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Abstract. For an odd prime number p let k be the p-th cyclotomic num-
ber field over Q, A its ring of integers, Xp := ProjA[X0, X1, X2]/(Xp

1 +
Xp

2 −Xp
0 ) the p-th Fermat scheme over A, X̄p its normalisation and ω1

X̄p/A

the sheaf of regular differentials of X̄p/A. We give an explicit descrip-
tion of its A-module H0(X̄p, ω1

X̄p/A) of global sections and study its re-

lation to the module D1
s(

Kp

A
) of integral differentials of the Fermat field

Kp = k(x, y) (xp + yp = 1) introduced by Bost [2]. The two modules are
equal if and only if the Fermat congruence xp + yp ≡ 1 mod p2 has at most
two solutions (x, y) ∈ N2 with 1 ≤ x, y ≤ p− 1.

1. Introduction. Let p be an odd prime number, k := Q[ζ] the p-th
cyclotomic number field, where ζ is a primitive p-th root of unity, A := Z[ζ]
the ring of integers of k and Kp := k(x, y) with xp + yp = 1 the p-th Fermat
field.

We study the module of integral differentials D1
s(

Kp

A ) introduced (in much
greater generality) by Bost [2]. It is defined as follows: Let V be the set of all
discrete valuation rings R with quotient field Kp such that R is essentially of
finite type over A, and let

Vs := {R ∈ V |R is smooth overA}.
Smoothness means that the module of Kähler differentials Ω1

R/A is free (neces-
sarily of rank 1). Then

D1
s(

Kp

A
) :=

⋂
R∈Vs

Ω1
R/A,

the intersection being taken inside Ω1
Kp/k. It turns out that this A-module is

connected to Fermat congruences of order 2

xp + yp ≡ 1 mod p2.
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Let N(p) be the number of all (x, y) ∈ N2 with 1 ≤ x, y ≤ p−1 which solve the
congruence. We consider the following as the main observation of this paper
(see 5.2 for a more general assertion):

Theorem 1. Let π := ζ − 1, w := x+y−1
π and ω := dx

yp−1 = − dy
xp−1 . Then

xiwk ω
π ∈ D1

s(
Kp

A ) for i + k ≤ p− 3. We have

D1
s(

Kp

A
) = (

⊕
i+k≤p−3

Axiwk)
ω

π

if and only if N(p) ≤ 2.

For its proof we have first to determine the R ∈ Vs and their modules
of differentials which will be done in Section 2 in a slightly more general sit-
uation. In our considerations the normalization X̄p of the Fermat scheme
Xp := ProjA[X0, X1, X2]/(Xp

1 + Xp
2 −Xp

0 ) over A plays an important role. It
will be studied in Section 3. If ω1

X̄p/A
is the sheaf of regular differentials of

X̄p/A we find (3.9)

Theorem 2. H0(X̄p, ω
1
X̄p/A

) = (
⊕

i+k≤p−3 Axiwk)ω
π .

For technical reasons we have to investigate the behaviour of D1
s under

base change which is done in Section 4. The proof of Theorem 1 is given in
Section 5.

For informations about Fermat congruences we refer to the book [5] of
Ribenboim, in particular to Chapter X: The local and modular Fermat prob-
lem, pp. 287–358. It mentions that Klösgen [3] has computed N(p) for the
prime numbers p < 20000. He found that more than 84 percent of these p
satisfy N(p) ≤ 2. The smallest p with N(p) > 2 is 59. In fact, N(59) = 12.

Finally, let us introduce some notation which will be valid in the whole
text. For a local ring R we write mR for its maximal ideal and k(R) for its
residue field. If R is a discrete valuation ring, then vR denotes the normed
discrete valuation associated with it. If p is a maximal ideal in a Dedekind
ring A, then vp is the valuation belonging to Ap. Further Q(R) denotes the
quotient field of a domain R. For an ideal I in a noetherian ring h(I) denotes
its height.

2. Smooth discrete valuation rings of Fermat fields over number
fields. We start with somewhat more general assumptions than those formu-
lated in the introduction.

Assumptions 2.1. Let k be an algebraic number field, A its ring of integers
and

Km := k(x, y) (xm + ym = 1,m ≥ 3),
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the m-th Fermat field over k. Let V = V (k) be the set of all discrete valuation
rings R with Q(R) = Km which are essentially of finite type over A, and let

Vs = Vs(k) := {R ∈ V |R is smooth over A}.
For a prime number p with p|m we set Vs(p) := {R ∈ Vs|p ∈ mR}.

Given R ∈ Vs let R′ := R ∩ k(x). This is a discrete valuation ring with
Q(R′) = k(x). If mR ∩A = (0), then mR′ ∩A = (0), i.e., k ⊂ R′. If mR ∩A :=
p ∈ MaxA, then due to the smoothness of R over A we have mR = πR with a
prime element π of Ap. Then mR′ = πR′.

To describe R′ and its module of differentials more precisely it suffices to
consider the R′ with x ∈ R. Otherwise, x̃ ∈ R, where x̃ := 1

x , and with ỹ := y
x

we have x̃m − ỹm = 1. The considerations in this case are similar to those in
case x ∈ R. The following cases can occur:

a) k ⊂ R′: Then R′ = k[x](f) with an irreducible f ∈ k[x]. Clearly, R′ is
smooth over A and Ω1

R′/A = R′dx.
b) mR′ ∩ A[x] = pA[x] with p ∈ MaxA: Then R′ = A[x]pA[x]. Again R′ is

smooth over A and Ω1
R′/A = R′dx.

c) mR′ ∩ A[x] ∈ MaxA[x]: Then mR′ ∩ A[x] = (p, f) with p ∈ MaxA and
an f ∈ A[x] which is irreducible modpA[x]. Thus R′ dominates the 2-
dimensional regular local ring R0 := A[x](p,f). We can form the sequence

R0 ⊂ R1 ⊂ · · · ⊂ Rt ⊂ R′

of quadratic transformations Ri ⊂ Ri+1 (i = 0, . . . , t − 1) along R′ which
consists of 2-dimensional regular local rings Ri. Then there exists a smallest
t ∈ N such that mR′ ∩Rt is a prime ideal P of height 1 so that R′ = (Rt)P.
In greater generality this was proved by Abhyankar [1], Proposition 1, see
also [4], Proposition 2.1 for a proof in our situation. It follows that R′ is
essentially of finite type and smooth over A. We call the above seqence the
quadratic sequence that connects A[x] with R′ and call t its length. In [4],
2.1 it is also shown that

Ω1
R′/A = R′dx

πt
,

where π is a prime element of Ap.
In case b) the last formula holds true with t = 0 which we also call the

length of the quadratic sequence in that case.
In any case R ∩ k(x) is an element of the set V ′

s = V ′
s (k) of all discrete

valuation rings R′ with Q(R′) = k(x) which are essentially of finite type and
smooth over A, and any R′ ∈ V ′

s belongs to one of the cases a)–c).
Now we have to deal with the question: Which R′ ∈ V ′

s are dominated by
rings R ∈ Vs, and how do these R arise from R′?
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The elements R ∈ Vs \
⋃

p|m Vs(p) are easy to determine. If mR ∩A = (0),
i.e., k ⊂ R, then R is a local ring of the Fermat curve xm + ym = 1 over k and

Ω1
R/A =

{
Rω if x ∈ R,
Rω̃ if x /∈ R,

where

ω :=
dx

ym−1
= − dy

xm−1
, ω̃ :=

dx̃

ỹm−1
=

dỹ

x̃m−1
= −xm−3ω.

Suppose mR ∩ A =: p ∈ MaxA with m /∈ p and x ∈ R. Let pAp = πAp

with a prime element π of Ap, and let R′ := R ∩ k(x). Then

R′[y]/pR′[y] = k(R′)[Y ]/(Y m + ξm − 1),

where ξ denotes the residue of x in k(R′). Since the characteristic of k(R′)
does not divide m, the polynomial Y m + ξm − 1 is separable over k(R′), hence
R′[y]/pR′[y] is a direct product of separable extension fields of k(R′). If m1, . . . ,
mr are the maximal ideals of R′[y] corresponding to the factors of R′[y], then
the R′[y]mi are elements of Vs, and R is one of these rings. Moreover, since
k(R)/k(R′) is separable algebraic and y a unit of R, we have

Ω1
R/A = R⊗R′ Ω1

R′/A = R
dx

πt
= R

ω

πt
,

where t is the length of the quadratic sequence connecting A[x] with R′.
It remains to consider the R ∈ Vs(p), where p is a prime number with p|m.

Again mR ∩ A =: p is a maximal ideal of A. We have p = επe with a prime
element π, a unit ε of Ap and the ramification index e of Ap over Z(p). Assume
that x ∈ R, write m = pνm′ with p - m′ and set z := xm′

+ ym′ − 1. By the
binomial theorem, the Fermat equation xm + ym = 1 can be written

(1) zpν
+

pν−1∑
i=1

(
pν

i

)
zpν−i(1− xm′

)i + phν(x) = 0,

where

(2) hν(x) :=
1
p
((xm′

)pν
+ (1− xm′

)pν − 1).

Again by the binomial theorem

(3) hν(x) =

{
1
p

∑pν−1
i=1

(
pν

i

)
(−xm′

)i if p 6= 2,

(xm′
)2

ν
+ 1

2

∑2ν−1
i=1

(
2ν

i

)
(−xm′

)i if p = 2.

Proposition 2.2. We always have vR(z) > 0. Moreover, vR(hν(x)) = 0
if and only if pνvR(z) = e.
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Proof. In equation (1) all terms other than zpν
have positive value, hence

also vR(z) > 0. The terms
(
pν

i

)
zpν−i(1− xm′

)i (i = 1, . . . , pν − 1) have value

(pν − i)vR(z) + (ν − vp(i))e + ivR(1− xm′
) ≥ e + (pν − i)vR(z).

If vR(hν(x)) = 0, then e is the unique smallest value of the terms of (1) other
than zpν

, hence pνvR(z) = e. Conversely, if this equation holds, then e is
the unique smallest value of the terms other than phν(x), and it follows that
vR(hν(x)) = 0.

Corollary 2.3. If pν does not divide e, then each R ∈ Vs(p) dominates
one of the rings R′ = A[x](p,f) with p ∈ MaxA, p ∈ p and f ∈ A[x], where
the reduction f̄ ∈ A/p[x] of f is one of the irreducible factors of the reduction
h̄ν(x) of hν(x).

The assumption of the corollary is trivially satisfied if the primes p|m are
unramified in A, in particular if k = Q. On the other hand, let k be the m-th
cyclotomic number field. The decomposition law for such fields implies that

e = pν−1(p− 1),

hence the corollary can be applied in this case too.
Now the question arises whether the R′ ∈ V ′

s which dominate an A[x](p,f)

as in the corollary are dominated by some R ∈ Vs(p).
Among the divisors of hν(x) are xm′

and 1 − xm′
. Writing the Fermat

equation in the form

(4) (ym′
)pν

+
pν∑
i=1

(
pν

i

)
(xm′ − 1)i = 0

we see

Lemma 2.4. For R ∈ Vs(p) we have vR(xm′−1) > 0 if and only if vR(y) >

0. There exists R ∈ Vs(p) with vR(xm′ − 1) > 0 if and only if there exists
R∗ ∈ Vs(p) with vR∗(x) > 0.

We get R∗ from R by applying the k-automorphism of Km which exchanges
y and x.

Assumptions 2.5. Under the Assumptions 2.1 let a prime number p|m be
given such that p2 - m. Write m = p · m′ (p - m′). Consider p ∈ MaxA with
p ∈ p and suppose the ramification index e of Ap over Z(p) is p − 1. Let π be
a prime element of Ap.

For example, if m is squarefree and k the m-th cyclotomic number field,
then these assumptions are satisfied for every p|m and p ∈ MaxA with p ∈ p
by the decomposition law for such fields.
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Theorem 2.6. Under the Assumptions 2.5 consider R′ ∈ V ′
s which domi-

nates Ap. Assume further that vR′(x) ≥ 0, vR′(xm′ − 1) = 0, vR′(h1(x)) > 0.
a) The rings R ∈ Vs which dominate R′ are the localizations of R′[w, y] at its

maximal ideals, where w := z
π = xm′

+ym′−1
π . Further

Ω1
R′[w,y]/A = R′[w, y]⊗R′ Ω1

R′/A = R′[w, y]
ω

πt
,

where t is the length of the quadratic sequence connecting A[x] with R′.
b) Let f ∈ A[x] be normed, modulo p irreducible, and let its reduction f̄ be a
factor of the reduction h̄1 of h1. Further let m′ = 1. Then R′ = Ap[x][ f

π ](π) ∈
V ′

s , and the rings R ∈ Vs which dominate R′ are the localizations of R = R′[w]
at its maximal ideals where w := x+y−1

π . Further

Ω1
R′[w]/A = R′[w]

ω

π

If in addition f̄ is a simple factor of h̄1, then R = R′[w] ∈ Vs(p).

Proof. a) We have p = επp−1 with a unit ε of Ap. Dividing the equation
(1) for ν = 1

zp +
p−1∑
i=1

(
p

i

)
zp−i(1− xm′

)i + ph1(x) = 0

by πp, we obtain

(5) wp +
p−1∑
i=1

1
πi

(
p

i

)
wp−i(1− xm′

)i + ε
h1(x)

π
= 0.

We have 1
πi

(
p
i

)
= ηiπ

p−1−i (i = 1, . . . , p − 1) with units ηi ∈ Ap, and by
assumption h1(x)

π ∈ R′. Therefore, (5) is an equation of integral dependence
for w over R′ and hence w ∈ R for each R ∈ V which dominates R′.

Further
R′[w]/πR′[w] = k(R′)[W ]/(W p + ηW + θ)

with η ∈ k(R′)\{0}, θ ∈ k(R′). It follows that R′[w]/πR′[w] is a direct product
of separable extension fields of k(R′). The localizations of R′[w] at its maximal
ideals are therefore discrete valuation rings with quotient field k(x, ym′

) which
are smooth over A, and each ring R0 of this kind which dominates R′ is such a
localization. Moreover, R0[y]/πR0[y] = k(R0)[Y ]/(Y m′ −β) with the residue β

of ym′
in k(R0). Since vR0(z) > 0 and vR0(x

m′ − 1) = 0, we have vR0(y
m′

) = 0,
hence β 6= 0. It follows that once again R0[y]/πR0[y] is a direct product of
separable extension fields of k(R0). Therefore, the localizations of R0[y] at its
maximal ideals are elements of Vs, and each R ∈ Vs is such a localization for a
suitable R0.
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In order to verify the assertion about differential modules observe that
the localizations of R′[w, y] at its maximal ideals have a residue field which is
separable algebraic over k(R′) which implies the first equation of 2.6a). Further
Ω1

R′/A = R′ dx
πt . In R′[w, y] the element y is a unit since this is true for each

localization of R′[w, y] as vR′(xm′ − 1) = 0. It follows that R′[w, y]dx =
R′[w, y]ω.

b) Only the last assertion of b) has to be proved. The residue v̄ of v := f
π in

k(R′) is transcendental over k(Ap)[ξ] where ξ denotes the residue of x. Write

h1(x) = q(x) · f(x) + r(x) with q(x), r(x) ∈ A[x], deg(r) < deg(f).

Then the coefficients of r(x) are divisible in Ap by π. The residue of h1(x)
π

is of the form q̄(ξ)v̄ + ρ(ξ) with ρ(x) ∈ k(Ap)[x], and q̄(ξ) 6= 0 since f̄ is a
simple factor of h̄1. In the polynomial W p + ηW + θ we have η ∈ k(Ap)[ξ], and
θ is a linear polynomial in v̄ over this ring. It follows that W p + ηW + θ is
irreducible over k(R′), and R′[w] is the only element of Vs(p) that dominates
R′. This completes the proof of b).

For R ∈ Vs(p) with vR(xm′ − 1) > 0 we have vR(y) > 0 by 2.4. Such R
are given as in 2.6 where we have to replace x by y and where it suffices to
consider f = y. It remains to consider the R′ ∈ V ′

s which dominate Ap and
for which vR′(x̃) > 0. With z̃ := x̃m′ − ỹm′ − 1 the Fermat equation can be
written as follows

z̃p +
p−1∑
i=1

(
p

i

)
z̃p−i(1− x̃m′

)i + ph1(x̃) = 0.

Analogous to 2.6 is

Theorem 2.7. Let vR′(x̃) > 0.

a) The localizations of R′[w̃, ỹ] with w̃ := z̃
π at its maximal ideals are the rings

R ∈ Vs which dominate R′. We have

Ω1
R′[w̃,x̃]/A = R′[w̃, ỹ]

ω̃

πt

with t as in 2.6.
b) If m′ = 1 and R̃′ = Ap[ x̃

π ](π), then there exists exactly one R̃ ∈ Vs(p) which
dominates R̃′, namely R̃ = R̃′[w̃] with w̃ := x̃−ỹ−1

π .

Assumptions 2.8. Under the Assumptions 2.5 let m′ = 1 and suppose
that k contains a primitive p-th root of unity ζ and π := ζ − 1 is a prime
element of Ap.
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These assumptions are satisfied for example if k is the p-th cyclotomic
number field and m = p.

Theorem 2.9. Let R ∈ Vs(p) be the ring which dominates R′ := Ap[ y
π ](π),

that is R = R′[w] with w := x+y−1
π . Then we also have

R = Ap[
x− 1

π
](π)[w]

and R is the only element of Vs(p) which dominates Ap[x−1
π ](π).

Proof. Clearly Ap[x−1
π ](π) ⊂ R. We show at first that the residue v̄ of

v := x−1
π in k(R) is transcendental over Fp. Since

yp +
p−1∏
j=0

(x− ζj) = 0

and vR(y) = 1, we have vR(
∏p−1

j=0(x − ζj)) = p, hence vR(x − ζj) > 0 for at
least one j ∈ {0, . . . , p− 1}. However,

(x− ζj)− (x− ζk) = ζk − ζj = (ζ − 1)ϕjk(ζ),

where ϕjk(ζ) is a unit of Ap. Since ζ − 1 is a prime element of Ap it follows
that vR(x− ζj) = 1 for all j = 0, . . . , p− 1. The equation

(
y

π
)p +

p−1∏
j=0

x− ζj

π
= 0

shows that the residue in k(R) of least one of the x−ζj

π must be transcendental
over k(Ap). But

x− ζj

π
− x− ζk

π
= ϕjk(ζ)

implies that all these residues are transcendental over k(Ap), in particular, so
is v̄.

It follows that Ap[x−1
π ](π)[w] ⊂ R. Set R′′ := Ap[x−1

π ](π). Equation (5)
shows that the minimal polynomial of the residue of w in k(R′′) has the form
W p + θ, where θ is transcendental over k(Ap), since x− 1 is a simple factor of
h̄1(x) as h̄′1(1) 6= 0. Therefore, R is the only element of Vs(p) which dominates
R′′, that is R = R′′[w].

Under the Assumptions 2.8 all R ∈ Vs(p) are described now as extensions of
rings R′ ⊂ k(x) so that it is not necessary to pass from x to y.
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3. Normalization of the Fermat scheme. Under the Assumptions 2.1
let

Xm := ProjA[X0, X1, X2]/(Xm
1 + Xm

2 −Xm
0 )

be the m-th Fermat scheme over A. We have

Xm = SpecS ∪ SpecS̃

with S := A[x, y], S̃ := A[x̃, ỹ]. Let M := {1,m,m2, . . . }.

Lemma 3.1. (Xm)M := AM ⊗A Xm is smooth over AM and⋂
R∈Vs,m/∈mR

Ω1
R/A = Ω1

SM/A ∩ Ω1
S̃M/A

= (
⊕

i+k≤m−3

AMxiyk)ω.

Proof. We have Ω1
SM/A = SMdX⊕SMdY/〈mxm−1dX+mym−1dY 〉. Here

m is a unit of SM and locally so is x or y. It follows that Ω1
SM/A = SMω.

Similarly Ω1
S̃M/A

= S̃M ω̃ with ω̃ = dx̃
ỹm−1 = dỹ

x̃m−1 , hence (Xm)M is smooth over

AM . Since ω̃ = −xm−3ω, we obtain

Ω1
SM

∩ Ω1
S̃M

= (SM ∩ xm−3S̃M )ω = (
⊕

i+k≤m−3

AMxiyk)ω

as an easy computation shows. Since (Xm)M is smooth over AM , we have⋂
R∈Vs,m/∈mR

Ω1
R/A ⊂ Ω1

SM/A ∩ Ω1
S̃M/A

.

On the other hand, xiykω ∈ Ω1
R/A (i + k ≤ p − 3), if R ∈ Vs and m /∈ mR, as

we have seen at the beginning of Section 2.

Lemma 3.2. For a prime number p|m let m = pν · m′ with p - m′. Let
P ∈ SpecS with h(P) = 1 and p ∈ P be given, and set z := xm′

+ ym′ − 1, p :=
P ∩A. Then

P = (p, z)S.

SP is regular if and only if p is unramified in A.

Proof. Since p ∈ P equation (1) shows that z ∈ P. Further S/pS =
k(Ap)[x, y]/(zpν

) and S/(p, z)S = k(Ap)[x, y]/(z) is a domain. Hence (p, z)S ∈
SpecS, and since h(P) = 1, we have (p, z)S = P.

When p is unramified in A, then PSP = (p, z)SP. We have P ∩ A[x] =
pA[x], and therefore the polynomial hν(x) of equation (1) is a unit of A[x]p ⊂
SP. Equation (1) shows that p ∈ zSP hence PSP = zSP, and SP is regular.

Assume now that p = επe with a prime element π, a unit ε of Ap and
e > 1. If PSP = (π, z)Sp would be a principal ideal, then π or z would
generate it. Let Q be the preimage of P in the polynomial ring A[x, y]
and Q̄ its image in k(Ap)[x, y]. As neither SP/πSP = k(Ap)[x, y]Q̄/(zpν

) nor
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SP/zSP = A[x, y]Q/(phν(x), z) = A[x, y]Q/(πe, z) is a field the ring SP is
certainly singular.

Theorem 3.3. Xm is normal if and only if all prime numbers p|m are
unramified in A.

Proof. To show normality of Xm it suffices to verify that all local rings
SP with P ∈ SpecS, h(P) = 1 are regular. By symmetry, this is then also true
for S̃. If the condition on the prime divisors of m is hurt, then 3.2 shows that
Xm is not normal.

If, however, the condition is fulfilled for the SP with h(P) = 1 and m ∈ P,
then these rings are regular. By 3.1 this is also true for the SP with m /∈ P.

It is clear that Xm is normal for k = Q. If k is the m-th cyclotomic number
field, then Xm is not normal. In fact: If m has a prime divisor p 6= 2, then
p has ramification index e = pν−1(p − 1) > 1. The same is true for p = 2 if
m = 2ν with ν > 1.

Assumptions 3.4. Let k be the m-th cyclotomic number field, where m
is squarefree. Let X̄m be the normalisation of Xm.

Lemma 3.5. Under the Assumptions 3.4 the 1-dimensional singular local
rings of Xm are the SP with P ∈ SpecS, h(P) = 1 which contain a prime p 6= 2
that divides m. With p := P∩A we have PSP = (π, z)SP, where pAp = πAp,
and k(SP) = k(Ap)(ξ, η) with ξm′

+ ηm′
= 1 is the m′-th Fermat field over

k(Ap).

Proof. Since the primes p 6= 2 which divide m are ramified in A the
local rings mentioned in the lemma are singular by 3.2. The assertion about
their maximal ideal and their residue field is clear. Moreover, we have P ∩
A[x] = pA[x], hence x is a unit in SP, and it follows that A[x̃]pA[x̃] ⊂ SP and
z̃ := x̃m′ − ỹm′ − 1 ∈ PSP. Therefore, SP = S̃P̃ with P̃ := (p, z̃)S̃, and hence
there are no other 1-dimensional singular local rings of Xm but the SP.

We want to describe now the normalizations of these rings and their modules
of regular differentials over Ap.

Theorem 3.6. For SP as in 3.5 the blowing up R := SP[u] with u := π
z is

the normalization of SP. It is a discrete valuation ring with the prime element
u, and k(R) = k(SP). We have vR(z) = p − 1, vR(π) = p and for the Kähler
different of R/Ap

d1(R/Ap) = πR.

Further for the image [R, dR] of Ω1
R/Ap

in Ω1
Km/k we have

[R, dR] = R
π

z2
ω
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and the module of regular differentials of R/Ap is

ω1
R/Ap

= d1(R/Ap)−1[R, dR] = R
ω

z2
.

Proof. Write p = επp−1 with a unit ε ∈ Ap. Dividing (1) (with ν = 1) by
zp−1, we obtain

(6) z +
p−1∑
i=1

εiπ
p−i(1− xm′

)iui−1 + εh1(x)up−1 = 0

with units εi ∈ Ap. Since P ∩ A[x] = pA[x], the polynomial h1(x) is a unit
of SP. Therefore, u is integral over SP, hence u is contained in each discrete
valuation ring of Km which dominates SP.

As π = zu ∈ uSP[u] we see from (6) that z ∈ uSP[u] and hence

SP[u]/uSP[u] = SP/(π, z)SP = k(Sp).

Thus we have shown that uSP[u] is a maximal ideal of SP[u].
Any maximal ideal of SP[u] contains by (6) with π and z also u and is

therefore uSP[u]. It follows that R := SP[u] is the normalization of SP and a
discrete valuation ring with vR(u) = 1 and k(R) = k(SP). Using (6), we find
vR(z) = p− 1 and vR(π) = p.

In order to compute Ω1
R/Ap

we consider the kernel I of the canonical SP-
epimorphism SP[U ] → SP[u] (U 7→ u). We show that

I = (zU − π, z + g(x,U)),

where

g(x, U) :=
p−1∑
i=1

εiπ
p−i(1− xm′

)iU i−1 + εh1(x)Up−1.

Certainly, zU − π and z + g(x,U) are in I. Further

SP[U ]/(U, zU − π, z + g(x,U)) = SP/(π, z) = k(SP).

The residue class ū of U in B := SP[U ]/(zU − π, z + g(x,U)) generates a
maximal ideal of B and it is intergral over SP. As above we see that ūB
is the only maximal ideal of B lying over PSP. It follows that B = R and
I = (zU − π, z + g(x, U)).

We have

Ω1
SP/Ap

= SPdX ⊕ SPdY/〈pm′(xm−1dX + ym−1dY )〉.
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It follows that Ω1
R/Ap

with respect to the system of generators {dx, dy, du} has
the relation matrix pm′xm−1 pm′ym−1 0

m′xm′−1u m′ym′−1u z

m′xm′−1 + ∂g
∂x(x, u) m′ym′−1 ∂g

∂U (x, u)

 .

Here

∂g

∂x
(x, u) =

p−1∑
i=1

εiπ
p−i(−im′)xm′−1(1− xm′

)i−1ui−1 + εh′1(x)up−1

and h′1(x) = xp−1 − (1 − x)p−1 /∈ pA[x]. Hence h′1(x) is a unit of R and it
follows that vR( ∂g

∂x(x, u)) = p− 1. As R has ramification index p = vR(π) over
Ap we have vR(d1(R/Ap)) ≥ p. But the minor

det

[
m′xm′−1u m′ym′−1u

m′xm′−1 + ∂g
∂x(x, u) m′ym′−1

]
of the relation matrix has value vR(u ∂g

∂x(x, u)) = p. Therefore, d1(R/Ap) = πR.
In [R, dR] we have xm−1dx + ym−1dy = 0. As xm′ − 1 is a unit in R so is

y and therefore x
y ∈ R. It follows that dy ∈ Rdx. Further

[m′xm′−1 −m′ym′−1(
x

y
)m−1 +

∂g

∂x
(x, u)]dx ∈ Rdu.

The expression in brackets is a unit in R. Therefore,

[R, dR] = Rdu = R
π

z2
dz = R

π

z2
(xm′−1dx + ym′−1dy) = R

π

z2
dx = R

π

z2
ω

and
ω1

R/Ap
= d1(R/Ap)−1[R, dR] = R

ω

z2
.

Assumptions 3.7. Let m = p be an odd prime number, k = Q[ζ] the
p-th cyclotomic number field, where ζ is a primitive p-th root of unity. Set
π := ζ − 1, z := x + y − 1 and M := {1, π, π2, . . . }.

In this situation SP with P = (π, z) is, by 3.5, the only singular 1-
dimensional local ring of Xp. Let S̄ denote the integral closure of S in Kp.
Then

S̄ =
⋂

Q̄∈SpecS̄,h(Q̄)=1

S̄Q̄.

If Q̄ ∈ SpecS̄ has height 1, so has Q := Q̄∩S. There is only one Q ∈ SpecS with
p ∈ Q, namely Q = P, and, by 3.6, SP[u] with u := π

z is the normalization of
SP. Consequently, there is only one P̄ ∈ SpecS̄ lying over P and S̄P̄ = SP[u].
Further P̄ is uniquely determined by the condition p ∈ P̄.
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The local rings S̄Q̄ with p /∈ Q̄ are localizations of SM which, by 3.1, is
smooth over A, and each localization of SM at a prime of height 1 is such an
S̄Q̄. It follows that

S̄ = SM ∩ SP[u].

Analogously for the normalization ¯̃S of S̃

¯̃S = S̃M ∩ SP[u].

Up to SP resp. R := SP[u] the schemes Xp and X̄p have the same 1-dimensional
local rings.

Proposition 3.8. S̄ = A[x]⊕A[x]z ⊕A[x] z
2

π ⊕ · · · ⊕A[x] zp−1

πp−2 .

Proof. We have S̄ = {s ∈ SM |vR(s) ≥ 0} by the above. By 3.5,

vR(z) = p− 1, vR(π) = p, vR(u) = 1.

Therefore,

vR(
zk

πk−1
) = (p− 1)k − p(k − 1) = p− k (k = 1, . . . , p− 1)

and the above direct sum is contained in S̄. Any s ∈ SM = AM [x, z] can be
written as

s = ϕ0 + ϕ1z + ϕ2
z2

π
+ · · ·+ ϕp−1

zp−1

πp−2

with ϕk =
∑

i bikx
i ∈ AM [x], bik ∈ AM . The vR( zk

πk−1 ) are the numbers of
{0, . . . , p−1} while the vR(ϕk) are divisible by p. Therefore, if vR(s) ≥ 0, then
vR(ϕk) ≥ 0 for k = 0, . . . , p− 1. But k(R) = k(Ap)(x) with p := P ∩ A, where
x is transcendental over k(Ap). It follows that bik ∈ Ap ∩ AM = A for all i, k
which proves 3.8.

Theorem 3.9. Under the assumptions 3.7 let ω1
X̄p/A

be the sheaf of regular
differentials of X̄p over A. Then

H0(X̄p, ω
1
X̄p/A) = (

⊕
i+k≤p−3

Axiwk)
ω

π
,

where w := z
π .

Proof. The sheaf ω1
X̄p/A

is reflexive: We have ω1
S̄/A

∼= HomA[x](S̄, A[x]),

and this is a reflexive S̄-module, similarly for ¯̃S. Therefore, for the global
sections

H0(X̄p, ω
1
X̄p/A) =

⋂
P∈X̄p,dimOP =1

ω1
OP /A.
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The OP with dimOP = 1 and p /∈ mP are the 1-dimensional local rings of
(Xp)M . From 3.1 and 3.6 we obtain with R := SP[u]

H0(X̄p, ω
1
X̄p/A) = (

⊕
i+k≤p−3

AMxiyk)ω ∩ ω1
R/A = (

⊕
i+k≤p−3

AMxizk)ω ∩R
ω

z2

= (
⊕

i+k≤p−3

AMxizk ∩R
π

z2
)
ω

π
.

An element
∑

i+k≤p−3 bikx
izk with bik ∈ AM is in R π

z2 if and only if

vR(
z2

π

∑
i+k≤p−3

bikx
izk) = vR(

p−3∑
k=0

(
p−3−k∑

i=0

πkbikx
i)

zk+2

πk+1
) ≥ 0.

With a similar argument as in the Proof of 3.8 this is the case if and only if
πkbik ∈ A for all i, k with i + k ≤ p− 3, and it follows that

H0(X̄p, ω
1
X̄p/A) = (

⊕
i+k≤p−3

Axiwk)
ω

π
.

4. Base change. Under the Assumptions of 2.1 let l be a finite extension
field of k with ring of integers B and let Lm := l(x, y) (xm + ym = 1) be the
Fermat field over l. The set Vs(l) is defined analogously as Vs(k). We want to
compare D1

s(
Km
A ) :=

⋂
R∈Vs(k) Ω1

R/A with D1
s(

Lm
B ) :=

⋂
T∈Vs(l)

Ω1
T/B.

Lemma 4.1. For R ∈ Vs(k) let M be a maximal ideal of B ⊗A R. Then

T := (B ⊗A R)M ∈ Vs(l) and Ω1
T/A = B ⊗R Ω1

R/A.

Proof. The assertion about differential modules is clear. Therefore, Ω1
T/B

is a free T -module of rank 1, and T is smooth over B.

If T ∈ Vs(l) is of the form (B ⊗A R)M with R ∈ Vs(k),M ∈ Max(B ⊗A R) we
say that T arises from R by base change. In general, this need not be the case.
However, we have

Lemma 4.2. For T ∈ Vs(l) let P := mT ∩ B ∈ MaxB and p := P ∩ A. If
BP is unramified over Ap, then R := T ∩ k(x, y) ∈ Vs(k), and T arises from
R by base change.

Proof. Since Bp is unramified over Ap, it follows that T is smooth over A.
Then R′ := T ∩ k(x) is essentially of finite type over Ap ([4], 2.1). Therefore,
R is essentially of finite type over Ap. From mT = pT ⊂ mRT ⊂ mT we
obtain pR = mR, hence the smoothness of R over A. We have B ⊗A R ⊂
T,mT ∩B⊗A R =: M ∈ Max(B⊗A R), and it follows that T = (B⊗A R)M.
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Proposition 4.3. Suppose the Fermat scheme Xm over A is normal. Then
all T ∈ Vs(p) with p|m arise from rings R ∈ Vs(Q) by base change.

Proof. By 3.3 all prime numbers p with p|m are unramified in A, therefore
4.2 can be applied.

The rings R ∈ Vs(Q) and their modules of differentials have been described
in [4], 3.8–3.11, so that the T ∈ Vs(k) are also known by the above, if Xm is
normal. Alternately it is possible to repeat the arguments of [4] to give an
analogous description of the T ∈ Vs(k) in case Xm is normal.

Proposition 4.4. a) We always have

D1
s(

Lm

B
) ⊂ B ⊗A D1

s(
Km

A
).

b) If all BP with P ∈ MaxB and m ∈ P are unramified over Ap, where
p = P ∩A, then we have equality in a).

Proof. a) By 3.1, we have

D1
s(

Km

A
) = (

⊕
i+k≤m−3

AMxiyk)ω ∩
⋂

R∈Vs(k),m∈mR

Ω1
R/A

and there is an analogous formula for D1
s(

Lm
B ). We write T ↓ R if T ∈ Vs(l)

arises from R ∈ Vs(k) by base change. Then
⋂

T↓R Ω1
T/B = B ⊗A Ω1

R/A and
hence

D1
s(

Lm

B
) ⊂ B ⊗A (

⊕
i+k≤m−3

AMxiyk)ω ∩
⋂

R∈Vs(k),m∈mR

B ⊗A Ω1
R/A

= B ⊗A [(
⊕

i+k≤m−3

AMxiyk)ω ∩
⋂

R∈Vs(k),m∈mR

Ω1
R/A] = B ⊗A D1

s(
Km

A
).

b) If the condition of unramifiedness is satisfied, then, by 4.2, all T ∈ Vs(l)
with vT (m) > 0 arise from rings R ∈ Vs(k) by base change, and the above
inclusion becomes an equality.

Corollary 4.5. In the situation of 4.4b) differentials η1, . . . , ηs ∈ Ω1
Km/k

form a system of generators (a basis) of the A-module D1
s(

Km
A ) if and only if

they form a system of generators (a basis) of the B-module D1
s(

Lm
B ).

This is clear since B is faithfully flat over A.

Corollary 4.6. Let K0
m := Q(x, y) (xm + ym = 1) be the m-th Fermat

field over Q. If the Fermat scheme Xm is normal, then

D1
s(

Km

A
) = A⊗Z D1

s(
K0

m

Z
).
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Lemma 4.7. Let p be an odd prime number, k = Q[ζ] the p-th cyclotomic
number field with a primitive p-th root ζ of unity and π := ζ − 1. Then

ω

π
∈ D1

s(
Kp

A
) and

ω̃

π
∈ D1

s(
Kp

A
).

Proof. Let R ∈ Vs be given. If p /∈ mR, then clearly ω
π ∈ Ω1

R/A and
ω̃
π ∈ Ω1

R/A by what was said about Ω1
R/A at the beginning of Section 2. If

R ∈ Vs(p) and x ∈ R, then ω
π ∈ Ω1

R/A by 2.6a). Since ω̃ = −xp−3ω, we also
have ω̃

π ∈ Ω1
R/A. In case R ∈ Vs(p) and x /∈ R we use 2.7a) to conclude that

ω̃
π ∈ Ω1

R/A and ω = −x̃p−3ω̃ to conclude that ω
π ∈ Ω1

R/A.

Example 4.8. Let p be an odd prime number, k the p-th cyclotomic number
field and K0

p the p-th Fermat field over Q. Then

D1
s(

Kp

A
) 6= A⊗Z D1

s(
K0

p

Z
).

In fact, by 4.7, ω
p ∈ D1

s(
K0

p

Z ). By 2.6, there are rings T ∈ Vs(k) with Ω1
T/A = T ω

π ,

hence ω
p /∈ D1

s(
Kp

A ) since p has ramification index p− 1 in A.

5. Connection to Fermat congruences.

Assumptions 5.1. Under the Assumptions 3.7 let X̄p denote the normal-
ization of the Fermat scheme Xp and set w := z

π . Let S(p) be the set of
solutions (x, y) of the Fermat congruence

xp + yp ≡ 1 mod p2 with 1 ≤ x, y ≤ p− 1

and N(p) the cardinality of S(p).

It is easy to see that D1
s(

K3
A ) = Aω

π and N(3) = 0. In this section we want
to prove

Theorem 5.2. If p > 3, then

a) H0(X̄p, ω
1
X̄p/A

) = (
⊕

i+k≤p−3 Axiwk)ω
π ⊂ D1

s(
Kp

A ).

b) We have equality in a) if and only if N(p) ≤ 2.

c) In the general case the quotient D1
s(

Kp

A )/H0(X̄p, ω
1
X̄p/A

) is an A-module of
finite length ≥ N(p)− 2.

For the proof of a) notice that ω
π , ω̃

π ∈ D1
s(

Kp

A ) by 4.7. For each R ∈ Vs(p)
with vR(x) ≥ 0 we have w ∈ R by 2.6a) and 2.9, hence xiwk ω

π ∈ Ω1
R/A for these

R and all i, k with i+k ≤ p−3. For R ∈ Vs(p) with vR(x̃) > 0 this is also true
by 2.7a), since w = −xw̃, ω = −x̃p−3ω̃ imply xiwk ω

π = (−1)k+1x̃p−3−i−kw̃k ω̃
π
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for i + k ≤ p− 3. The R ∈ Vs \ Vs(p) also present no problem since π is a unit
in such R, and a) follows.

The relation to Fermat congruences comes from the following fact (Riben-
boim [5], p. 172):

Lemma 5.3. Let h̄1(x) ∈ Fp[x] be the reduction of h1(x) modulo p. Then
N(p) is the number of zeros of h̄1(x) in Fp \ {0, 1}. These zeros are double
roots of h̄1(x) in the algebraic closure F̄p of Fp. All other roots of h̄1(x) are
simple.

Proof. The last two assertions are clear since

(1−x)h′1(x) = (1−x)(xp−1−(1−x)p−1) = xp−1−xp−(1−x)p ≡ xp−1−1 mod p.

Let S̃(p) denote the set of zeros of h̄1(x) in Fp\{0, 1}. If a∈{2, . . . , p−1}⊂N
is a representative of α ∈ S̃(p), then

ap + (p + 1− a)p ≡ ap + (1− a)p ≡ 1 mod p2,

i.e. (a, p + 1 − a) ∈ S(p). Conversely if (x, y) ∈ S(p), then necessarily 2 ≤
x, y ≤ p − 1 and xp + yp ≡ 1 mod p. By Fermat’s little theorem, we have
xp + yp ≡ x + y mod p, hence x + y ≡ 1 mod p and 4 ≤ x + y ≤ 2p − 2. It
follows that y = p + 1 − x and xp + (1 − x)p ≡ 1 mod p2. Thus (x, y) 7→ x

defines a bijection S(p) → S̃(p).

Roughly the smaller N(p) is, the more roots has h̄1(x), the more R ∈ Vs(p)
exist and the smaller is the intersection of their modules of differentials.

The detailed proof of 5.2b) and c) requires some preparations. Let l be a
finite extension field of k with the following property: In the ring B of integers
of l there exists a maximal ideal P with P ∩ A = p = (π) such that BP is
unramified over Ap and k(BP) is a splitting field of h̄1(x) over k(Ap). One gains
such an l by taking a primitive element τ of a splitting field of h̄1(x), choosing
a normed polynomial f(x) ∈ A[x] which represents the minimal polynomial
of τ over k(Ap) and setting l := k[x]/(f(x)). Then there is only one maximal
ideal P of B lying over p, and π is a prime element of BP.

For the Fermat field Lp := l(x, y) the Assumptions 2.5 are satisfied and
hence the Assertions 2.6, 2.7 and 2.9 are applicable, further 4.4b) and 4.5. To
prove 5.2b) it suffices therefore to show that {xiwk ω

π }i+k≤p−3 is a basis of the
B-module D1

s(
Lp

B ) if and only if N(p) ≤ 2.

Lemma 5.4. Let β ∈ BP be a representative of a zero β̄ of h̄1(x) in k(BP)
and R := R′[w] with R′ := BP[x−β

π ](π). Then if M = {1, π, π2, . . . }

(
⊕

i+k≤p−3

BMxiyk)
ω

π
∩ Ω1

R/B ⊂ Ω1
R∗/B
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for all R∗ ∈ Vs(l) with vR∗(p) > 0 and vR∗(x−β) > 0. An analogous assertion
is also true for the ring R̃ := R̃′[w̃] with w̃ := x̃−ỹ−1

π lying over R̃′ := BP[ x̃
π ](π)

and all R̃∗ ∈ Vs(l) with vR̃∗(p) > 0 and vR̃∗(x̃) > 0.

Proof. By 2.6b) and 2.9, the only rings in Vs(l) which dominate R′ are
the localizations of R at its maximal ideals, and the same holds true for R̃ and
R̃′. Further Ω1

R/B = Rω
π and Ω1

R̃/B
= R̃ ω̃

π .

Any σ ∈
⊕

i+k≤p−3 BMxiyk can be written as σ =
∑p−3

k=0 σkw
k, where

σk =
p−3−k∑

i=0

bikx
i (bik ∈ BM ).

Since {1, w, . . . , wp−3} is part of a basis of R over R′, we have σ ω
π ∈ Ω1

R/B if
and only if σk ∈ R′ for k = 0, . . . , p− 3. Write

σk =
p−3−k∑

i=0

bik(x− β + β)i =
p−3−k∑

i=0

bik

i∑
j=0

(
i

j

)
βi−j(x− β)j

=
p−3−k∑

j=0

πj(
∑
i≥j

(
i

j

)
βi−jbik)(

x− β

π
)j .

The residue class of x−β
π in k(R′) is transcendental over k(BP). Therefore,

σk ∈ R′ if and only if for all j, k the following conditions are satisfied

Gjk(β) vP(
∑
i≥j

(
i

j

)
βi−jbik) ≥ −j.

Now if R∗ is given as in the lemma, then R∗ is a localization of R′′[w] with
some R′′ ∈ V ′

s (l), where vR′′(x − β) > 0, and we have Ω1
R∗/B = R∗ ω

πt with
some t ≥ 1. If Gjk(β) holds for all j, k, then σk ∈ R′′ (k = 0, . . . , p− 3), and it
follows that σ ω

π ∈ Ω1
R∗/B.

The proof for R̃ and R̃′ is analogous: As w = −x̃−1w̃ and ω = −x̃p−3ω̃ we
have

σ
ω

π
=

( ∑
i+k≤p−3

bikπ
p−3−i−k(

x̃

π
)p−3−i−kw̃k

) ω̃

π
.

Since {1, w̃, . . . , w̃p−3} is part of a basis of R̃ over R̃′ and the residue class of
x̃
π in k(R̃′) is transcendental over k(BP), we conclude that σ ω

π ∈ Ω1
R̃/B

= R̃ ω̃
π if

and only if bikπ
p−3−i−k ∈ BP that is if and only if the following conditions

G̃ik vP(bik) ≥ −(p− 3− i− k) (i + k ≤ p− 3)

are satisfied. Now let R̃∗ ∈ Vs(l) be such that vR̃∗(p) > 0 and vR̃∗(x̃) > 0. If
the conditions G̃ik are satisfied, then vR̃∗(bikx̃

p−3−i−k) ≥ 0 for i + k ≤ p − 3,
hence σ ω

π ∈ R̃∗ ω̃
π ⊂ Ω1

R̃∗/B
, and this concludes the proof of Lemma 5.4.
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Assume that β̄1, . . . , β̄r are the pairwise different zeros of h̄1(x) in k(BP), hence
p − 1 − r = N(p) by Lemma 5.3. With representatives βi ∈ B of the β̄i set
R′

i := BP[x−βi

π ](π) and Ri := R′
i[w] (i = 1, . . . , r). By 3.1, we have⋂

R∈Vs,p/∈mR

Ω1
R/B =

( ⊕
i+k≤p−3

BMxiwk
)ω

π
.

The definition of D1
s(

Lp

B ), Lemma 5.4 and its proof imply

Lemma 5.5. a) D1
s(

Lp

B ) =
(⊕

i+k≤p−3 BMxiwk)ω
π

)
∩

⋂r
s=1 Ω1

Rs/B ∩ Ω1
R̃/B

.

b) Let σ =
∑

i+k≤p−3 bikx
iwk with bik ∈ BM be given. Then σ ω

π ∈ D1
s(

Lp

B ) if
and only if the conditions Gi,k(βs) and G̃ik are satisfied (i + k ≤ p − 3, s =
1, . . . , r).

c) D1
s(

Lp

B )/(
⊕

i+k≤p−3 Bxiwk)ω
π is a B-module of finite length.

Proof of 5.2b) and c). For 1 ≤ t ≤ r we denote by Mt the van der
Monde matrix (βi

j)s=1,...,t, i=0,...,t−1. We have Mt ∈ Glt(BP) as β̄1, . . . , β̄r are
pairwise different. Let σ be given as in 5.5b).

Assume at first that N(p) ≤ 2. Then by 5.3, the polynomial h̄1(x) has
at least p − 3 different roots β̄1, . . . , β̄p−3. If σ ω

π ∈ D1
s(

Lp

B ), then by 5.5b), in
particular the conditions

G̃p−3−k,k bp−3−k,k ∈ BP (k = 0, . . . , p− 3)

are satisfied. Together with the conditions G0,k(βs) they furnish for each k =
0, . . . , p− 3 a linear system of equations

p−3−k−1∑
i=0

βi
sbik = Bks (s = 1, . . . , p− 3− k)

with Bks ∈ BP and matrix of coefficients Mp−3−k ∈ Glp−3−k(BP). Hence by
Cramer’s rule, all bik ∈ BP ∩BM = B, and we have shown that {xiwk ω

π } is a
basis of the B-module D1

s(
Lp

B ).
Conversely assume now that N(p) ≥ 3, that is r < p − 3. By a suit-

able choice of the bik ∈ BM , we shall construct differentials ωt = σt
ω
π ∈

D1
s(

Lp

B ), (t = r, . . . , p− 4) which are not contained in the B-submodule gener-
ated by {xiwk ω

π }i+k≤p−3.
Clearly, the conditions G00(β1), . . . , G00(βr) are satisfied by each solution

in BM of the system of linear equations

(7)
p−3∑
i=0

βi
sbi0 = 0 (s = 1, . . . , r).
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Multiplying its coefficient matrix from the left by M−1
r yields an equivalent

system

(8) bj0 +
p−3∑
i=r

cj+1,ibi0 = 0 (j = 0, . . . , r − 1)

with coefficients cs,i ∈ BP. Choose in B \ P a common denominator n for
the cs,i. For each t ∈ {r, . . . , p − 4} we obtain a solution of (8) by setting
bt0 = nπ−1, bi0 = 0 for i ≥ r, i 6= t and bj0 = −cj+1,tnπ−1 for j = 0, . . . , r − 1.
Then the corresponding differentials

ωt := (xt −
r−1∑
j=0

cj+1,tx
j)

nω

π2
(t = r, . . . , p− 4)

are contained in (
⊕

i+k≤p−3 BMxiwk)ω
π and satisfy all conditions G̃ik and

Gjk(βs) for s = 1, . . . , r. Hence

ωt ∈ D1
s(

Lp

B
) \ (

⊕
i+k≤p−3

Bxiwk)
ω

π

as n
π /∈ B. This shows that the length of the A-module D1

s(
Kp

A )/H0(X̄p, ω
1
X̄p/A

)
is at least p− 3− r = N(p)− 2 and finishes the proof of 5.2b) and c).

Corollary 5.6. If N(p) ≤ 2, then H0(X̄p, ω
1
X̄p/A

) is a birational invariant
of the Fermat curve k ⊗A Xp.
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