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ON THE CHAPLYGHIN METHOD FOR GENERALIZED

SOLUTIONS OF PARTIAL DIFFERENTIAL FUNCTIONAL

EQUATIONS

by Wojciech Czernous

Abstract. Initial boundary value problems for semilinear first-order par-
tial differential functional equations are considered. It is shown that under
natural assumptions on given functions there exists a Chaplyghin sequence
and it is convergent to the Carathéodory solution of the original problem.
Error estimates for approximate solutions are given. It is proved that the
Chaplyghin method for initial boundary value problems is equivalent to the
Newton method for a suitable integral functional equation.

1. Introduction. For any metric spaces X and Y , by C(X,Y ), we denote
the class of all continuous functions from X into Y . We will use vectorial
inequalities with the understanding that the same inequalities hold between
their corresponding components.

Let a > 0, h0 ∈ R+, R+ = [0,+∞), b = (b1, . . . , bn) ∈ Rn and h =
(h1, . . . , hn) ∈ Rn

+ be given, where bi > 0 for 1 ≤ i ≤ n. We define the sets

E = [0, a]× [−b, b], D = [−h0, 0]× [−h, h].
Let c̄ = (c1, . . . , cn) = b+ h and

E0 = [−h0, 0]× [−c̄, c̄],
∂0E = [0, a]× ([−c̄, c̄]\(−b, b)), Ω = E0 ∪ E ∪ ∂0E.

Suppose that z : Ω → R and (t, x) ∈ E are fixed. We define the function
z(t,x) : D → R as follows

z(t,x)(τ, ξ) = z(t+ τ, x+ ξ), (τ, ξ) ∈ D.
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The function z(t,x) is the restriction of z to the set [t − h0, t] × [x − h, x + h]
and this restriction is shifted to the set D. Elements of the space C(D,R) will
be denoted by w, w̄ and so on. We denote by ‖ · ‖0 the supremum norm in the
space C(D,R). Let

f = (f1, . . . , fn) : E → Rn, G : E × C(D,R) → R, ϕ : E0 ∪ ∂0E → R,

α0 : E → R, α′ : E → Rn, α′ = (α1, . . . , αn)
be given functions. Write α(t, x) = (α0(t, x), α′(t, x)), (t, x) ∈ E. We require
that α(t, x) ∈ E and α0(t, x) ≤ t for (t, x) ∈ E. We consider the problem
consisting of the functional differential equation

(1) ∂tz(t, x) +
n∑

i=1

fi(t, x)∂xiz(t, x) = G(t, x, zα(t,x)),

and the initial-boundary condition

(2) z(t, x) = ϕ(t, x) on E0 ∪ ∂0E.

A function z̃ : [−h0, ξ] × [−c̄, c̄] → R, where 0 < ξ ≤ a, is a Carathéodory
solution of problem (1), (2) if it is continuous and

(i) the derivatives ∂tz̃, ∂xz̃ = (∂x1 z̃, . . . , ∂xn z̃) exist almost everywhere on
[0, ξ]× [−b, b],

(ii) z̃ satisfies (1) almost everywhere on [0, ξ] × [−b, b] and condition (2)
holds.

Note that our hereditary setting contains well known delay structures as
particular cases.

In the paper, we give sufficient conditions for the existence of a sequence
{u(m)} and a function u∗ such that:

(i) u∗ is a Carathéodory solution of (1), (2) and {u(m)} is a sequence of
solutions of some linear functional differential equations obtained by
linearization of (1),

(ii) {u(m)} uniformly converges to u∗ and the convergence is of the Newton
type.

This method of approximating solutions of differential equations was intro-
duced by Chaplyghin in [5]. The Chaplyghin method was applied to systems
of first-order partial differential equations in [9], [11] and it was extended in
[10] onto the case of infinite systems. The method for partial differential-
functional equations with another model of functional dependence was con-
sidered in [7], but linearization with respect to the classical argument only
was allowed here. The Chaplyghin method for classical solutions of semilinear
functional-differential equations with initial boundary conditions was investi-
gated in [6]. The results presented in [6], [7] have the following properties: it is
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assumed that the Chaplyghin sequences exist and the proofs of the convergence
are based on theorems on differential inequalities.

It is clear that the results and methods presented in [6] do not apply to
Carathéodory solutions of (1), (2).

The theory of the Chaplyghin method for parabolic functional-differential
problems was developed in [1]–[3].

The aim of this paper is to give a further contribution to the Chaplyghin
method for functional-differential problems. We prove that under suitable
assumptions on given functions there exists a sequence of approximate solutions
and it uniformly converges to a Carathéodory solution of (1), (2). We establish
estimates for the difference between exact and approximate solutions of (1),
(2).

Note that our results are new also in the case when (1) reduces to the
equation without the functional dependence.

Throughout the paper, we use these general ideas for the Chaplyghin
method which were introduced in [12].

2. Characteristics. Write

∆+
i = {x ∈ [−b, b] : xi = bi}, ∆−

i = {x ∈ [−b, b] : xi = −bi},

where 1 ≤ i ≤ n, and

∆ =
n⋃

i=1

(
∆+

i ∪∆−
i

)
.

We will need the following function spaces in our considerations. Write Ωt =
Ω∩ ([−h0, t]×Rn) and Et = [0, t]× [−b, b], where 0 ≤ t ≤ a. We will denote by
‖ · ‖t the supremum norm in the spaces C(Ωt,R). Analogously, we will use the
symbol ‖ · ‖(t) to denote the supremum norm in C(Et,R). For x ∈ Rn, where
x = (x1, . . . , xn), we put

‖x‖ =
n∑

j=1

|xi|.

Let p = (p0, p1) ∈ R2
+. Denote by J [p] the set of all functions ϕ ∈ C(E0 ∪

∂0E,R) such that |ϕ(t, x)| ≤ p0 on E0 ∪ ∂0E and

|ϕ(t, x)− ϕ(t̄, x̄)| ≤ p1[|t− t̄|+ ‖x− x̄‖] on E0 ∪ ∂0E.

Assumption H[f ] Suppose that
1) the function f : E → Rn is such that

(i) f(·, x) : [0, a] → Rn is measurable for each x ∈ [−b, b] and f(t, ·) :
[−b, b] → Rn is continuous for almost all t ∈ [0, a],
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(ii) there are A1, B1 ∈ R+ such that

‖f(t, x)‖ ≤ A1 on E,

and

‖f(t, x)− f(t, x̄)‖ ≤ B1‖x− x̄‖

for (t, x), (t̄, x̄) ∈ E,
2) there is κ > 0 such that for 1 ≤ i ≤ n:

fi(t, x) ≤ −κ for x ∈ ∆+
i ,

fi(t, x) ≥ κ for x ∈ ∆−
i

for t ∈ [0, a].

Suppose that (t, x) ∈ Ec. Consider the Cauchy problem

(3) η′(τ) = f(τ, η(τ)), η(t) = x.

Denote by g(·, t, x) = (g1(·, t, x), . . . , gn(·, t, x)) a Carathéodory solution of (3).
The function g(·, t, x) is the characteristic of equation (1).

Suppose that Assumption H[f ] is satisfied. Then g(·, t, x) exists on the
interval [0, c] and is unique. The existence and uniqueness of the above solution
follow from classical theorems. Let I(t,x) be the domain of g(·, t, x) and δ(t, x)
be the left endpoint of the maximal interval on which the characteristic g(·, t, x)
is defined.

We prove a lemma on bicharacteristics.

Lemma 2.1. Suppose that Assumption H[f ] is satisfied and let ϕ ∈ J [p],
c ∈ (0, a] be given. Then the solution g(·, t, x) exists on the interval I(t,x) such
that for ζ = δ(t, x) there is ζ = 0 or g(ζ, t, x) ∈ ∆. The characteristics are
unique on I(t,x). Moreover, the following estimate holds

(4) ‖g(τ, t, x)− g(τ, t̄, x̄)‖ ≤ C̄
[
|t− t̄|+ ‖x− x̄‖

]
for τ ∈ I(t,x) ∩ I(t̄,x̄), (t, x), (t̄, x̄) ∈ Ec and

C̄ = max{1, A1} exp{cB1}.

Proof. The existence and uniqueness of solutions of (3) follow from the
classical theorem on Carathéodory solutions of initial problems. The function
g(·, t, x) satisfies the integral equation

(5) g(τ, t, x) = x+
∫ τ

t
f(s, g(s, t, x))ds.
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It follows from Assumption H[f ] that the function g(·, t, x)− g(·, t̄, x̄) satisfies
the integral inequality

‖g(τ, t, x)− g(τ, t̄, x̄)‖ ≤ ‖x− x̄‖

+A1|t− t̄|+
∣∣∣∣∫ τ

t̄
B1‖g(s, t, x)− g(s, t̄, x̄)‖ds

∣∣∣∣ , τ ∈ I(t,x) ∩ I(t̄,x̄).

Then we obtain (4) by the Gronwall inequality. This proves Lemma 2.1.

Now we give a lemma on a regularity of the function δ.

Lemma 2.2. Suppose that Assumption H[f ] is satisfied and ϕ ∈ J [p],
c ∈ (0, a]. Then the function δ is continuous on Ec. Moreover, the follow-
ing estimate holds

(6) |δ(t, x)− δ(t̄, x̄)| ≤ 2C̄
κ

[|t− t̄|+ ‖x− x̄‖]

for (t, x), (t̄, x̄) ∈ Ec.

Proof. The continuity of δ follows from classical theorems on continuous
dependence on initial conditions for Carathéodory solutions of initial problems.
Now we prove (6). This estimate is obvious in the case δ(t, x) = δ(t̄, x̄) = 0
(i.e., in the case where solutions of problem (3) are defined on [0, t] and [0, t̄]).
Suppose now that 0 ≤ δ(t, x) < δ(t̄, x̄). Then for ζ̄ = δ(t̄, x̄) there is g(ζ̄, t̄, x̄) ∈
∆ and there exists i, 1 ≤ i ≤ n, such that |gi(ζ̄, t̄, x̄)| = bi. Two possibilities
can occur: either (i) gi(ζ̄, t̄, x̄) = bi or (ii) gi(ζ̄, t̄, x̄) = −bi. Consider case (i).
Let x = (x1, . . . , xn), x̃ = (x1, . . . , xi−1, bi, xi+1, . . . , xn). There is

(7) |fi(t, x)− fi(t, x̃)| ≤ B1(bi − xi),

for (t, x) ∈ Ec. Thus

fi(t, x) ≤ −κ
2

for (t, x) ∈ Ec such that bi − xi ≤ κ(2B1)−1. It follows from Lemma 2.1 that

bi − gi(ζ̄, t, x) = gi(ζ̄, t̄, x̄)− gi(ζ̄, t, x) ≤
κ

2B1

for (t, x), (t̄, x̄) ∈ Ec such that

(8) |t− t̄|+ ‖x− x̄‖ ≤ κ

2B1C̄
.

Then we get
fi(ζ̄, g(ζ̄, t, x)) ≤ −κ

2
< 0

and, consequently,
∂tgi(δ(t̄, x̄), t, x) < 0
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for (t, x), (t̄, x̄) ∈ Ec satisfying (8). From the above inequality and from the
uniqueness of g(·, t, x), it can easily be seen that gi(·, t, x) is decreasing on the
interval (δ(t, x), δ(t̄, x̄)). Therefore,

bi − gi(τ, t, x) ≤
κ

2B1

and the estimate
fi(τ, g(τ, t, x)) ≤ −κ

2
holds for τ ∈ (δ(t, x), δ(t̄, x̄)) and (t, x), (t̄, x̄) ∈ Ec such that (8) is satisfied.
Then

−κ
2
[δ(t̄, x̄)− δ(t, x)]

≥
∫ δ(t̄,x̄)

δ(t,x)
fi(τ, g(τ, t, x))dτ = gi(δ(t̄, x̄), t, x)− gi(δ(t, x), t, x)

≥ gi(δ(t̄, x̄), t, x)− gi(δ(t̄, x̄), t̄, x̄) ≥ −C̄
[
|t− t̄|+ ‖x− x̄‖

]
.

Thus the proof of (6) for (t, x), (t̄, x̄) ∈ Ec, such that (8) holds, is complete in
case (i). In a similar way we prove (6) in case (ii). Let (t, x), (t̄, x̄) ∈ Ec be
arbitrary. We put M = ‖x− x̄‖+ |t− t̄|. There exists K ∈ N such that

(K − 1)
κ

2B1C̄
< M ≤ K

κ

2B1C̄
.

Let ε ∈ R, ε = 1
K . For j = 0, . . . ,K, we put

x̄(j) = jεx̄+ (1− jε)x, t̄(j) = jεt̄+ (1− jε)t.

Note that (t̄(0), x̄(0)) = (t, x), (t̄(K), x̄(K)) = (t̄, x̄) and

‖x̄(j) − x̄(j+1)‖+ |t̄(j) − t̄(j+1)| = M

K
≤ κ

2B1C̄

for j = 0, . . . ,K − 1. It is easy to see that

‖x− x̄‖ =
K−1∑
j=0

‖x̄(j) − x̄(j+1)‖ and ‖t− t̄‖ =
K−1∑
j=0

‖t̄(j) − t̄(j+1)‖.

Then there is
|δ(t, x)− δ(t̄, x̄)|

≤
K−1∑
j=0

|δ(t̄(j), x̄(j))− δ(t̄(j+1), x̄(j+1))|

≤
K−1∑
j=0

2C̄
κ

[
|t̄(j) − t̄(j+1)|+ ‖x̄(j) − x̄(j+1)‖

]
=

2C̄
κ

[
|t− t̄|+ ‖x− x̄‖

]
.

Thus we see that (6) holds true for all (t, x), (t̄, x̄) ∈ Ec.
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3. Chaplyghin sequences. We denote by CL(D,R) the set of all contin-
uous and real functions defined on C(D,R) and by ‖·‖∗ the norm in CL(D,R).
We now formulate assumptions on G and α.

Assumption H[G]. Suppose that
1) the function G : E × C(D,R) → R is such that

(i) G(·, x, w) : [0, a] → R is measurable for each (x,w) ∈ [−b, b] ×
C(D,R),

(ii) G(t, ·) : [−b, b]×C(D,R) → R is continuous for almost all t ∈ [0, a],
2) there are A2, B2 ∈ R+ such that for (t, x, w), (t, x̄, w̄) ∈ E × C(D,R)

there is
|G(t, x, w)| ≤ A2

|G(t, x, w)−G(t, x̄, w̄)| ≤ B2[‖x− x̄‖+ ‖w − w̄‖0],

3) the Fréchet derivative ∂wG(t, x, w) ∈ CL(D,R) exists for (t, x, w) ∈
E × C(D,R),

4) there exist A3, B3 ∈ R+ such that

‖∂wG(t, x, w)‖∗ ≤ A3,

‖∂wG(t, x, w)− ∂wG(t, x, w̄)‖∗ ≤ B3‖w − w̄‖0

for (t, x, w), (t, x, w̄) ∈ E × C(D,R).
Assumption H[α]. Suppose that

1) the function α : E → E is continuous,
2) there are r0, r1 ∈ R+ such that for (t, x), (t̄, x̄) ∈ E there holds

|α0(t, x)− α0(t̄, x̄)| ≤ r0[|t− t̄|+ ‖x− x̄‖],

‖α′(t, x)− α′(t̄, x̄)‖ ≤ r1[|t− t̄|+ ‖x− x̄‖].
Suppose that Assumptions H[f ], H[G], H[α] are satisfied and ϕ ∈ J [p]. We

consider a sequence
{
z(m)

}
, z(m) : Ωc → R, defined in the following way:

(i) z(0) ∈ C(Ωc,R), z(t, x) = ϕ(t, x) for (t, x) ∈ (E0∪∂0E)∩([−h0, c]×Rn)
and z(0) satisfies the Lipschitz condition with respect to (t, x) on Ωc,

(ii) if z(m) : Ωc → R is known then z(m+1) is a Carathéodory solution of the
linear equation

(9)

∂tz(t, x)+
n∑

i=1

fi(t, x)∂xiz(t, x) = G(t, x, z(m)
α(t,x))+∂wG(t, x, z(m)

α(t,x))(z−z
(m))α(t,x)

with the initial-boundary condition

(10) z(t, x) = ϕ(t, x) for (t, x) ∈ (E0 ∪ ∂0E) ∩ ([−h0, c]× Rn).
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We prove that there is c ∈ (0, a] such that the sequence
{
z(m)

}
is well defined

on Ωc and converges to a Carathéodory solution of (1), (2).
Our considerations are based on the following idea. We transform problem

(1), (2) into an abstract equation F [z] = 0 where F : X → X and X is a
Banach space. Then we consider a Newton method for the above equation and
we prove that

{
z(m)

}
is a Newton sequence for the abstract equation.

Suppose that (X, ‖ · ‖X) is a Banach space and

S = {u ∈ X : ‖u− u0‖X ≤ δ},

where u0 ∈ X is arbitrary and δ > 0. Let F : S → X be a given operator such
that F ′(u) exists for u ∈ S. We consider the equation

(11) F(u) = 0

and the Newton method

(12) u0, um+1 = um − [F ′(um)]−1F(um), m ≥ 0.

We will need the following theorem in our considerations.

Theorem 3.1. Suppose that F : S → X and
1) the Fréchet derivative F ′(u) exists for x ∈ S,
2) there is K ∈ R+ such that

‖F ′(u)−F ′(ū)‖∗ ≤ K‖u− ū‖X for u, ū ∈ S,

3) the operator F ′(u0) has the inverse Γ0 = [F ′(u0)]−1 and there is B ∈ R+

such that ‖Γ0‖ ≤ B,
4) for the initial element u0, the estimate ‖Γ0F(u0)‖X ≤ η holds,
5) the constants B,K, η fulfil the inequality h̃ = BKη ≤ 0, 5,
6) for δ, the following inequality holds:

1−
√

1− 2h̃
h̃

η ≤ δ.

Then
(i) there exists a solution of equation (11),
(ii) the Newton sequence (12) exists and there is u∗ such that

u∗ = lim
m→∞

um,

(iii) f(u∗) = 0 and the following estimate holds

‖u∗ − um‖X ≤ 1
2m−1

(2h̃)2
m−1η, m ≥ 0.

The proof of the above theorem is given in [8].
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4. Newton method for integral-functional equations. Suppose that
Assumptions H[f ], H[G], H[α] are satisfied and ϕ ∈ J [p]. Write

S(t, x) = (δ(t, x), g(δ(t, x), t, x)).

Let us consider the operator F : C(Ωc,R) → C(Ωc,R) defined by

F [z](t, x) = z(t, x)− ϕ(S(t, x))−
∫ t

δ(t,x)
G(s, g(s, t, x), zα(s,g(s,t,x)))ds,

F [z](t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E.

It is clear that the equation

(13) F [z](t, x) = 0

is obtained from (1), (2) by integrating (1) along characteristics. The existence
result for (13) is based on the following method of successive approximations.

We consider a sequence
{
z(m)

}
, z(m) : Ωc → R, defined in the following

way:
(A) z(0) ∈ C(Ωc,R), z(t, x) = ϕ(t, x) for (t, x) ∈ (E0∪∂0E)∩([−h0, c]×Rn),
(B) if z(m) : Ωc → R is known, then z(m+1) is the solution of the equation

z(t, x) = ϕ(S(t, x)) +
∫ t

δ(t,x)
G(P (m)(s, t, x))ds

+
∫ t

δ(t,x)
∂wG(P (m)(s, t, x))(z − z(m))α(s,g(s,t,x))

with the initial-boundary condition

z(t, x) = ϕ(t, x) for (t, x) ∈ (E0 ∪ ∂0E) ∩ ([−h0, c]× Rn),

where
P (m)(s, t, x) = P [z(m)](s, t, x)

and
P [z](s, t, x) = (s, g(s, t, x), zα(s,g(s,t,x))).

We prove that the above sequence is well defined and that it converges to a
solution of (13).

Lemma 4.1. Suppose that Assumptions H[f ], H[G], H[α] are satisfied and
ϕ ∈ J [p]. Then for 0 < c ≤ c̃, where

c̃ = (2A3)−1 arsinh{A3(2B3η̃)−1}, η̃ = ‖z(0)‖a + p0 + aA2,

there is:
1) equation (13) has a solution z∗ : Ωc → R,
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2) the sequence
{
z(m)

}
is well defined by (A), (B) on Ωc and

lim
m→∞

z(m)(t, x) = z∗(t, x) on Ec,

3) the following estimates hold

(14) ‖z∗ − z(m)‖c ≤
C̃

2m−1
(2h̃)2

m−1η, m ≥ 0,

where
(15)

C̃ = exp{2A3c}, η = 2(‖z(0)‖c + p0 + cA2), h̃ = B3(A3)−1 sinh(2A3c)η ≤
1
2
.

Proof. We consider the Banach space (C(Ωc,R), ‖ · ‖B), where

‖z‖B = max{‖z‖te
−2A3t : t ∈ [0, c]}.

Note that
‖v‖ce

−2A3c ≤ ‖v‖B

and, consequently,

(16) ‖v‖c ≤ C̃‖v‖B

for v ∈ C(Ωc,R).
We apply Theorem 3.1 to prove the above properties of equation (13). It

follows from Assumption H[G] that the Fréchet derivative F ′[z] exists and
(17)(
F ′[z] v

)
(t, x) = v(t, x)−

∫ t

δ(t,x)
∂wG(P [z](s, t, x))vα(s,g(s,t,x))ds for (t, x) ∈ Ec,(

F ′[z] v
)
(t, x) = v(t, x) for (t, x) ∈ (E0 ∪ ∂0E) ∩ ([−h0, c]× Rn).

We consider the operator U : C(Ωc,R) → C(Ωc,R) defined by

U [v](t, x) =
∫ t

δ(t,x)
∂wG(P [z](s, t, x))vα(s,g(s,t,x))ds on E

and
U [v](t, x) = 0, (t, x) ∈ E0 ∪ ∂0E.

Then

|U [v](t, x)| ≤
∫ t

δ(t,x)

∣∣∂wG(P [z](s, t, x))vα(s,g(s,t,x))e
−2A3se2A3s

∣∣ ds
≤ ‖v‖B

∫ t

0
A3e

2A3sds ≤ 1
2
‖v‖Be

2A3t

and, consequently,

|U [v](t, x)|e−2A3t ≤ 1
2
‖v‖B
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and
‖U [v]‖B ≤ 1

2
‖v‖B.

It follows that ‖U‖∗ ≤ 1
2 < 1 and F ′[z] exists. Moreover, there is

‖
(
F ′[z]

)−1 ‖ ≤ 2,

where z ∈ C(Ωc,R). The Newton method for equation (13) with the starting
function z(0) has the form

z(m+1)(t, x) = z(m)(t, x)−
(
F ′[z(m)]

)−1
F [z(m)](t, x), m ≥ 0.

It easily follows that the above relations are equivalent to

z(m+1)(t, x) = ϕ(S(t, x)) +
∫ t

δ(t,x)
G(P (m)(s, t, x))ds

+
∫ t

δ(t,x)
∂wG(P (m)(s, t, x))(z(m+1) − z(m))α(s,g(s,t,x))ds, (t, x) ∈ Ec

and

z(m+1)(t, x) = ϕ(t, x) for (t, x) ∈ (E0 ∪ ∂0E) ∩ ([−h0, c]× Rn).

Then the sequence
{
z(m)

}
defined by relations (A), (B) is the Newton sequence

for equation (13).
We will write an estimate of the Lipschitz constant for the Fréchet deriva-

tive F ′. According to (17), there is∣∣(F ′[z]v − F ′[z̄]v)(t, x)
∣∣

=

∣∣∣∣∣
∫ t

δ(t,x)
[∂wG(P [z](s, t, x))− ∂wG(P [z̄](s, t, x)] vα(s,g(s,t,x))ds

∣∣∣∣∣
≤

∫ t

δ(t,x)
‖∂wG(P [z](s, t, x))− ∂wG(P [z̄](s, t, x)‖∗‖vα(s,g(s,t,x))‖0ds

≤
∫ t

δ(t,x)
B3‖(z − z̄)α(s,g(s,t,x))‖0‖vα(s,g(s,t,x))‖0ds

≤
∫ t

δ(t,x)
B3‖z − z̄‖se

−2A3s ‖v‖se
−2A3s e4A3sds

≤ ‖z − z̄‖B‖v‖B

∫ t

0
B3e

4A3sds = ‖z − z̄‖B‖v‖B B3(4A3)−1(e4A3t − 1).

Then∣∣(F ′[z]v − F ′[z̄]v)(t, x)
∣∣ e−2A3t ≤ ‖z − z̄‖B‖v‖B B3(2A3)−1 sinh(2A3t)
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and, consequently,

‖(F ′[z]− F ′[z̄])v‖B ≤ ‖z − z̄‖B‖v‖B B3(2A3)−1 sinh(2A3t)

and
‖F ′[z]− F ′[z̄]‖∗ ≤ ‖z − z̄‖B B3(2A3)−1 sinh(2A3t).

Suppose that η > 0 is such a constant that

‖z(1) − z(0)‖B ≤ η,

and that c is a constant small enough for the following inequality to hold:

(18) h̃ = B3(A3)−1 sinh(2A3c)η ≤
1
2
.

We put

δ =
1−

√
1− 2h̃
h̃

η.

Now by Theorem 3.1 and (16), all the assertions of the Lemma 4.1 follow.

Now we prove that differential-functional equations (9) with the initial-
boundary condition

(19) z(t, x) = ϕ(t, x) for (t, x) ∈ (E0 ∪ ∂0E) ∩ ([−h0, c]× Rn)

are equivalent to integral equations

(20) z(t, x) = ϕ(S(t, x)) +
∫ t

δ(t,x)
G(P (m)(s, t, x))ds

+
∫ t

δ(t,x)
∂wG(P (m)(s, t, x))(z − z(m))α(s,g(s,t,x))ds

with initial-boundary condition (19).
Suppose that z(m+1) : Ωc → R is a Carathéodory solution of (9), (19) and

there is b(m+1) such that

|z(m+1)(t, x)− z(m+1)(t̄, x̄)| ≤ b(m+1)[|t− t̄|+ ‖x− x̄‖].

It follows easily that z(m+1) satisfies (20). We prove that classical solutions of
(20) satisfy (9) almost everywhere on Ec. We state a lemma on regularity of
the Newton sequence

{
z(m)

}
.

Suppose that z : Ω → R is continuous . For t ∈ [0, a], we define

[|z|]L.t = sup
{
|z(s, y)− z(s̄, ȳ)|
|s− s̄|+ ‖y − ȳ‖

: (s, y), (s̄, ȳ) ∈ Ωt, (s, y) 6= (s̄, ȳ)
}
.

Lemma 4.2. Suppose that Assumptions H[f ], H[G] and H[α] are satisfied
and that

1) ϕ ∈ J [p], c ∈ (0, a],
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2) z(0) ∈ C(Ω,R) is given such that
[
|z(0)|

]
L.c

<∞,
3) the sequence z(m) is well defined by (A), (B) on Ωc for m ≥ 0.

Then there is

(21)
[
|z(m)|

]
L.c

<∞ for m ≥ 0.

Proof. We prove (21) by induction. It follows from assumption 2) that
(21) is satisfied for m = 0. Supposing now that condition (21) holds for a given
m ≥ 0, we will prove that the function z(m+1) given by (A), (B) satisfies (21).
We put

(22) L(m) =
[
|z(m)|

]
L.c
.

From assumption 3) it follows that there exist constants d(m), d(m+1) ∈ R+

such that

(23) |z(m)(t, x)| ≤ d(m) and |z(m+1)(t, x)| ≤ d(m+1) on Ec.

Put

ψ(τ) =
[
|z(m+1)|

]
L.τ

for τ ∈ [0, c].

We will write an integral inequality for function ψ : [0, c] → R+. Let τ ∈ [0, c]
be arbitrary and (t, x), (t̄, x̄) ∈ Eτ , (t, x) 6= (t̄, x̄). According to (22), (23),
Assumptions H[f ], H[G] and H[α], and Lemmas 2.1, 2.2, the following integral
inequality holds:

(24) |z(m+1)(t, x)− z(m+1)(t̄, x̄)| ≤ Ā[|t− t̄|+ ‖x− x̄‖]

+
∫ t̄

δ(t̄,x̄)
A3‖(z(m+1))α(s,g(s,t,x)) − (z(m+1))α(s,g(s,t̄,x̄))‖0ds

where

Ā = Ā1 + Ā2

and

Ā1 = p1

[
(1 +A1)C̃ + C̄

]
+

[
A2 +A3d̃

] (
1 + C̃

)
,

Ā2 = cC̄
[
B2 +B3d̃

] (
1 + L̃

)
+ cC̄A3L̃

and

C̃ =
2C̄
κ
, L̃ = L(m)(r0 + r1), d̃ = d(m) + d(m+1).
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Note that

‖(z(m+1))α(s,g(s,t,x)) − (z(m+1))α(s,g(s,t̄,x̄))‖0

= sup
(τ,y)∈D

∣∣∣z(m+1)(α(s+ τ, g(s, t, x) + y))− z(m+1)(α(s+ τ, g(s, t̄, x̄) + y))
∣∣∣

≤
[
|z(m+1)|

]
L.s

(r0 + r1)‖g(s, t, x)− g(s, t̄, x̄)‖

≤
[
|z(m+1)|

]
L.s

(r0 + r1)C̄[|t− t̄|+ ‖x− x̄‖].

Then we get

|z(m+1)(t, x)− z(m+1)(t̄, x̄)| ≤ Ā[|t− t̄|+ ‖x− x̄‖]

+A3(r0 + r1)C̄[|t− t̄|+ ‖x− x̄‖]
∫ t̄

δ(t̄,x̄)

[
|z(m+1)|

]
L.s

ds

and, consequently,

|z(m+1)(t, x)− z(m+1)(t̄, x̄)|
[|t− t̄|+ ‖x− x̄‖]

≤ Ā+A3(r0 + r1)C̄
∫ t̄

δ(t̄,x̄)

[
|z(m+1)|

]
L.s

ds

for (t, x), (t̄, x̄) ∈ Eτ , (t, x) 6= (t̄, x̄). According to the definition of [| · |]L.τ ,
there is [

|z(m+1)|
]
L.τ

≤ Ā+A3(r0 + r1)C̄
∫ t̄

δ(t̄,x̄)

[
|z(m+1)|

]
L.s

ds.

Then

ψ(τ) ≤ Ā+A3(r0 + r1)C̄
∫ τ

0
ψ(s)ds.

Now from the Gronwall inequality it follows that

ψ(τ) ≤ Ā exp
{
τA3(r0 + r1)C̄

}
and, consequently, [

|z(m+1)|
]
L.c

<∞,

which completes the proof of the Lemma 4.2.

Theorem 4.3. Suppose that Assumptions H[f ], H[G], H[α] are satisfied
and ϕ ∈ J [p].

Then there is c > 0 such that
1) the sequence

{
z(m)

}
is well defined by (i), (ii) on Ωc and there exists

z∗ ∈ C(Ωc,R) such that

lim
m→∞

z(m)(t, x) = z∗(t, x) uniformly on Ec,



139

2) the following estimates hold:

(25) ‖z∗ − z(m)‖c ≤
C̃

2m−1
(2h̃)2

m−1η, m ≥ 0

where C̃, h̃, η are given by (15).

Proof. It follows from Lemma 4.1 that the sequence
{
z(m)

}
defined by

(20) and (19) exists and converges on Ωc for some c > 0. Furthermore, from
Lemma 4.2 and the chain rule differentiation Lemma (cf. [4]), there follows:

(26)
d

dτ
z(m+1)(τ, g(τ, t, x))

= ∂tz
(m+1)(τ, g(τ, t, x)) +

n∑
i=1

fi(τ, g(τ, t, x))∂xiz
(m+1)(τ, g(τ, t, x))

for almost all τ ∈ I(t,x) and almost all (t, x) ∈ Ec, where m ≥ 0.
By integrating the above equation on [δ(t, x), t] with respect to τ , we get

(27) z(m+1)(t, x) = ϕ(S(t, x))

+
∫ t

δ(t,x)

[
∂tz

(m+1)(τ, g(τ, t, x)) +
n∑

i=1

fi(τ, g(τ, t, x))∂xiz
(m+1)(τ, g(τ, t, x))

]
dτ

almost everywhere on Ec.
Suppose now that z(m+1) satisfies (20) almost everywhere on Ec and con-

dition (19). Then from the above equation, we get∫ t

δ(t,x)

[
∂tz

(m+1)(τ, g(τ, t, x)) +
n∑

i=1

fi(τ, g(τ, t, x))∂xiz
(m+1)(τ, g(τ, t, x))

]
dτ

=
∫ t

δ(t,x)

[
G(P (m)(τ, t, x)) + ∂wG(P (m)(τ, t, x))(z(m+1) − z(m))α(τ,g(τ,t,x))

]
dτ

almost everywhere on Ec. We put ζ = δ(t, x). For a given x ∈ [−b, b], let us
put y = g(ζ, t, x). It follows from Lemma 2.1 that g(τ, t, x) = g(τ, ζ, y) for
almost all τ ∈ I(t,x), t ∈ [0, c] and x = g(t, ζ, y). Then∫ t

ζ

[
∂tz

(m+1)(τ, g(τ, ζ, y)) +
n∑

i=1

fi(τ, g(τ, ζ, y))∂xiz
(m+1)(τ, g(τ, ζ, y))

]
dτ

=
∫ t

ζ

[
G(P (m)(τ, ζ, y)) + ∂wG(P (m)(τ, ζ, y))(z(m+1) − z(m))α(τ,g(τ,ζ,y))

]
dτ
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almost everywhere on Ec. Differentiating the above relation with respect to t,
we get

∂tz
(m+1)(t, g(t, ζ, y)) +

n∑
i=1

fi(t, g(t, ζ, y))∂xiz
(m+1)(t, g(t, ζ, y))

= G(P (m)(t, ζ, y)) + ∂wG(P (m)(t, ζ, y))(z(m+1) − z(m))α(t,g(t,ζ,y))

almost everywhere on Ec. Then we use the relation x = g(t, ζ, y) and we infer
that z(m+1) satisfies (9) almost everywhere on Ec.

Now we prove that relations (9) and (19) imply (20) and (19). Suppose
that z(m+1) is a Carathéodory solution of (9), (19) and that z(m+1) satisfies
the Lipschitz condition with respect to (t, x). Then (27) holds true almost
everywhere on Ec. Now, taking relation (9) along characteristics with z =
z(m+1) and applying it to the right hand side of (27), we get (20).

We proved that the sequences
{
z(m)

}
defined on the one hand by (i), (ii)

and on the other by (A), (B) are equivalent on Ωc for c ∈ (0, a]. From Lemma
4.1 there follows that there exists c ∈ (0, a] such that the second sequence
exists and estimate (14) holds. The assertion of Theorem 4.3 follows from the
equivalence of the above sequences. This completes the proof.

Remark 4.4. The above result can be extended on initial boundary value
problems for the following systems

∂tzi(t, x) =
n∑

j=1

fij(t, x)∂xjzi(t, x) = Gi(t, x, z(t,x)), i = 1, . . . , k,

where z = (z1, . . . , zk).
It is important in our considerations that we do not assume monotonicity

conditions for given functions with respect to the functional variable.
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