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ON FIBRATIONS WITH THE GRASSMANN MANIFOLD OF

TWO-PLANES AS FIBER

by Július Korbaš

Abstract. Let p : E → B be a Serre fibration with E compact, B a con-
nected finite CW -complex, and fiber either the real Grassmann manifold
O(n)/O(2) × O(n − 2) or the complex Grassmann manifold U(n)/U(2) ×
U(n− 2), where n ≥ 4. We prove that if n is odd, then the fiber is totally
non-homologous to zero in E with respect to Z2.

1. Introduction and statement of a theorem. Let FGn,k be the
Grassmann manifold of all k-dimensional vector subspaces in Fn, where F
is either the field R of reals or the field C of complex numbers. In the sequel,
we shall suppose that 2k ≤ n (the manifolds FGn,k and FGn,n−k can natu-
rally be identified with each other). Let ξk and γk be the canonical k-plane
bundles over RGn,k and CGn,k, respectively. The i-th Stiefel–Whitney class of
a real vector bundle α will be denoted by wi(α), and the i-th Chern class of a
complex vector bundle β by ci(β).

It is known (cf. Hiller [3]) that the mod 2 cohomology algebra of RGn,k is

H∗(RGn,k; Z2) ∼= Z2[w1(ξk), . . . , wk(ξk)]/J(k, n− k),

where the ideal J(k, n− k) is generated by the homogeneous elements

f1,n−k, . . . , fk,n−k
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given by 
f1,n−k

f2,n−k
...

fk,n−k

 =


w1(ξk) 1 0 . . . 0
w2(ξk) 0 1 . . . 0

. . . . . . . . . . . . . . .

. . . 0 . . . . . . 1
wk(ξk) 0 0 . . . 0


n−k+1 

1
0
...
0

 .

By Borel [1], there is an isomorphism of the cohomology algebras,

ϕ : H∗(RGn,k; Z2) → H∗(CGn,k; Z2),

ϕ(wi(ξk)) = w2i(γk),

where w2i(γk) is the 2i-th Stiefel–Whitney class of the realification of the com-
plex vector bundle γk.

Now we consider the special case of k = 2. Our aim is to prove the following
generalization of Theorem B(2) of Korbaš [5].

Theorem 1.1. Let p : E → B be a Serre fibration with E compact, B
a connected finite CW–complex, and fiber either the real Grassmann manifold
RGn,2 (n ≥ 4) or the complex Grassmann manifold CGn,2 (n ≥ 4). If n is
odd, then the fiber is totally non-homologous to zero in E with respect to Z2.

In [5], where we proved a particular case of this result for n of the form
1 + 2s, one can find other interpretations of 1.1, comments on its applications,
and some related results and considerations.

2. Proof of Theorem 1.1. We shall abbreviate the Stiefel–Whitney class
wj(ξk) ∈ Hj(RGn,k; Z2) to wj . In the proof of Theorem 1.1, we shall need the
following auxiliary result.

Lemma 2.1. Let n ≥ 4. Then

H∗(RGn,2; Z2) ∼= Z2[w1(ξ2), w2(ξ2)]/J(2, n− 2),

where the ideal J(2, n− 2) is generated by the two homogeneous elements

f1,n−2 =
∞∑
i=0

(
n− i− 1

i

)
wn−2i−1

1 (ξ2)wi
2(ξ2)

(in dimension n− 1), and

f2,n−2 =
∞∑
i=0

(
n− i− 1

i− 1

)
wn−2i

1 (ξ2)wi
2(ξ2)
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(in dimension n). Here
(

u

v

)
is the binomial coefficient reduced mod 2 if u ≥ v;(

u

v

)
= 1 if v = 0, and

(
u

v

)
= 0 if u < v.

Lemma 2.1 can readily be proved using (for instance) the Hiller description;
we shall omit the details.

Proof of Theorem 1.1. We proved in [5, Proposition 3] that the fi-
brations considered in the theorem under proof are Z2-orientable. Hence to
prove the theorem it is enough to verify that the graded Z2-vector space
Der<0(H∗(RGn,2; Z2)) resp. Der<0(H∗(CGn,2; Z2)) of all derivations (in the
graded Z2-algebras H∗(RGn,2; Z2) resp. H∗(CGn,2; Z2)) of negative degrees is
trivial if n is odd. Indeed, this enables us to conclude (change the coefficient
field Q to Z2 in Meier [6, Lemma 2.5]) that the corresponding Leray–Serre
spectral sequence collapses, and the fiber is therefore totally non-homologous
to zero with respect to Z2.

We shall show that Der<0(H∗(RGn,2; Z2)) = 0 if n is odd; the complex case
can be analysed analogously, when one uses the above mentioned isomorphism

ϕ : H∗(RGn,2; Z2) → H∗(CGn,2; Z2).

In the rest of the proof, the number n will be odd.
Since the algebra H∗(RGn,2; Z2) is generated by the Stiefel–Whitney classes

w1 and w2, it is clear that an element in Der<0(H∗(RGn,2; Z2)) will be trivial
if it vanishes at w1 and w2.

If an element θ of Der<0(H∗(RGn,2; Z2)) has a nontrivial value at w1, then
θ must be of degree −1, so θ(w1) = 1 in H0(RGn,2; Z2) ∼= Z2. It is known
(Stong [7]) that if s is the unique integer such that 2s < n ≤ 2s+1, then
w2s+1−2

1 6= 0, but w2s+1−1
1 = 0. We see that θ(w1) = 1 implies

0 = θ(w2s+1−1
1 ) = θ(w1)w2s+1−2

1 +w1θ(w2s+1−2
1 ) = 1·w2s+1−2

1 +w1 ·0 = w2s+1−2
1 ,

which is a contradiction. Hence, for any θ ∈ Der<0(H∗(RGn,2; Z2)), θ(w1) = 0.
Now, an element of Der<0(H∗(RGn,2; Z2)) having a nonzero value at w2

must be of degree −1 or −2. Suppose that σ is a derivation of degree −1 such
that σ(w2) 6= 0, and that τ is a derivation of degree −2 such that τ(w2) 6= 0.
Then σ(w2) = w1, because

H1(RGn,2; Z2) ∼= Z2
∼= {0, w1},

and we conclude

τ(w2) = 1 ∈ H0(RGn,2; Z2).
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Further, we know from Lemma 2.1 that
∑∞

i=0

(
n−i−1

i

)
wn−2i−1

1 wi
2 = 0. Using

this, together with the fact that σ(w1) = 0, we compute

0 = σ(
∞∑
i=0

(
n− i− 1

i

)
wn−2i−1

1 wi
2)

= σ(wn−1
1 + wn−3

1 w2 +
∞∑
i=2

(
n− i− 1

i

)
wn−2i−1

1 wi
2)

= σ(wn−1
1 ) + σ(wn−3

1 w2) +
∞∑
i=2

(
n− i− 1

i

)
σ(wn−2i−1

1 wi
2)

= 0 + wn−2
1 +

∞∑
i≥3, i odd

(
n− i− 1

i

)
σ(wn−2i−1

1 wi
2),

because for even values of i ≥ 2

σ(wn−2i−1
1 wi

2) = σ((w
n−2i−1

2
1 w

i
2
2 )2) = 0.

In other words,

0 = wn−2
1 +

∞∑
j=1

(
n− 2j − 2

2j + 1

)
σ(wn−4j−3

1 w2j+1
2 )

= wn−2
1 +

∞∑
j=1

(
n− 2j − 2

2j + 1

)
wn−4j−3

1 σ(w2 · w2j
2 )

= wn−2
1 +

∞∑
j=1

(
n− 2j − 2

2j + 1

)
wn−4j−2

1 w2j
2 .

But this is a contradiction, because (as is well known; one also can see it from
the Hiller description) w1 and w2 satisfy no algebraic relations in dimensions
less than or equal to n− 2. In this way we have shown that σ(w2) = 0.

Now in a similar way we show that τ(w2) = 0. Indeed, using Lemma 2.1
we obtain

0 = τ(
∞∑
i=0

(
n− i− 1

i

)
wn−2i−1

1 wi
2)

= τ(wn−1
1 ) + τ(wn−3

1 w2) +
∞∑
i=2

(
n− i− 1

i

)
τ(wn−2i−1

1 wi
2)

= 0 + wn−3
1 +

∞∑
j=1

(
n− 2j − 2

2j + 1

)
τ(wn−4j−3

1 w2j+1
2 )
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= wn−3
1 +

∞∑
j=1

(
n− 2j − 2

2j + 1

)
wn−4j−3

1 τ(w2 · w2j
2 )

= wn−3
1 +

∞∑
j=1

(
n− 2j − 2

2j + 1

)
wn−4j−3

1 w2j
2 .

This again is an impossible algebraic relation, and therefore τ(w2) = 0. This
finishes the proof of Theorem 1.1.

We have not found a way to prove it, but the following might be true.

Conjecture 2.2. Theorem 1.1 remains valid when the fiber is any RGn,k

(k ≤ n− k) with n odd or any CGn,k (k ≤ n− k) with n odd.
Note that for smooth fiber bundles the conjecture was proved in Horanská,

Korbaš [4] and Korbaš [5]. In attempts to prove the conjecture in general, one
perhaps can use a combination of the “smooth” results with something similar
to the Fiber Smoothing Theorems of Casson and Gottlieb [2].
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