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NOTE ON THE NEWTON NUMBER

by Janusz Gwoździewicz

Abstract. In his fundamental paper on Newton polyhedrons and Milnor
numbers, Kouchnirenko introduced the notion of the Newton number. It
is an integer-valued function on the set of convenient Newton polyhedrons.
In this note, answering a question asked by Arnold, we present a simple
proof of monotonicity of the Newton number.

In the collection of problems formulated at Arnold’s seminars in Paris and
Moscow [1], the following problem is posed.

1982-16. Consider a Newton polyhedron ∆ in Rn and the num-
ber µ(∆) = n!V −

∑
(n− 1)!Vi +

∑
(n− 2)!Vij − · · · , where V is

the volume under ∆, Vi is the volume under ∆ on the hyperplane
xi = 0, Vij is the volume under ∆ on the hyperplane xi = xj = 0,
and so on.

Then µ(∆) grows (non strictly monotonically) as ∆ grows
(whenever ∆ remains convex and integer? ). There is no elemen-
tary proof even for n = 2.

Further, in [1] (page 417) S. K. Lando wrote that the monotonicity of
µ(∆) follows from the semicontinuity of the spectrum of a singularity, proved
independently by Varchenko in [7] and Steenbrink in [5].

The quantity µ(∆) is also called the Newton number of the polyhedron ∆.
The reader can find an elementary geometrical proof of the monotonicity of
the Newton number for n = 2 in [4]. In [2] (Corollary 5.6), Bivià-Ausina
gives a proof using results on mixed multiplicities of ideals. In this note, we
solve Arnold’s problem using semicontinuity of the Milnor number in families
of power series.

Recall first what we mean by a Newton polyhedron.
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For every formal power series f ∈ C[[x1, . . . , xn]]

(1) f(x1, . . . , xn) =
∑
α∈Nn

fαx
α, where xα = xα1

1 · · ·x
αn
n

we put supp(f) = {α ∈ Nn : fα 6= 0 } and define ∆f to be the convex hull of
the set {α+ v : α ∈ supp(f), v ∈ Rn

+ }.
A set ∆ is called a Newton polyhedron if ∆ = ∆f for a power series f .

A Newton polyhedron ∆ is called convenient if it intersects all coordinate
axes. Then the complement of ∆ in Rn

+ has finite volume and the Newton
number µ(∆) is well defined.

Kouchnirenko Theorem. If f is a convergent power series such that
∆f is convenient, then µ0(f) ≥ µ(∆f ). For almost every f , there is µ0(f) =
µ(∆f ).

Let ∆ be a fixed convenient Newton polyhedron and let A be the (finite)
set of lattice points which belong to the compact faces of ∆. The phrase for
almost every in the statement of Kouchnirenko Theorem means that there
exists a proper algebraic set D in the space of coefficients (C)α∈A with the
following property: if f is a convergent power series such that ∆f = ∆ and
(fα)α∈A does not belong to D, then µ0(f) = µ(∆).

Let ∆′ ⊂ ∆ be arbitrary convenient Newton polyhedra. Take convergent
power series f =

∑
fαx

α, g =
∑
gαx

α such that, ∆ = ∆f , ∆′ = ∆g and
µ(∆′) = µ0(g). Assume that (fα)α∈A does not belong to the D mentioned
above, fα 6= 0 for α ∈ A and consider the family

Ft(x) = tf(x) + (1− t)g(x)

parameterized by t ∈ C. Then:
(i) F0(x) = g(x), F1(x) = f(x),

(ii) ∆Ft = ∆ for all but a finite number of values of t ∈ C,
(iii) µ0(Ft) = µ(∆) for all but a finite number of values of t ∈ C.
Recall that A is the set of lattice points which belong to the compact faces of
∆. In order to check (ii), consider the system of equations tfα + (1− t)gα = 0
for α ∈ A. If t does not satisfy any of these equations, then A∩ supp(Ft) = A,
which gives ∆Ft = ∆.

Now we check (iii). A family of coefficients (Ft,α)α∈A for t ∈ C is a straight
line L ⊂ (C)α∈A. The point (fα)α∈A belongs to L and does not belong to D.
Thus L intersects D at a finite number of points (because D is an algebraic
set), which proves (iii).

By Kouchnirenko Theorem and (i)–(iii), we get:

µ0(Ft) = µ(∆) for t 6= 0, sufficiently close to 0
µ0(F0) = µ(∆′)
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By semicontinuity of the Milnor number (see [6], Proposition 5.3), there is
µ0(F0) ≥ µ0(Ft) for t close to 0. Hence µ(∆′) ≥ µ(∆).
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