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ON THE TYPE SEQUENCES OF SOME ONE DIMENSIONAL

RINGS

by Dilip P. Patil and Grazia Tamone

Abstract. In this article in Section 2 we describe the holes and their
positions of a numerical semigroup and use this description to compute
the type sequence of the semigroup generated by an arithmetic sequence
m0, m1, . . . , mp+1 explicitly (see 3.8 and 3.9).

Introduction. Let (R,mR) be a noetherian local one dimensional analyt-
ically irreducible domain, i.e., the m-adic completion R̂ of R is a domain or,
equivalently, the integral closure R of R in its quotient field Q(R) is a discrete
valuation ring and a finite R-module. We further assume that R is residually
rational, i.e., R and R have the same residue field. A particular important
class of rings which satisfy these assumptions are semigroup rings which are
coordinate rings of algebroid monomial curves.

Let v : Q(R) → Z ∪ {∞} be the discrete valuation of R and let C :=
annR(R/R) = {x ∈ R | xR ⊆ R} be the conductor ideal of R in R. Then
the value semigroup v(R) = {v(x) | x ∈ R, x 6= 0} is a numerical semigroup,
that is, N \ v(R) is finite and therefore v(R) = {0 = v0, v1, . . . , vn−1} ∪ {z ∈
N | z ≥ c}, where 0 = v0 < v1 < · · · < vn−1 < vn := c are elements of v(R),
n := n(R) = `(R/C) and the integer c=c(R) :=`R(R/C) is also determined by
C={x ∈ Q(R) | v(x)≥ c} or, equivalently C = (mR)c.
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In [5] Matsuoka have studied the degree of singularity δ = δ(R) := `(R/R) =
card(N \ v(R)) of R by introducing the saturated chain of fractionary ideals

C = An ( · · · ( A1 = m ( A0 = R ( A−1
1 ( · · · ( A−1

n = R,

where Ai := {x ∈ R | v(x) ≥ vi} and A−1
i = (R : Ai), i = 0, 1, . . . , n. Moreover,

each A−1
i , i = 0, . . . , n is a overring of R which satisfies the assumptions that

we assume for R. The sequence ti = ti(R) := `(A−1
i /A−1

i−1), i = 1, . . . , n, is
called the t yp e s e qu en c e of R.
The above numerical invariants of R carry information of the ring and hence
to study various algebraic and geometric properties of the ring R; several
authors (see e.g. [1, 2, 3]) have been studied the above numerical invariants.
For example the first term t1 is the Cohen–Macaulay type of R and the sum∑n

i=1 ti is the degree of singularity of R.
In Section 3 we give an algorithmic method (see 3.7) to compute the type
sequence of the coordinate ring of an algebroid monomial curve defined by an
arithmetic sequence m0,m1, . . . ,mp+1. For this we make use of the explicit
description of the standard basis of the numerical semigroup generated by
arithmetic sequence which was done in [7]. We also give some illustrative
examples.

1. Preliminaries – assumptions and notation. Throughout this ar-
ticle we make the following assumptions and notation.

Notation 1.1. Let N and Z denote the set of all natural numbers and all
integers, respectively. Note that we assume 0 ∈N. Further, for a, b ∈N, we
denote [a, b] :={r ∈N | a ≤r ≤ b } and Na := {n ∈N | n ≥a}.
Let (R,mR) be a noetherian local one dimensional analytically irreducible do-
main, i.e., the integral closure R of R in its quotient field Q(R) is a discrete
valuation ring and is a finite R-module. We further assume that R is residu-
ally rational, i.e., the residue field kR of R is equal to the residue field kR of
R. A particular important class of rings which satisfy these assumptions are
semi-group rings which are coordinate rings of algebroid monomial curves.
We shall now recall the notions of type sequences and almost Gorenstein rings.

1.2. (Type s equence s — a lmos t Gorens t e in r ing s ) Let R be as
in 1.1 and let v(R) be its numerical semigroup, c=c(v(R)) be the conductor of
v(R), n=n(R)=`(R/C)=card(v(R)\Nc) and δ=δ(R)=`(R/R)=card(N \ v(R))
be the degree of singularity of R (see [5]). Let 0=v0 <v1 < · · ·<vn−1 <vn :=c
be elements of v(R) such that v(R) \Nc = {0 = v0, v1, . . . , vn−1}. Further
as noted in [5], the degree of singularity δ(R) can be seen as the sum of n
positive integers ti(R) := `(A−1

i /A−1
i−1), i = 1, . . . , n, where Ai := {x ∈ R |

v(x) ≥ vi} and A−1
i := (R : Ai) := {x ∈ Q(R) | xAi ⊆ R}. The first positive
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integer t1(R) = `(m−1/R) is the Cohen–Macaulay type τR of R. The sequence
t1(R), t2(R), . . . , tn(R) is called the t y p e s e q u e n c e of R. Several authors
have studied the properties of type sequences (see e.g. [1, 4]). The term “type
sequence” is chosen since (as noted above) the first term t1(R) = `(m−1/R)
is the Cohen–Macaulay type of R. Further, we have 1≤ ti(R)≤ τR for every
i=1, . . . , n (see [5, §3, Proposition 2 and Proposition 3]) and hence (see also
[4, Proposition 2.1]) `∗(R)≤(τR−1) (`(R/C)−1), where `∗(R) :=τR · `(R/C)−
`(R/R). Moreover, the equality holds if and only if `(R/R)= τR+`(R/C)−1,
or, equivalently, ti(R)=1 for i=2, . . . , n. Type sequence of a numerical semi-
group can also be defined analogously: Let Γ be a numerical semigroup, c ∈ N
be its conductor and let Γ \ Nc = {0 = v0, v1, . . . , vn−1}, where 0 = v0 < v1 <
· · · < vn−1 < vn := c are elements of Γ. Further, for i = 0, . . . , n, let Γi := {h ∈
Γ | h ≥ vi}, Γ(i) := {x ∈ Z | x + Γi ⊆ Γ} and let ti = card (Γ(i) \ Γ(i− 1)).
Then Γ = Γ(0) ⊆ Γ(1) ⊆ · · · ⊆ Γ(n − 1) ⊆ Γ(n) = N and the sequence ti,
i = 1, . . . , n is called the type s equenc e of Γ. In particular, the cardinality
t1 of the set T(Γ) := Γ(1) \ Γ is called the Cohen–Macau l ay type of the
semigroup Γ.

The type sequence of a ring R need not be same as the type sequence of the
numerical semi-group v(R) of R (see e.g. [4]).

A ring R in (1.1) is called a lmos t Gor en s t e i n if the type sequence of R is
{τR, 1, 1, . . . , 1}, or, equivalently, `∗(R) attains its upper bound, i.e., `(R/R) =
τR − 1 + `(R/C). It is clear that Gorenstein rings are almost Gorenstein but
not conversely (see [8], (1.2)–(1)).

Examples 1.3. Using the above definitions we shall compute the type
sequences of the semigroups of the examples ([8], (1.2)).

(1) Let e ∈ N, a ∈ [0, e − 1] with e ≥ 3, b :=

{
≥ 1, if a = 0,
≥ 2, if a ≥ 1,

and put

c := be − a. Let Γ be the semi-group generated by the almost arithmetic
sequence e, c, c + 1, . . . , c + e− 1. Then:

(i) c(Γ) = c(R) =

{
c, if a ∈ [0, e− 2] ,
(b− 1)e, if a = e− 1

and

Γ\Nc =

{
{0, e, 2e, . . . , (b− 1)e}, if a ∈ [0, e− 2] ,
{0, e, 2e, . . . , (b− 2)e}, if a = e− 1 .

Therefore, n =

n(R) =

{
b, if a ∈ [0, e− 2] ,
b− 1, if a = e− 1

and vi = ie for i = 0, . . . , n− 1.
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(ii) For each i = 1, . . . , n , we have Γ(i) \ Γ(i− 1) =

[(b− i)e + 1, (b− i + 1)e− 1], if a = 0,
[(b− i)e− a, (b− i + 1)e− a− 1]\{(b− i)e}, if a ≥ 1 and

i ∈ [1, n− 1],
[1, e− a− 1], if a ∈ [1, e− 2] and

i = n,
[1, e− 1], if a = e− 1 and

i = n.

In particular, ti = ti(Γ)=


e−1, if a ∈{0, e−1} and i∈ [1, n],
e−1, if a ∈ [1, e−2] and i∈ [1, n−1],
e−a−1, if a ∈ [1, e−2] and i=n.

The type sequence of Γ is


e−1, . . . , e−1︸ ︷︷ ︸

n-times

, if a ∈ {0, e−1},

e−1, . . . , e−1︸ ︷︷ ︸
(n−1)-times

, e−a−1, if a ∈ [1, e−2].

In particular, R is almost Gorenstein if and only if (a, b) is one of
the following three pairs (0, 1), (e − 2, 2), (e − 1, 2) . Therefore, the
semi-group ring K[[X3, X5, X7]] (take e = 3, a = 1 and b = 2) is
almost Gorenstein of type 2 and hence not Gorenstein.

(2) Let e ∈ N with e ≥ 4 and m := 3e + 1. Let Γ be the semi-group generated
by the sequence e, 2e− 1,m, m + 1, . . . ,m + e− 4. Then:

(i) c = c(Γ) = c(R) = 3e − 1 and Γ \ Nc = {0, e, 2e − 1, 2e}. Therefore,
n = n(R) = 4 and v1 = e, v2 = 2e− 1, v3 = 2e, v4 = c.

(ii) Γ(1) \ Γ(0) = T (Γ) = [2e + 1, 3e − 2], Γ(2) \ Γ(1) = [e + 1, 2e − 2],
Γ(3) \ Γ(2) = {e − 1} and Γ(4) \ Γ(3) = [1, e − 2]. Therefore, t1 =
τR = e − 2, t2 = e − 2, t3 = 1, t4 = e − 2 and the type sequence of Γ
is e − 2, e − 2, 1, e − 2. Therefore, R is not almost Gorenstein, since
e ≥ 4 .

(3) Let e, r′ ∈ N with e ≥ 3, 1 ≤ r′, 2r′ ≤ e − 1 and c := 2e. Let Γ be the
semi-group generated by the sequence e, e+r′, c+1, c+2, . . . , c+e−1. Then:

(i) c = c(Γ) = c(R) = 2e and Γ \ Nc = {0, e, e + r′}. Therefore, n =
n(Γ) = n(R) = 3 and v1 = e, v2 = e + r′, v3 = c.

(ii) Γ(1) \ Γ(0)=T (Γ)= [e+1, e+r′−1] ∪ [e+r′+1, 2e−1], Γ(2) \ Γ(1) =
[e − r′, e − 1] and Γ(3) \ Γ(2) = [1, e − r′ − 1]. Therefore, t1 =
τR = e − 2, t2 = r′, t3 = e − r′ − 1 and the type sequence of Γ is
e − 2, r′, e − r′ − 1. Therefore, R is almost Gorenstein if and only if
r′ = 1 and e = 3 ⇐⇒ R is Gorenstein. Hence, if e ≥ 4 then R is
not almost Gorenstein.
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(4) Let e, r, r′ ∈ N with e ≥ 3, 1 ≤ r, 1 ≤ r′, r + r′ ≤ e − 1 and let Γ be
the semi-group generated by the sequence e, e + r, e + r + r′, e + r + r′ +
1, . . . , 2e + r + r′ − 1.
We consider the four cases (i) r′ = r = 1 ; (ii) r′ = 1, r ≥ 2 ; (iii)
1 < r′ ≤ r ; (iv) r < r′ separately.
Case (i): (r′, r)= (1, 1): This case is included in example (1) (a=0 and
b=1).
Case (ii): r′=1 and r≥2: In this case c=e+r and Γ\Nc ={0, e}. There-
fore, n=2 and v1 =e. Further, Γ(1) \Γ(0)=T (Γ)=[r, e−1]∪ [e+1, e+r−1]
and Γ(2)\Γ(1)=[1, r−1]. Therefore, t1 =τR =e−1, t2 =r−1 and the type
sequence of Γ is e−1, r−1. Therefore, R is almost Gorenstein if and only
if r=2.
Case (iii): 1 < r′ ≤ r: In this case c = e + r + r′ and Γ \ Nc =
{0, e, e + r}. Therefore, n = 3 and v1 = e, v2 = e + r. Further, we
have Γ(1) \Γ(0) = T (Γ) = {r}∪ [r+r′, e+r+r′−1] \ {e, e+r}, Γ(2) \Γ(1)={

[r+1, r+r′−1], if r=r′,
[r′, r+r′−1] \ {r}, if r′<r,

and Γ(3) \ Γ(2) =

{
[1, r − 1], if r′ = r,
[1, r′ − 1], if r′ < r.

Therefore, t1 = τR = e−1, t2 =

{
r′ − 1, if r′ = r,
r − 1, if r′ < r,

t3 =

{
r − 1, if r′ = r,
r′ − 1, if r′ < r,

and the type sequence of Γ is

{
e− 1, r′ − 1, r − 1, if r′ = r,
e− 1, r − 1, r′ − 1, if r′ < r.

Therefore,

R is almost Gorenstein if and only if (r′, r)=(2, 2).
Case (iv): r < r′: In this case c = e + r + r′ and Γ \ Nc = {0, e, e + r}.
Therefore, n = 3 and v1 = e, v2 = e + r. Further, we have Γ(1) \ Γ(0) =
T (Γ) = [r + r′, e + r + r′ − 1] \ {e, e + r}, Γ(2) \ Γ(1) = [r′, r + r′ − 1] and
Γ(3) \ Γ(2) = [1, r′ − 1]. Therefore, t1 = τR = e− 2, t2 = r, t3 = r′ − 1 and
the type sequence of Γ is e− 2, r, r′− 1. Therefore, R is almost Gorenstein
if and only if (r, r′) = (1, 2).

2. Holes of first and second type. Let R be as in 1.1. In this section
we describe the holes of first and second type of the numerical semigroup v(R)
of R. In addition to the Notations of § 1, we also fix the following:

Notation 2.1. Put Γ := v(R) and let Γi := v(Ai), Γ(i) and ti, i = 1, . . . , n
be as in 1.2.
In order to compute some type sequences explicitly, we need to study the
“holes” of Γ, i.e., elements of N \ Γ. The positions of the holes will therefore
determine the type sequence of Γ. To make these things more precise first let
us make the following:
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Definition 2.2. An element z ∈ Z \ Γ is called a h o l e o f f i r s t t y p e
(respectively, h o l e o f s e c ond t yp e ) of Γ if c− 1− z ∈ Γ (respectively, if
c − 1 − z 6∈ Γ). Then Γ′ := {z ∈ Z \ Γ | c − 1 − z ∈ Γ} = {c − 1 − h | h ∈ Γ}
is the set of holes of first type of Γ and Γ′′ := {z ∈ Z \ Γ | c − 1 − z 6∈ Γ} is
the set of holes of second type of Γ. Therefore, Z = Γ

⊎
Γ′

⊎
Γ′′. Further, it is

easy to see that:

(2.2.a)

{
Γ′ ∩ N = {c− 1− vi | i ∈ [0, n− 1]}; |Γ′ ∩ N| = n = c− δ,

Γ′′ ⊆ N \ Γ, c− 1 6∈ Γ′′ and T(Γ) ⊆ {c− 1} ∪ Γ′′.

In particular, Γ is symmetric if and only if Γ′′ = ∅. For this reason the cardi-
nality of Γ′′ is called the s ymme t r y - d e f e c t of Γ.

Lemma 2.3. (Γ(i) \ Γ(i− 1)) ∩ Γ′ = {c− 1− vi−1} for each i = 1, . . . , n.

Proof. First note that (Γ(i) \ Γ(i− 1))∩Γ′ ⊆ {c−1−vk | k = 0, . . . , n−1}
and that c−1−vi−1 is the greatest element in Γ(i)\Γ(i−1) by [5], Proposition 2.
Now suppose that c − 1 − vk ∈ Γ(i) \ Γ(i − 1) for some k 6= i − 1. Then
c− 1− vk < c− 1− vi−1 and so k > i− 1. Therefore, c− 1− vk ∈ Γ(i) ⊆ Γ(k)
and hence c− 1 = (c− 1− vk) + vk ∈ Γ a contradiction.

Lemma 2.4. Every element z ∈ Γ′′ can be written in the form z = x − h
with x ∈ Γ(1) \ Γ, x 6= c− 1 and h ∈ Γ. In particular, we have:

Γ′′ ⊆ {x− vi | x ∈ Γ(1) \ Γ, x 6= c− 1 and i ∈ [0, n− 1]}.
Proof. If z ∈ Γ(1), then take x = z and h = 0. In the case z 6∈ Γ(1), i.e.,

z + Γ1 6⊆ Γ, let i := max{k ∈ [0, n − 1] | z + vk 6∈ Γ} and x := z + vi. Then
x 6= c−1 (otherwise, z = x−vi = c−1−vi ∈ Γ′) and x ∈ Γ(1)\Γ by definition
of i. Therefore, we can take x := z + vi and h = vi.

The following 2.5, 2.6 and 2.7 are used to determine the positions of the holes
of second type.

Lemma-Definition 2.5. First let us recall that m := v1 is the multiplicity
of R and the set Sm(Γ) := {z ∈ Γ | z − m 6∈ Γ} is called the standard basis
or the Apéry set of Γ with respect to m. We put S := Sm(Γ) and write
S = {0 = s0, s1, . . . , sm−1} with 0 = s0 < s1 < · · · < sm−1. Note that every
element h ∈ Γ can be written in the unique form h = ρm + s with ρ ∈ N and
s ∈ S. Further, note that sm−1 = c− 1 + m. With these definitions, we have:
For each z ∈ Γ′′ and each s ∈ S, the following minima exist:
(1) κ(z) := Min{k ∈ [0,m− 1] | z + sj ∈ Γ for all k ≤ j ≤ m− 1}.
(2) αs(z) := Min{α ∈ N | z + s + αm ∈ Γ}.

Proof. (1) Since Γ′′ ⊆ N by (2.2.a), we have z + sm−1 = z + c−1+m ≥ c
and hence z + sm−1 ∈ Γ. (2) For every s ∈ S, z + s + αm ∈ Γ for large
α >> 0.
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Lemma 2.6. For z ∈ Γ′′ and for s ∈ S, we have
(1) κ(z) = Min{k ∈ [0,m− 1] | αsk

(z) = 0}.
(2) z + s + ρm 6∈ Γ for all ρ ∈ [0, αs(z) − 1], z + s + αs(z)m ∈ Γ and

αsk
(z) = 0, i.e., z + sk ∈ Γ for all k ≥ κ(z).

(3) If z = x− ρm with x ∈ Γ(1) \ Γ, then αs0(z) = ρ + 1.

Proof. (1) and (2) are immediate from definitions and (3) follows from:
z + ρm = x 6∈ Γ and z + (ρ + 1)m = x + m ∈ Γ.

Definition 2.7. For r ∈ N and z ∈ Γ′′, let
(∗r(z)) For each j ∈ [r, n], we have vj = sk + ρm with sk ∈ S, ρ ∈ N and

either k ≥ κ(z), or ρ ≥ αsk
(z).

Proposition 2.8. Let x ∈ Γ(1)\Γ, i ∈ [0, n−1] be such that z := x−vi ∈
Γ′′. Further, let r be the least positive integer with r > i and (∗r(z)) holds.
Then z ∈ Γ(r) \ Γ(r − 1).

Proof. First we prove that z ∈ Γ(r), i.e., z + Γr ⊆ Γ. It is enough to
prove that:

(2.8.a) z + vj ∈ Γ for all j ∈ [r, n].

Now, since (∗r(z)) holds, for each j ∈ [r, n] we have vj = sk + ρm with
sk ∈ S, ρ ∈ N and either k ≥ κ(z), or ρ ≥ αsk

(z). We consider these two
cases separately.
Case: k ≥ κ(z): In this case z+sk∈Γ by 2.5.(1) and so z+vj =z+sk+ρm∈Γ.
Case: ρ ≥ αsk

(z): In this case ρ = αsk
(z) + β for some β ∈ N and so

z + vj =z + sk + αsk
(z)m + βm ∈ Γ. This proves (2.8.a).

Now we prove that z 6∈ Γ(r− 1), i.e., z + Γr−1 6⊆ Γ. It is enough to prove that:

(2.8.b) z + vj 6∈ Γ for some j ∈ [r − 1, n].

By definition of r, we have either r− 1 ≤ i, or (∗r−1(z)) does not hold. In the
case r − 1 ≤ i, taking j = i, we have z + vj = x 6∈ Γ by assumption, which
proves (2.8.b). If (∗r−1(z)) does not hold, i.e., there exists j ∈ [r − 1, n] such
that vj = sk + ρm with sk ∈ S, ρ ∈ N, k < κ(z) and ρ < αsk

(z). Therefore,
z + vj = z + sk + ρm 6∈ Γ by 2.6.(1). This proves (2.8.b).

Corollary 2.9. Let x ∈ Γ(1) \ Γ and i ∈ [0, n − 1] be such that z :=
x− vi ∈ Γ′′. Further, assume that

(2.9.a) κ(z) = Min{k ∈ [0,m− 1] | sk > vi}
and that

(2.9.b) αs(z) ∈ {0, 1} for all s ∈ S with s ≤ vi.

Then z ∈ Γ(i + 1) \ Γ(i).
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Proof. In view of 2.8 it is enough to prove that (∗i+1(z)) holds. For this
let j ∈ [i + 1, n] and vj = sk + ρm with sk ∈ S and ρ ∈ N. To show that either
k ≥ κ(z), or k < κ(z) and ρ ≥ αsk

(z). If sk > vi, then k ≥ κ(z) by the
Assumption (2.9.a). If sk ≤ vi, then ρ ≥ 1, since vj > vi and hence αsk

(z) ≤ ρ
by the Assumption (2.9.b).

In Section 3, we shall consider a class of rings such that the Assumptions
of 2.9 are satisfied by the holes of second type.

Corollary 2.10. Let x ∈ Γ(1) \ Γ and i ∈ [0, n − 1], β ∈ N+ be such
that vi = βm and z := x − vi ∈ Γ′′. Further, assume that κ(z) = 1. Then
z ∈ Γ(i + 1) \ Γ(i).

Proof. In view of 2.8 it is enough to prove that (∗i+1(z)) holds. For
this let j ∈ [i + 1, n] and vj = sk + ρm with sk ∈ S and ρ ∈ N. Since
κ(z) = 1 by assumption, it is enough to show that: if k < 1, i.e., if k = 0, then
ρ ≥ αs0(z)=β+1 (see 2.5.(2)). This is immediate from ρm=vj > vi =βm.

3. Numerical invariants of semigroups generated by arithmetic
sequences. In this section we give an explicit description of the type sequence
of a semigroup generated by an arithmetic sequence. In addition to the nota-
tion, definitions and results of 1.1 and 2.1, we further fix the following notation.

Notation 3.1. Let m, d ∈ N, m ≥ 2, d ≥ 1 be such that gcd(m, d) = 1
and let p be an integer p ≥ 1 and put mi := m + id for i = 0, 1, . . . , p + 1.
Let Γ :=

∑p+1
i=0 Nmi be the semigroup generated by the arithmetic sequence

m0,m1, . . . ,mp+1.
For any positive natural number k ∈ N+, let qk ∈ N and rk ∈ [1, p + 1] be the
unique integers defined by the equation k = qk(p + 1) + rk. We put q := qm−1

and r := rm−1 − 1. Therefore, q ∈ N, r ∈ [0, p] and m− 2 = q(p + 1) + r.
Put s0 =0 and sk :=mrk

+qkmp+1 =(1+qk)m+(rk+qk(p+1)) d for k ∈ [1,m−1].
Further, we put S1 := {mi +jmp+1 | i ∈ [1, p+1] and j ∈ [0, q−1]} and S2 :=
{mi+qmp+1 | i∈ [1, r+1]}. Note that S1 = ∅, if q = 0.

Proposition 3.2. With the notations as in 3.1 we have:
(1) The standard basis S := Sm(Γ) with respect to the multiplicity m = m0 of

Γ is:
S = {sk | k ∈ [0,m− 1]} = {0} ∪ S1 ∪ S2.

(2) The conductor c := c(Γ) and the degree of singularity δ := δ(Γ) of Γ are:

c = (m− 1)(d + q) + q + 1 and δ = ((m− 1)(d + q) + (r + 1)(q + 1)) /2.

(3) The set T := T (Γ) = Γ(1) \ Γ = {mi + qmp+1 − m0 | i ∈ [1, r + 1]} =
{c − 1 − (r − i + 1)d | i ∈ [1, r + 1]}. In particular, the Cohen–Macaulay
type of Γ is τ := τΓ = r + 1.
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Proof. (1) and (3) are special cases of the general results proved in [7],
(3.5) and [6], § 5. (2) is proved in [9], § 3, Supplement 6.

Now we give an explicit description of the positions of the holes of second
type of Γ.

Lemma 3.3. With the notations as in 2.1 and 3.1, we have: card(Γ′′) =
(q +1)r. Moreover, Θ := {x− jmp+1 | x ∈ Γ(1) \Γ, x 6= c− 1 and j ∈ [0, q]} =
Γ′′.

Proof. Note that card(Γ′′) = card ((N \ Γ)) − card (Γ′ ∩ N) = δ − n =
2δ−c = (q + 1)r by 2.1 and 3.2.(2). Therefore, since |Θ| = |Γ′′|, it is enough to
prove that Θ ⊆ Γ′′. For this, let x ∈ Γ(1) \ Γ, x 6= c − 1 and j ∈ [0, q]. Then
x− jmp+1 ≥ c− 1− rd− qmp+1 = d > 0 and x− jmp+1 6∈ Γ, since x 6∈ Γ and
jmp+1 ∈ Γ. Therefore, further it is enough to prove that x− jmp+1 6∈ Γ′. Note
that by 3.2.(3) x = c−1−(r−i+1)d for some i ∈ [1, r]. Therefore, if x−jmp+1 ∈
Γ′, then x−jmp+1 = c−1−h for some h ∈ Γ and so (r−i+1)d+jmp+1 = h ∈ Γ.
Now, adding m on both sides we get sk = mr−i+1 + jmp+1 = m + h 6∈ S a
contradiction, since k = j(p + 1) + r − i + 1 ≤ q(p + 1) + r + 1 ≤ m− 1. This
proves that x− jmp+1 6∈ Γ′.

Lemma 3.4. Let j ∈ [0, q]. Then jmp+1 = sj(p+1) ∈ S and jmp+1 < c.
In particular, {k ∈ [0,m − 1] | sk > jmp+1} 6= ∅ and if sk > jmp+1 for
k ∈ [0,m− 1], then k > j(p + 1).

Proof. Using 3.1 and 3.2, it is easy to verify that jmp+1 = sj(p+1) ∈ S
and jmp+1 < c. Further, since c = sm−1 −m + 1, we have jmp+1 < sm−1 and
hence the last assertion is clear.

Proposition 3.5. Let j ∈ [0, q], x ∈ Γ(1) \ Γ, x 6= c − 1 and let z =
x− jmp+1. Then κ(z) = Min{k ∈ [0,m− 1] | sk > jmp+1} and αs(z) ∈ {0, 1}
for all s ∈ S.

Proof. First note that, by 3.3, z ∈ Γ′′ and, by 3.2.(3), x = mi+qmp+1−m
for some i ∈ [1, r + 1] and so z + m = mi + (q − j)mp+1 ∈ Γ, since j ≤ q and
so z + m + s ∈ Γ for every s ∈ S. In particular, αs(z) ∈ {0, 1}.
If j = 0, then z = x ∈ Γ(1) \ Γ and so z + s ∈ Γ for every s ∈ S, s 6= 0 and
z 6∈ Γ. Therefore, κ(z) = 1 = Min{k ∈ [0,m− 1] | sk > 0}.
Now assume that j > 0. Let sk ∈ S be such that sk > jmp+1. Then z + sk =

x+sk−jmp+1 =

{
x + (qk + 1−j)mp+1, if k=qk(p + 1) + (p + 1),
x + mrk

+ (qk−j)mp+1, if k=qk(p + 1) + rk, rk 6= p + 1.
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Further, since k > j(p + 1) by 3.4, we have{
qk + 1 > j, if k = qk(p + 1) + (p + 1),
qk ≥ j, if k=qk(p + 1)+rk, rk 6=p + 1.

Therefore, it follows that z + sk ∈ Γ, since x ∈ Γ(1). This proves that

(3.5.a) αsk
(z) = 0 for every sk ∈ S with sk > jmp+1.

Further, αjmp+1(z) ≥ 1, since z + jmp+1 = x 6∈ Γ. Therefore, by (3.5.a), we
have:

κ(z)=Min{k ∈ [0,m−1] | αsk
(z)=0}=Min{k ∈ [0,m−1] | sk > jmp+1}.

Definition 3.6. Let 0 = v0 < v1 < · · · < vn−1 < vn := c be elements of Γ
such that Γ \ Nc = {0 = v0, v1, . . . , vn−1}. For i ∈ [0, n], the element vi ∈ Γ is
called the i - t h e l emen t of Γ. Note that, by 3.4, for every j ∈ [0, q], there
exists a unique integer i(j) ∈ [0, n − 1] such that jmp+1 = vi(j) is the i(j)-th
element of Γ.

Corollary 3.7. Let j∈ [0, q] and let i(j)∈ [0, n−1] be as in the definition
3.6. Then

Γ (i(j) + 1) \ Γ (i(j)) = {x− jmp+1 | x ∈ Γ(1) \ Γ}.

In particular, card (Γ (i(j) + 1) \ Γ (i(j))) = τΓ = r + 1.

Proof. First let x ∈ Γ(1) \ Γ, x 6= c − 1 and let z = x − jmp+1. Then
z ∈ Γ′′ by 3.3. Further, since jmp+1 = vi(j) is the i(j)-th element (see 3.6)
of Γ, by 3.5 and 2.9, we have z ∈ Γ (i(j) + 1) \ Γ (i(j)). Further, note that
c − 1 − jmp+1 = c − 1 − vi(j) is the unique element of Γ′ which belongs to
Γ (i(j) + 1) \ Γ (i(j)) by (2.3). Therefore, it follows from 3.3 that {x− jmp+1 |
x ∈ Γ(1) \ Γ} = Γ (i(j) + 1) \ Γ (i(j)). Now the last assertion follows from
3.2.(3).

Theorem 3.8. Let m, d ∈ N, m ≥ 2, d ≥ 1 be such that gcd(m, d) = 1 and
let p be an integer with 1 ≤ p ≤ m− 2. Let Γ :=

∑p+1
k=0 Nmk be the semigroup

generated by the arithmetic sequence mk := m + kd, k = 0, 1, . . . , p + 1. Let
q ∈ N and r ∈ [0, p] be the unique integers defined by the equation m − 2 =
q(p + 1) + r. Further, let c ∈ Γ be the conductor of Γ, Nc = {z ∈ N | z ≥ c}
and let Γ \ Nc = {0 = v0, v1, . . . , vn−1} with v0 < v1 < · · · < vn−1 < vn := c.
Then the i-th term ti = ti(Γ) of the type sequence (t1, t2, . . . , tn) of Γ is

ti =

{
1, if vi−1 6= jmp+1 for every j ∈ [0, q],
r + 1, if vi−1 = jmp+1 for some j ∈ [0, q].
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Proof. If vi−1 6= jmp+1 for every j ∈ [0, q], then Γ(i) \ Γ(i − 1) = {c −
1 − vi−1} by 2.4 and 2.3, 3.3, 3.7 and hence card (Γ(i) \ Γ(i− 1)) = 1. If
vi−1 = jmp+1 for some j ∈ [0, q], then card (Γ(i) \ Γ(i− 1)) = r+1 by 3.7.

Corollary 3.9. In addition to the notations and assumptions as in (3.8),
further assume that d = 1. Then the i-the term ti of the type sequence
(t1, t2, . . . , tn) of Γ is

ti =

{
r + 1, if i =

(
j+1
2

)
(p + 1) + j + 1 for some j ∈ [0, q],

1, otherwise.

Proof. Note that since m0, . . . ,mp+1 is an arithmetic sequence, every
element of Γ can be written uniquely in the form am0 + mk + bmp+1 with
a, b ∈ N and k ∈ [0, p+1]. Therefore, we have Γ = ∪j≥0Γ(j), where Γ(0) := {0}
and Γ(j) := {am0 + mk + bmp+1 | (a, b) ∈ N2, k ∈ [0, p + 1] and a + b =
j − 1} for j ≥ 1. Further, since d = 1, for every j ≥ 0, elements of Γ(j)

are consequtive positive integers, Min(Γ(j)) = jm0, Max(Γ(j)) = jmp+1 and
card(Γ(j)) = j(p+1)+1. Furthermore, Γ(j)∩Γ(j+1) 6= ∅ if and only if j ≥ q+1.
Therefore, for every j ∈ [0, q], jmp+1 is the (i(j) − 1)-th element vi(j)−1 in Γ,

where i(j) := card
(⊎j

t=0 Γ(t)
)

=
∑j

t=0 (t(p+1)+1) =
(
j+1
2

)
(p+1)+j+1. Now

the assertion is clear from 3.8.

Corollary 3.10. Let m, d, p, q, r and Γ be as in 3.8 and let R := K[[Γ]] be
the semigroup ring of Γ over a field K. Then
(1) R is Gorenstein if and only if r = 0.
(2) Assume that R is not Gorenstein. Then R is almost Gorenstein if and

only if m = p + 2. Moreover, in this case we have τR = m− 1.

Proof. (1) R is Gorenstein if and only if τR = r + 1 = 1, i.e. r = 0.
(2) R is almost Gorenstein if and only if the type sequence of R is τR =
r + 1, 1, . . . , 1 or equivalently (by 3.8) q = 0, i.e. m − 2 = r. Now, since
m ≥ p + 2 and r ≤ p, we have m− 2 = r if and only if m− 2 = p.
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