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AN ABSTRACT SEMILINEAR FIRST ORDER
DIFFERENTIAL EQUATIONS IN THE HYPERBOLIC CASE

BY MALGORZATA RADON

Abstract. Using the extrapolation spaces, the existence and uniqueness
of the solution of a semilinear first order equation in the hyperbolic case
are studied.

1. Introduction. Let (X,||-]|) be a Banach space and for each ¢t € [0, 7] let
A(t) : X D Dy — X be a linear closed operator with domain D; dependent on
t. Let u be an unknown function from [0, 7] into X, f be a nonlinear function
from [0,7] x X into X and z¢p € X. We consider the abstract semilinear initial
value problem

(1)

u'(t) = At)u(t) + f(t,u(t)), te(0,T]
u(0) = zo € X.

Our purpose is to study the existence and uniqueness of solution of .
First we shall reduce problem to a problem with densely defined operator
whose domain can depend on t. Next, using the same method as in [4], we
shall introduce the extrapolation space and reduce our problem to the problem
with an operator whose domain is independent of t.

2. Preliminaries. Let (X, ||-||) be a Banach space. Let for each ¢t € [0, 7]

p(A(t)) denote the resolvent set and R(\, A(t)) = (Al — A(t))™1, X € p(A(t))
be the resolvent of A(t). We make the following assumptions:

(Z1) Foreacht € [0,7T], A(t) : X D Dy — X is a closed densely defined linear
operator with the domain D; dependent on t.
(Z2) The resolvent set p(A(t)) does not depend on t and 0 belongs to p(A(t)).
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(Z3) The family {A(t)}, t € [0,T7], is stable in the sense that there exist real
numbers M > 1 and w such that

k
ITIBO A < MO —w)
j=1
foral A>w,0<t; <...<tp, <T,keN.
(Z4) For each x € X, the functlo [0,7] 5t — R(\ A(t))z € X is of class

CcL.

(Zs) For each t, s € [0,T] the operator A~1(t)A(s) is closable and for each
fixed s € [0,7] the mapping t — A~1(¢t)A(s) is continuous in ¢t = s on
[0,T] in the sense that lim;_s ||[A=1(¢)A(s) — I|| = 0.

From the Hille-Yosida Theorem ([3], Th.1.5.3) and from it fol-

lows that for each ¢ € [0, 7], A(t) is the generator of a Cyp-semigroup on X.
For each fixed p € p(A(t))

(2) 2|t := | R(, A(t))z|, ze€X, te€[0,T]
defines a new norm on X.

THEOREM 2.1. ([4], Th.3.1). If assumptions |(Z1)—(Z5)| hold then for each
t € [0,T] the norms |- |o and | - |; are equivalent.

We remark that from Theorem [2.1]it follows that X := (X, |- |o) is not a
Banach space. Since X is the normed space, we can complete it in the sense of
norm | - |p to the complete space Xo The extrapolation space X, is a Banach
space and does not depend on t.

Next, for each t € [0,T], we extend A(t). We denote by A(t) the extension
of A(t) with domain D(A(t)) = X independent of t and X is dense in Xo. We
collect some facts about A(t) in the following theorem.

THEOREM 2.2. ([4], Sec.4). Suppose that assumptions (Z1)—(Zs) hold.
Then
(i) if A € p(A(t), then A € p(A(t)) and R(N\, A(t)) = R\ A(t))|x,
t€[0,T],
(i) the family {A(t)}, t € [0,T] is stable on X,
(iii) the mapping [0,T] >t — A(t)x, x € X, is of class C*.
Let assumptions |(Z;)—(Z5)| hold. We adapt the following definition.

DEFINITION 2.3. A function u € C([0,7], X) given by

u(t) = U(t,0)zo + /Ot Ult,s)f(s)ds, tel[0,T],
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where {U(t,s)},0 < s <t < T is the evolution system of the problem

{u’(t) = A(t)u(t), te(0,T)

u(0) = xo,
is called a mild solution of the linear problem
@) {u’(t) = A(t)u(t) + f(t), te€(0,T]
u(0) = x9 € X.

THEOREM 2.4. ([4], Sec.6). Let assumptions|(Z1)—(Zs)| hold.

If f € Ll((), T; X), then for every xo € X there exists exactly one mild solution
of linear problem .

The mild solution of initial value problem is defined analogously to the
mild solution of .

THEOREM 2.5. ([4], Sec.7). Let assumptions|Z1)—(Zs)| hold.
If f:]0,T] x X — X is such that
(i) for each x € X, f(-,x) € L'(0,T; X),
(ii) there exists L > 0 such that fort € [0,T], u, v € X
1f(t,u) = f(t,0)|| < Lfju = vl],
then for every xo € X there exists exactly one mild solution of initial value
problem .
3. The family of operators {Ay(t)}, t € [0,T]. Let the family {A(¢)},
t € [0,T], satisfy assumptions |(Z2)—(Z5)| from Section [2| and the following

assumption:
(Z1) Yp is a closed subspace of X and for each ¢ € [0, 7]

Yo=D,  vocx, Yi#£x
We remark that assumption (Z) holds particularly if D, = D does not
depend on ¢t € [0,7] and D # X.
Let for each t € [0,T], Ao(t) be the part of A(t) in Yp.
We shall prove that the family {Ag(¢)}, ¢t € [0,T], satisfies assumptions

(Z1)—(Z5)| from Section
Since the family {A(t)}, t € [0,7] is stable on X, it follows from ([2],

Theorem 3.1.10) that
PROPOSITION 3.1. For each t € [0,T] the operator
Ap(t) : Yoo D? = Y,
generates a Co-semigroup SP(s), s >0 on Yy and
R(X, Ao(t) = RO AW®))lve, A€ p(A(1) C p(Ao(t)).
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Consequently, for each t € [0,T], Ao(t) is a linear closed operator whose

domain DY can depend on t and Fg =Y.
Applying Proposition [3.1] we obtain the following theorem.

THEOREM 3.2. Suppose that assumptions hold. Then
(i) the family {Ao(t)}, t € [0,T] is stable on Yy,
(i) the mapping [0,T] >t — R(\, Ao(t))y € (Yo, | - ||) is of class C1,
(iii) for eacht, s € [0,T], the operator Ay*(t)Ao(s) is closable and for each
fivred s € [0,T] the mapping [0,T] > t — Ay*(t)Ao(s) is continuous in
t=s.

4. The family of operators {Ay(t)},t € [0,T]. Let assumptions |(Z)

(Z5)| be satisfied.
Since the family {Ag(¢)}, t € [0,7T] satisfies assumptions |[(Z1)—(Z5)| from

Section [2| we can construct the extrapolation space of Yj.
Analogously to norm (2)), for each fixed p € p(A(t)) C p(Ao(t)) define

a new norm on Yy as
lyle == [|R(, Ao()yll, v €Yo, t€[0,T].

Analogously as in Section |2 there exists a space X which is the closure
of Yy in the norm | - |o.
From (2], Theorem 3.1.10), the next theorem follows.

THEOREM 4.1. X is isomorphic to the space which is the closure of X in
the norm:

|zfo := [|R(p, AQ0))zl|,  ze€X.

In the sequel, for each t € [0,T], we extend the operator Ay(t) to the
operator
Ao(t) : Xo O (Yo, - |o) — Xo.

The domains D(Ay(t)) = Yy do not depend on t and Yj is dense in Xj.
Applying Theorem [2.2] we obtain the following theorem.

THEOREM 4.2. Suppose that assumptions hold. Then
(i) if X € p(Ao(t)), then X € p(Ag(t)) and R(X, Ao(t)) = R(X, Ao(t))]ve,
t € 0,77,
(ii) the family {Ao(t)}, t € [0,T] is stable on Xo,
(iii) the mapping [0,T] >t — Ao(t)y, y € Yy is of class C*.
From this theorem it follows that the norm on Xj is given by

12] ¢, = |20 = [ R(1, Ao(0))2]l, &€ Xo, 1 € p(A(0)).
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5. The linear case. In this section we consider the following linear prob-

lem
u'(t) = A(t)u(t) + f(t), te(0,T]
W { u(0) = oo,

where {A(t)}, t € [0,T], satisfies assumptions from Section

We remark that from ([3], Theorem 5.4.8) it follows that under assumptions

there exists the unique evolution system {U(t,s)}, 0 < s <t < T of

the problem

) {u’(t) = Ag(t)zf(t), t e (0,7
u(0) = zo € Xo.

Now we recall the following definition.

DEFINITION 5.1. A function u : [0,7] — Xj is a classical solution of the
problem
(6) u'(t) = Ao(t)u(t) + f(1), te(0,T]

u(0) = zo € X,
if u is continuous on [0,T], continuously differentiable on (0,T], u(t) € Yy for
t € (0,7 and () is satisfied.

Applying Theorem and ([3], Theorem 5.5.3) we obtain the following

theorem.

THEOREM 5.2. Suppose that assumptions — Z5)| hold.
If f € CL([0,T], X), then for each o € Yy problem (b)) has exactly one classical

solution u given by
t

(7) u(t) = U(t.0m + [ U(t.)7()is,
0

where {U(t,s)},0 < s <t < T is the evolution system of ®).

Furthermore, from the proof of Theorem 5.5.3 in [3] it follows that the
function u given by (7)) is of class C'*([0,T], Xo).

THEOREM 5.3. Let assumptions (Z,)—(Zs) be satisfied. If f € C*([0,T], X)
and xg € Yy, then the function u given by (7)) is continuous in (X, || - ||).

PROOF. From Theorem and Definition [5.1| it follows that u(t) € X for
t e [0,T].
The norm

”@/HD(AO(O)) = |ylo + |A0(0)?J|Oa y €Y
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is equivalent to the norm || - || (see [4], Prop. 5.3). Thus for each fixed tg € [0, T]
and for each t € [0, 7]

[[u(t)—u(to)]] <
< M{[u(t) = u(to)lo + |[Ao(0)(Ao(£)) "M ][Ao(t)u(t) — Ao(to)ulto)]lo
+ [[Ao(0) (Ao (1) M [Ao(to)ulto) — Ao(t)ulto)]lo],
where M := maz{|ul,1}. By Definition
|u(t) — u(t0)|0 — O, t— to.

Therefore from Theorem [4.2]

1[A0(0) (Ao () "[Ao(to)u(to) — Ao(t)ulto)llo — 0, ¢ — to.
From Definition [5.1] it follows that

Ao(tyu(t) = u'(t) — £(1).

Since v € C([0,T], Xo) and f € C'([0,T], Xo), there is

I[Ao(0)(Ao () [Ao(t)u(t) — Ao(to)ulto)]lo — 0, & — to.
Hence u given by is continuous in (X, || - ||). O

A mild solution of initial value problem is defined analogously to a mild
solution of .
From Theorem and Theorem it follows the following theorem.

THEOREM 5.4. Assume (Z5)l If f € C*[0,T),X) and x¢ € Yo, then
problem has the unique mild solution.

6. The semilinear case. In this section we consider nonlinear problem

(1)), mentioned in the introduction, where {A(t)}, ¢t € [0, T] satisfies
We remark that if the function f : [0,7] x Yy — Yj satisfies assumption

from Theorem we obtain the theorem on the existence and uniqueness for

the problem .
But if the function f:[0,7] x X — X, we need the following assumption.

(Zg) The function f :[0,7] x X — X is of class C! and

of of

I5-ta)xox <L and [ 25(6 )5, 5, < Lo,

where L > 0 and Ly > 0 independent of ¢ and «.

From this assumption it follows that
@) Nf@ ) = ftz2)l| < Lllwy —a2fl,  a,22€ X, t€[0,7],
and
9 |f(t,z1) = f(t,z2)|o < Lolw1 — z2lo,  x1,22 € X, t€[0,T].
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The classical solution of the problem
u'(t) = Ag(t)ult) + f(t,u(t), te(0,T)
’LL(O) =0 € XO

is defined analogously to the classical solution of @ (Def. .
The following theorem holds true.

THEOREM 6.1. Let assumptions|(Z1H(Zes)| hold. If u is a classical solution
of , then u satisfies the integral equation

(11) u(t) = U(t,0)xo *‘jﬁ Ult,s)f(s,u(s))ds,

where {U(t,s)}, 0 < s <t <T is the evolution system of ®).

(10)

In the sequel, we shall need the following lemma.

LEMAT 6.2. Let assumptions |(Z])H(Zs)| hold. Suppose that
u e C([0,T],X)NCY[0,T], Xo). Then the function g : [0,T] >t — f(t,u(t))

is of class C1([0,T], (Xo, | |0))-
PRrROOF. Let t, t+ h € [0,T].

Fl(t+ 1) = g(0)] = T17(+ hyule +R) = £t u(®)]
= IFG Ryt + B) — f(u(t +B)]
0 ul0)) e+ ) = ult)] + (), ),

h
This, together with Theorem and assumption shows that ¢’ exists in
Xo and for each t € [0, 7]

J(t) = £t ult) + filt u(®) (1),
Now for tg € [0,T] and t € [0, 7] there is
l9'(6)= g'(t0)lo < fy (8, u(t)) = fo (£, u(D)) li=to lo
+ | fa(t u(®)a! (8) = foltsu(®) l=o @' (t0)l0

< Ot ) = £ ule) s |

+ | fa (w0 (8) = ' (t)]lo + |[Fa (s u(t)) = fot, u(t)) le=so]td' (o) o-

Thus the function [0,7] 3 t — ¢'(t) € X is continuous. Hence the function
g:[0,T] 3t — f(t,u(t)) is of class C*([0,77], (Xo, ]| |0)). This concludes the
proof of Lemma [6.2) O
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Now we shall prove the following theorem.

THEOREM 6.3. Assume |(Z;)H(Zs)| and let xo € Yo. Then there exists
exactly one solution of continuous in (X, || - ).

PROOF. Let
U,o(t) = X0, t e [O,T],

go(t) == f(t,uo(t)),  t€][0,T].
Applying Theorem we see that the problem
W () = Ag(t)u(t) + golt), € (0,T]
u(O) =20 €Y
has exactly one classical solution u; given by
t
w(®) = U0z + [ O(t,9)0(s)ds,
0
where {U(t,s)}, 0 < s <t < T is the evolution system of (B). Therefore, from
Theorem [5.3[ and ([3], Theorem 5.5.3), we have
uy € C([0,7], X) N C*([0,T], Xo).
Let

g1(t) == f(t,ui(t)), te[0,T].

By Lemma the function [0,T] 3 t — ¢1(t) € Xp is of class C'. Once again
using Theorem 5.5.3 in [3] and Theorem we see that the problem

{ u'(t) = Ag(t)u(t) + g1(t), te (0,T)
u(O) =20 €Y

has exactly one classical solution uy given by
t
ug(t) = U(t,0)xo + / Ul(t,s)g1(s)ds
0

and

us € C([0,T], X) N CY([0, T), Xo)-
After n steps, we conclude that there exists exactly one function
unt1 € C([0,7T], X) given by

Upt1(t) = U(t, 0)xo + /Ot U(t, s)f(s,un(s))ds, n=0,1,2,..,

where

u, € C([0,T],X)NC*[0,T], Xo).
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Let k := sup{||U(t,s)|| : 0 < s < ¢ < T}. In the space C([0,T],X), consider
two equivalent norms:

[[ul] := sup{[lu(t)] : 0 <t < T},
ull := sup{e * u(t)]| : 0 < t < T},
where L > 0 is the Lipschitz constant (see (§8])). Therefore

1 = unl|" = sup {e™H un i1 () — un (0]}
te[0,T)

< sup (e [0t 8) (5, unls)) — F(s una()] s}
< sup {50 [ L) s (5]

t
smsw&ﬁ%mﬁme/&%mzu—f“%wwmmm.
te[0,7 0

Setting Q := 1 — e~ LT by induction we obtain
Hun-‘rl_unH SQnHUl—’U,QH ) n:O71727"'

Consequently, for n < m

/ Qn /

ln = umll” < 17 QHul — uol| -
Since limy, oo Q™ = 0, {uy, }5°; is a Cauchy sequence. Thus, by letting n — oo,
we see that u € C([0,7T], X). O

A mild solution of initial value problem is defined analogously to a mild
solution of .
From Theorem [6.3] the next theorem follows.

THEOREM 6.4. Assume |(Z7)H(Zs)| and let xo € Yo. Then there exists
exactly one mild solution of initial value problem .

7. Example. We shall give an example of the family {A(¢)}, ¢ € [0,7]
with a domain which is not dense and can depend on t. For each t € [0,T],

the operator A(t) will hold assumptions |(Z2)—(Z5)|
Let © := Q1 \ Qo, where

Q:={(z,y) eR*:2>0 y>0},
Qo :={(z,y) eR*: O<z<1l, O0<y<l, (z—-1>2*+@y-1>2*>1}
We shall consider the differential operator of second order:

(12)  A(t;z,y; D) == B(z,y; D) + b(t; 7, y) 1, (x,y) €Q, tel0,T],
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where
0? 0? 0?
1 B ;D) :=b — +2b —+5b —.
( 3) (xaya ) 1(xay)ax2 + 2($7y)amay + 3(x7y)8y2
We make the following assumptions:
(Py) For each t € [0,T7], the operator A(t;z,y; D) is uniformly strongly ellip-
tic on €2 in the sense that there is a constant C' > 0 such that for all
(x,y) €  and (fl,fg) € R?

(P2) The coefficients by, be, bg are uniformly continuous on €2; are continuous
and uniformly bounded on 2. We remark that from (Py) it follows that
the inverse operator B! exists and there is K > 0 that |B~!|| < K.
Moreover, we assume that:
(P3) The coefficient b on [0, 7] x Q is of class C! and |b(t; z,y)| < +.

With the family {A(¢;x,y; D)}, t € [0,T], we associate the family of linear
operators {A(t)}, t € [0,T], on the space

Co(Q) :={ueC(Q): Qh_r)réou(Q) =0, Qe€Q}.

The norm in Co(Q) is defined by

[u]| := max{[u(Q)|: Q€ Q}.
Let
D(A) ={ueCyQ): wuce Wi A(t;z,y; D)u € Co(Q),  u |og= 0}

loc?

be the domain of the operator A(t) for each ¢ € [0,7] and let
A(t)u = A(t; x,y; D)u, u € D(A).
W24 denotes the set of all functions which are in W24(QNT) for all closed

boundlga sets I'.

D(A) is clearly independent of ¢ and from [5] it follows that this is not
dense in Cp(92).

We remark that from (P3) it follows that for each u € D(A),
[0,T] >t — A(t)u € Cp(R) is of class C*.

We collect some facts about A(t) in the following theorem.

THEOREM 7.1. Let assumptions |(P1)—(Ps)| hold. Then

(i) 0€ p(A(t)),
(i) for each t, s € [0,T] the operator A=1(t)A(s) is closable and for each
fized s € [0,T] the mapping t — A=L(t)A(s) is continuous in t = s.
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From it follows that the operator B : Co(Q2) D D(A) — Cop(Q) is uni-
formly strongly elliptic on Q. Consequently ([3], Sec.7.3) there is the operator

B2 : Cy(Q) D D(B2) — Cy(Q) given by

1 oo
Bru= / z_%BR(z,B)udz, u € D(A)
0

s

and such that [B%]2 = B.
Thus from [6] (Prop.2.7 and Prop.2.6), we have the following theorem.

THEOREM 7.2. The operator

0 I
B':[B o]’

with domain D(A) x D(B%) is a Hille-Yosida operator on [D(B%)] x Co(Q),
where [D(B%)] denotes the linear space D(B%) with the norm

jul := lull + | B3ul,  ueD(Bz).
Therefore, for each ¢ € [0,T] we may define the operator

A(t) : [D(B?)] x Co(Q) D D(A) — [D(B?)] x Co(%)
by

The domain of {A(t)}, t € [0,T] is D(A) = D(A) x D(B2). For each
t € [0, T, the operator A(t) is not densely defined.

THEOREM 7.3. Suppose assumptions|(P;)—(Ps)| hold. Then
(i) 0 € p(A(t)),
(ii) the family {A(t)}, t € [0,T] is stable,
(iii) the mapping [0,T] 5 t — A(t)x € [D(B%)] x Co(Q), © € D(A) is of
class C*.
(iv) for eacht, s € [0,T] operator A~1(t).A(s) is closable and for an arbitrary
s €10,T] the mapping [0,T] >t — A~L(t)A(s) is continuous in t = s.
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