-independent coefficients A, € End B, let us define

Ay :=sup {ReA : A€o (Z(if)aAa> , § € Rn} )

«

A_1 :=inf {Re)\ : Ne€o <Z(i€)az4a> , § € Rn} ;

«

with o(A) denoting the spectrum of A € End B.

THEOREM 22. Given are to € J, ug € Dy, locally summable f 2 J —
D,’femp and a finite family of coefficients Ay € End B (o € N™). Suppose that

(25) forallt € J\ {to} Aggn(t—to) € R.

/

temp SUCh

Then there is the unique absolutely continuous function u : J — D,
that

(26) {éiu(t) = SAaoDut)+ () forae te]

u(to) = ug.
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Moreover for each t € J
(27)

t—t i€)* Aq t t—8) S (i) % Ae ~
u(t) = ol <e( o)%ﬁ(f) ‘%) +/ 1 <e( )%ﬁ(f) -f(s)) s,
to

PROOF. First note that the theorem is a corollary of Theorem Namely,
denoting as in the proof of Theorem A; = A € Hol for t € J, with
Az) = Z(iz)o‘Aa for z € C™, it suffices to note that A; 0 Ay = Az 0 A; for

(0%
all s,t € J and in consequence
¢ t
H eArdT — ofs Ardr _ o(t=5)A Vs, t € J.
S

The task is now to show that the family A, satisfies condition @D The proof
will be devided into 3 steps.
Step 1° First we prove that, for any ¢; € J, the function

(28) R" 5 & et Lali)a ¢ Epd B

is polynomially bounded, uniformly in (s,t) € [to, ] X [to,t1].
Fix t; € J. Let (s,t) € [to,t] x [to, t1], £ € R™. According to the lemma in
[2], p. 78, there is
)j

> (i6)" Aq

(07

dim B—1
(29) ’e(t—S)Za(iS)o‘Aa <etemas. 3 <2It—s|

=0

with A_g) ¢ == sup {Re)\ : A€o ((t —s) Z(if)O‘Aa> }

Since
A—s)¢ < [t1 = to| max{[A1], [A_1[} < oo,
there is a polynomial @ : R™ —]0, oo[ such that V(s,t) € [to, t] X [to, t1] V& € R™
=B < (),

Step 2° We will prove polynomial boundedness of derivatives of function

0 (-9 T4 Aa|
J

Let £ € R™. There is R > 0 such that |{| < R. The mapping

A s, x G5 (1,6) L5 ST (i6)* A, € End B

1' by induction. Let 7 = 1,...,n. We will estimate
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is 7-summable for any £ € G := {{ € R" : [¢| < R}. Its derivative %A(T, €)
is dominated by summable function ¢, namely

@ :[s,t] 37— sup
I€I<R

0
2 N(i6)2 A,
9Ej za:( )
Therefore, according to Theorem 45, [6]

8‘2 (e(tfs)za(isma) _

t
/S (1) T (16 A 8@2 S(06) Ag 0 el Eali Aagy.

J

(30)

Since both (r,t) and (s,r) are elements of [tg,t] X [to,t1], it follows from Step
1° that both £ — et Xa#)%Aa gnq £ — e(r=9) 2a(i€)%Aa gre polynomially
bounded. Finally, there is a polynomial Q., : R" —]0, 00| such that V(s,t) €

[tﬂvt] X [to,tl] vé e R"

0 o
T =) (1) Aa| <« O (£).
5 ° <00
Step 3° Assume that the function R™ 5 £ +— D7 (e(t_s) Za(if)aA“) € EndB

is polynomially bounded, uniformly in (s,t) € [to,t] X [to,t1] for v € N™ such
that |y| < k. Let 8 € N" be a multi-index such that |5| = £+ 1. On account
of Theorem 49, [6]
(31)

DPet=5) 2o (i6)* Aa _

t
Z <B> / (=) 2o (18)* Aa o DB—Y Z(if)aAa o DYer=5) L)% Aa g,
Bz N1/ s 8

For every v < 3 and v # (3, there is a polynomial ()., such that
[D7elr =) 2940 gr| < Q4 (6)

for any (s,r) € [to,t] X [to,t1] and £ € R™. Moreover, as in Step 1°, there is Qo
such that ‘e(t_T)Za(if)aAa < Qo(§) forall (r,t) € [to,t] x [to, 1] and £ € R™.
Thus

‘ DB e(t=9) X0 (1) Aa

<y (f) Qo(€) - ID7 S() Aul - Q1 (€) - 11 — tal.

B#Y<B
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By induction we finally conclude that Vt; € J V3 € N* 3Q3 € P(R"),Qg > 0
V(S,t) € [to,t] X [to,tl] VéE € R”

DB e(t=5) >0 (i6)* < Qs(8).

4. Examples.

4.1. Parabolic systems in the sense of Pietrowski.

Let B be a complex vector space and J be an interval in R. Let ty € J
and b € N. Let us recall that the system

(32) = > Ao D%l(t) + f(t)
|| <2b

is parabolic in the sense of Pietrowski iff 3§ > 0 V¢ € R™, |(| = 1:

ReA(() < =6, where A(() €0 [ D> (iQ)*4q |,

|a|=2b

see, e.g., [1].
We will prove that every system which is parabolic in the sense of Pietrowski

satisfies condition .

D (i€)* Aq = [€]* Z

|| <2b || <20

i X

|a|=2b

!£I2”

There is 6 > 0 such that Re A < —§ for any A € o Z ﬁ?’lb A, ]. On the
|a|=2b

other hand, there is R > 0 such that o Z (|Z§|;b Ay | € {Re) < =4} C
lal<2b

{ReX < 0} for [¢] > R (see, e.g., [5], Th. 10.20). Therefore A} < oo, and
according to Theorem there is the unique solution of system .

4.2. Dirac equation.

Consider the Dirac equation in Weyl’s representation

10 <~ (10
B 1= u(Gae - A0) v mes s Vi
j=1 J

where the matrices

(o 0 (0L
= (8 %) (R 5)
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satisfy the relations

Vive F Y = 205ds J k=1,2,3,4, va =0,

Iy is the N x N identity matrix,

(01 (0 —i (1 0
1= 1 o0) 27i o) 70 1

are Pauli matrices, myg is the rest mass, Ay, As, A3, V are components of an
external electromagnetic potential. Units were chosen so that ¢ = h = 1.
Consider equation together with the initial condition

(34) ¥(to) = 2o
where ¢y € Dj,,,,(R* C*). Observe that

i§3 &1+ & img 0
A(E) = i§ — & —ig3 0 img
img 0 -3 —i&1 — &
0 imog  —i&1 + &2 i3

and compute

det(A(E) — AT) = (|€* + m2 +A%)°.

Thus eigenvalues of A(§) are
A= Fiy/mg + €2

and V€ € R™ Re A = 0. Therefore, A1,A_1 € R.
Suppose first that A; =0 =V for j = 1,2,3. Then, according to Theorem

the only solution of problem {(33)), (34)} is
Y(t) = FH (et t0)AE) ).

In the case of non-zero potentials, supposing that A;,V : J — C are locally
summable (j = 1,2, 3), Theorem [22] gives the following integral formula for :

B(t) = FH(elT0AE) . 4fy)

t ~ > -
+/ Fl e(t—s)A(&),i(V(8)¢(s)— g fyjAj(s)w(s)) ds.
=1

to
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4.3. Second-order time equations.

Let B, Bj, By be complex Banach spaces. .J is an interval in R. For
Ty € D'(R™; By), T € D'(R™; By), let us consider the distribution T1aTy €
D’(Rn;Bl X Bg)

def
TiaTy: DRY) 3 ¢ =5 (T1(p), To(p)) € By x Bs.

Clearly, if T1 € Diepny,(R"; B1), Tz € Diepyy,(R™; Ba) then T1aT, is tempered
and

T1AT2 = T:[ATQ

(R™; By), y : J — Dj,,,,(R"™; By) be absolutely

Let functions z : J — D, temp

temp
continuous. Then

zoay: Jot e, ()2 y(t) € Diepp(R"™; By X By)

is absolutely continuous and for any ¢ € dom &N dom g (the set of full measure
in J) there is
(zay)'(t) = 2(t)2y(t).

DEFINITION 23. Given a map F': R x Dy,,,,.,(R™; B x B) —e~ Dy,,,,.,(R™; B).
A function z : J — Dy, (R"; B) is a solution of the equation
(35) &= F(t,xax)
iff

1°x : J — Digm,(R™; B) is absolutely continuous, differentiable for all

teJand &:J— Dy, (R" B) is absolutely continuous,

temp
2° (t,z(t)ax(t)) € domF for any t € J,
3° &(t) = F(t,z(t)az(t)) for a.e. t € J.

THEOREM 24. Let x : J — Dy, (R" B) satisfy condition 1°. Denote
z = xAL. x 1S a solution of iff z is a solution of the equation z = v(t, z),
where v : domF — Dy, (R™ B x B) and v(t,ysy) := yaF(t,yay).

temp
Proor. If z : J — Dj,,,,(R"; B) is a solution of (35) then 2 : J —
Diemp(R™; B x B) is absolutely continuous, and for a.e. t € J, £(t) = @(t)ai(t).
Moreover,

v(t,z(t)ad(t)) = z(t)aF(t x(t)az(t)) = &(t)ai(t) = 2(t)
for a.e. t € J.

Conversely, if z is a solution of the equation z = v(t, z) then (¢, 2(¢)) € domv
for any ¢ € J. Thus (¢,z(t)ad(t)) € domF for any t € J. Let us denote
Q(T) :=Ty for T = T1 2T € Di,,,,,(R"; B x B). Then

(1) = QD) = QU F (1 2(0) (1) = Fl1,2(0)2(1)

for a.e. t € J.
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Let us denote P(T) := Ty, Q(T) := T for T = T1aT5 € Dj,,,,(R™; B x B).

temp

COROLLARY 25. Let v(t,xay) = yaF(t,zry). Suppose that z : J —
Diemp(R™; B x B) is a solution of the equation z = v(t,z) and x = P(z). Then
z =xaZ and x is a solution of .

PROOF. Since z : J — Dj,,,,(R™; B x B) is absolutely continuous, so are

r=Poz y:=Qoz:J— D, (R"; B). Let t € domz.

@(t) = P(2(t)) = P(v(t, 2(1)) = P(y()aF(t, 2(1))) = y(1).

Thus z is differentiable for any ¢ € J, & is absolutely continuous and z = xAz.
On account of Theorem x is a solution of .
O
4.4. Wave equation.
Let ¢ > 0,tg =0 € J. Given ug,u; € Dgemp(R”; C) and locally summable

f+J = Digpp(R"C). Let us consider the Cauchy problem for the wave
equation

2
%u(t) — RAu() + f(1) forae teJ
(36)
u(0) = g
w'(0) = wuy.
Setting

w (=wiawe): J Ot (et U(t)Au’(t) cD (Rn;c2)

temp

we can rewrite as the following first-order Cauchy problem:

w'(t) = Z Ay o D%w(t) + f(t) forae. teJ
(37) jal<2
w(0) = wp,

where f(t) := 0af(t), wo := upau; € D}, (R C?),

temp

(01 2,00
w= (0 0)) amme(00),

(e5)7—; is the canonical basis in R",
Ay =0 for all other multi-indices «. The eigenvalues of the matrix

S oma= (o o ) -] 7))

o <2
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are: —ic|¢|, icl¢|, thus A1, A_; = 0 € R and according to Theorem [22] there is
the unique solution of problem given by the formula

w(t) = F1 (etza(ig)“Aa ,wo) + /t F1 (e(tfs)za(%)“%a .?(,ﬂ) ds.
0

Note that

2u
<Z<z‘f)“Aa) = (=P -1,

2v+1

(Z@f)%) = (=) - (Z(z’f)%)
forv=20,1,2,..., hence
sin(7cl|€])

clé]

—c|¢|sin(7c[€]) cos(Tcl¢])
On account of Cor. we obtain the formula for the solution of :
sin(tc|€]) . >

T )+

el
+ /t f_l <Sin((t - 8)0’6‘) . f(S)) ds.

0 cl¢]

Fixing f =0, ug =0, u; = d in , we obtain the formula for the fundamental
solution of the d’Alembert operator:

where [¢)] denotes the regular distribution generated by v € £} (R"), i.e.,

loc

W)= [ d@plads Vo DRY)

4.5. Navier—Lamé equation.

Let ty € J; positive numbers A, p are the Lamé constants. Given u?,
u' € D}, (R%C?) and locally summable f : J — Dj,, (R*C?). We are
looking for an absolutely continuous u : J — D,’femp(]R:)’ ; C3) such that
d2
@u(t) = pAu(t)+ AN+ p)Vdivu(t) + f(t) forae teJ

0

e cos(Tc|é
v (relg])

u(t) = F 1 (cos(tc|€]) - dg) + F 1 (
(38)

(39) u(ty) = wu

(
u'(ty) = ul.
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For t € J, denote
u(t) = ui(t)aua(t)aus(t), f(t) = fi(t)afa(t)afs(t).

The Navier-Lamé equation can now be written in the form

2 3

(40) %uj(t) = nlu;(t) + (A +p)5— (Z ) + £5(t)

1

for j =1,2,3 and a.e. t € J. Settings

wh(t) := u;(t) wjz(t) =l (t), w(t) = (wiswlawlsw?swssw?)(t)

&wj(t) = w]2-
(41) d 3. 9
ﬁwf(t) = plAw;(t) + (Aﬂtax] (;a w(t) >+fg()

for j = 1,2,3 and a.e. t € J. Denoting f(t) := 0af(t) € Do (R CY)
(0 € Dtemp<Rn; CS))?

000100
000010
A= | 000001
000000
000000
000000
000000
000000
A, .| 000000 .
k1010000 .. (34 j)-th row
000000
000000

k-th column

Aejvey, = Aji for j # k and Ay, 1= pALY + (A +p)A;j, where A% is transposed
to Ao, (ej)?zl is the canonical basis in R?, A, = 0 for other multi-indices a,
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we finally obtain the matrix coefficient problem of —type:

iw(t) = Z Ay o Dw(t) + f(t) forae. teJ
dt
(42) lal<2
w(ty) = ulaul.
Since
3
(43) D (i6)*Aa = Ao — pATIEP — A+ 1) Y &i&kAjk
o] <2 Jk=1
and

(2 + ulgP)? (v + (2u+ N)E?) = 0,
is the characteristic equation of , the eigenvalues of the matrix are double:

i/i|g|, —iy/ml€| and single: iv/2p + A|€], —iv/2p + A|€]. Thus Rev = 0 for ev-
ery v € 0 (), (i€)*Ay), and according to Theorem [22] the solution of problem

is given by .
4.6. Biparabolic equation.
Let us consider the operator

0 0 0 0?2
Pi= (A at> (A at> A ZOtA o2’

Assume that ug, u1 € Dj,,,,(R";C) and f : [tg, +00[— Djepny,(R™; C) is locally

temp temp
summable. Let us write the Cauchy problem for P?:
d? d
—su(t) = 2—Au(t) - A2u(t) + f(t) for a.e. t € [tg, 0]
(44) dt dt
u(to) = Up
u/(to) = u
Setting
def

w(=wiaws) : [to, 00[3 t = u(t)aw/(t) € D)y, (R™; C?),

can be written as

w'(t) = Ay o Dw(t) + f(t) for a.e. t € [tg, 0]
(45) 324 ’
w(ty) = wpaur,

where f = 0af : [to, co[— Dgemp(Rn;C2)7 Ag = ( 8 (1) >7 Age, 1= ( 8 (1) >’

0 0

Agejt2¢;, 1= 245 for j # k, Aye; := Ajj, where Ajy := < 1 0

>andAa:O



53

for other multi-indices «. The matrix

> 6= (gt aige )

laf<4

has non-positive eigenvalues A = —|¢|?, and according to Theorem ﬁ, we
obtain the unique solution of given by .
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