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STABILITY OF NONLINEAR FUNCTIONAL DIFFERENCE

EQUATIONS

by Zdzis law Kamont

Abstract. We give a theorem on the error estimate of approximate so-
lutions for difference functional equations of the Volterra type with an
unknown function in several variables. The error is estimated by a solution
of an initial problem for nonlinear differential functional equation. We ap-
ply this general result to the investigation of the convergence of difference
schemes generated by mixed problems for evolution functional differential
equations. We assume nonlinear estimates of the Perron type with respect
to the functional variable for given operators.

1. Introduction

Nonlinear parabolic differential functional equations and first order partial
functional differential equations have the following property: difference meth-
ods for suitable initial or initial boundary value problems consist in replacing
partial derivatives with difference operators. Moreover, because differential
equations contain a functional variable which is an element of the space of
continuous functions defined on a subset of a finite dimensional space, we need
some interpolating operators. This leads to nonlinear difference functional
problems which satisfy consistency conditions on all sufficiently regular solu-
tions of functional differential equations. The main task in these considerations
is to find a finite difference approximation of an original problem which is sta-
ble. The method of difference inequalities or simple theorems on recurrent
inequalities are used in the investigation of the stability of nonlinear difference
functional problems.
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These considerations as a rule require a lot of calculations to reach the
convergence result so the main property of the corresponding operators was
not easy to be seen. The aim of the present paper is to show that the re-
sults mentioned above as well as many other theorems are consequences of a
result concerning an abstract nonlinear difference functional equation with an
unknown function in several variables.

Our results are based on a comparison technique. It is important in the
paper that we have assumed nonlinear estimates of the Perron type for a
given function with respect to the functional variable and that we use ordinary
differential functional equations as comparison problems. It is easy to see that
conditions indicated above are identical with the assumptions that guarantee
the uniqueness of solutions of initial boundary value problems.

Now we formulate our functional differential problems. For any metric
spaces X and Y , by C(X,Y ) we denote the class of all continuous functions
from X into Y . We will use vectorial inequalities with the understanding that
the same inequalities hold between their corresponding components. Write

E = [0, a]× (−b, b), D = [−d0, 0]× [−d, d],

where a > 0, b = (b1, . . . , bn) ∈ Rn, bi > 0 for 1 ≤ i ≤ n, and d0 ∈ R+,
d = (d1, . . . , dn) ∈ Rn

+, R+ = [0,+∞). Let c = b + d and Ω = E ∪ E0 ∪ ∂0E,
where

E0 = [−d0, 0]× [−c, c], ∂0E = [0, a]× ( [−c, c] \ (−b, b) ).
For a function z : Ω→ R and a point (t, x) ∈ Ē, where Ē is the closure of E, we
define a function z(t,x) : D → R by z(t,x)(τ, y) = z(t+τ, x+y), (τ, y) ∈ D. Then
z(t,x) is the restriction of z to the set [t−d0, t]×[x−d, x+d] and this restriction is
shifted to the set D. For ξ : E → R1+n we put ξ = (ξ0, ξ

′) and ξ′ = (ξ1, . . . , ξn).
Write Σ = E ×C(D,R)×Rn and suppose that f : Σ→ R, ϕ : E0 ∪ ∂0E → R,
α : E → R1+n are given functions. The require α satisfy α0(t, x) ≤ t and
α(t, x) ∈ Ē for (t, x) ∈ E. We consider the functional differential equation

(1) ∂tz(t, x) = f(t, x, zα(t,x), ∂xz(t, x))

with the initial boundary condition

(2) z(t, x) = ϕ(t, x) on E0 ∪ ∂0E,

where x = (x1, . . . , xn) and ∂xz = (∂x1z, . . . , ∂xnz). We will consider classical
solutions of (1), (2). We give examples of equations which can be derived from
(1) by specializing f and α.

Example 1.1. Assume that d0 = 0, d = 0, where 0 = (0, . . . , 0) ∈ Rn and
f̃ : E × R× Rn → R is a given function. We define f as follows:

f(t, x, w, q) = f̃(t, x, w(0,0), q) on Σ.



49

Then (1) reduces to the differential equation with deviated variables

(3) ∂tz(t, x) = f̃(t, x, z(α(t, x)), ∂xz(t, x)).

Example 1.2. Suppose that f̃ : E × R× R× Rn → R is a given function
and α : E → R1+n satisfies the conditions: −d0 ≤ α0(t, x) − t ≤ 0 and
−d ≤ α′(t, x)− x ≤ d on E. Write

f(t, x, w, q) = f̃(t, x, w(α(t, x)− (t, x)), w(0,0), q) on Σ.

Then (1) is equivalent to the differential equation with deviated variables

(4) ∂tz(t, x) = f̃(t, x, z(t, x), z(α(t, x)), ∂xz(t, x)).

Note that initial boundary sets corresponding to (3) and (4) are different.

Example 1.3. Suppose that β, γ : E → R1+n and

−d0 ≤ (β0 − α0)(t, x) ≤ 0, −d0 ≤ (γ0 − α0)(t, x) ≤ 0,

−d ≤ (β′ − α′)(t, x) ≤ d, −d ≤ (γ′ − α′)(t, x) ≤ d,
where (t, x) ∈ E. For a given function f̃ : E × R× Rn → R, we put

f(t, x, w, q) = f̃
(
t, x,

∫ (γ−α)(t,x)

(β−α)(t,x)
w(τ, y) dydτ, q

)
on Σ.

Then (1) reduces to the differential integral equation

(5) ∂tz(t, x) = f̃
(
t, x,

∫ γ(t,x)

β(t,x)
z(τ, y) dydτ, ∂xz(t, x)

)
.

Example 1.4. Suppose that f̃ : E × R× R× Rn → R is a given function.
Put α(t, x) = (t, x) on E and

f(t, x, w, q) = f̃
(
t, x, w(0,0),

∫
D
w(τ, y) dydτ, q

)
on Σ.

Then (1) is equivalent to the differential integral equation

(6) ∂tz(t, x) = f̃
(
t, x, z(t, x),

∫
D
z(t+ τ, x+ y) dydτ, ∂xz(t, x)

)
.

It is clear that more complicated differential equations with deviated vari-
ables and differential integral problems can be obtained from (1). Note also
that equations (3) and (5) cannot be obtained as particular cases of differential
functional equations considered in [8,9].

Sufficient conditions for the existence and uniqueness of classical or gener-
alized solutions of (1), (2) can be found in [7], see also [1, 2]. Difference ap-
proximations of classical solutions to first order partial differential functional
equations were investigated in [3, 8] and [9], Chapter 5. Initial problems on



50

the Haar pyramid and initial boundary value problems were considered. The
monograph [9] contains an exposition of recent developments in the field of
first order partial functional differential equations.

Now we formulate initial boundary value problems for nonlinear parabolic
functional differential equations. Let us denote by Mn×n the class of all n× n
matrices with real elements. Write Ξ = E×C(D,R)×Rn×Mn×n and suppose
that F : Ξ → R, ϕ : E0 ∪ ∂0E → R, α : E → R1+n are given functions. We
assume that α0(t, x) ≤ t and α(t, x) ∈ Ē for (t, x) ∈ E. We consider the
functional differential equation

(7) ∂tz(t, x) = F (t, x, zα(t,x), ∂xz(t, x), ∂xxz(t, x))

with the initial boundary condition

(8) z(t, x) = ϕ(t, x) on E0 ∪ ∂0E,

where
∂xxz =

[
∂xixjz

]
i,j=1,...,n

.

We look for classical solutions to problem (7), (8). Differential equations with
deviated variables and differential integral equations are particular case of (7).
Examples analogous to (3)–(6) can be formulated for parabolic equations.

Difference approximations of nonlinear equations with initial boundary
conditions of the Dirichlet type were studied in [10, 12]. The convergence
of a general class of difference schemes for parabolic equations and solutions
considered on unbounded domains were investigated in [13, 23]. Monotone
iterative methods and finite difference schemes for computating approximate
solutions of parabolic equations with time delay were studied in [15–17]. Nu-
merical treatment of initial boundary value problems of the Neumann - Robin
type can be found in [16]. Approximate projection difference schemes were
developed in [18]. The numerical method of lines was considered in [11].

Sufficient conditions for the existence and uniqueness of classical or gen-
eralized solutions of parabolic functional differential problems can be found
in [4–6, 14, 19, 20, 22]. The monographs [4, 25] give an extensive survey of
the theory of parabolic functional differential equations.

It should be noted that all problems considered in the paper have the follow-
ing property: the unknown functions are the functional variables in differential
equations. The partial derivatives appear in a classical sense.

The paper is divided into two parts. In the first part (Section 2) we propose
a general method for the investigation of the stability of difference schemes gen-
erated by initial boundary value problems for evolution functional differential
equations. We prove a theorem on error estimates for approximate solutions to
functional difference equations of the Volterra type with the unknown function
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in several variables. The error of an approximate solution is estimated by a so-
lution of an initial problem for a nonlinear differential functional equation. In
the second part of the paper (Section 3) we apply the above general idea to the
investigation of the convergence of difference methods for evolution functional
differential equations. We give sufficient conditions for the convergence of the
Lax difference schemes and the Euler difference methods for (1), (2). We also
deal with numerical methods for parabolic functional differential problems. We
prove that there is a general class of difference schemes for (7), (8) which are
convergent and the convergence follows from a theorem presented in Section
2. We give error estimates for all numerical methods considered in the paper.

Our approach assumes that the differential functional equations considered
in [8,9] and [10] are particular cases of (1) and (2), respectively. On the other
hand, there are differential integral problems and differential equations with
deviated variables covered by our theorems and the results presented in the
above papers are not applicable to those equations. In the paper, we use general
ideas for finite difference equations, as such ideas were introduced in [9,21].

2. Stability of functional difference equations

For any two sets U and W , by F(U,W ), we denote the class of all functions
defined on U and taking values in W. If A ⊂ U and f ∈ F(U,W ), then f |A
denotes the restriction of f to the set A. Let N and Z be the sets of natural
numbers and integers, respectively. We define a mesh on Ω in the following
way. Suppose that (h0, h

′) = h, h′ = (h1, . . . , hn), stand for steps of the mesh.
For (r,m) ∈ Z1+n, where m = (m1, . . . ,mn), we define nodal points as follows:

t(r) = rh0, x(m) = (x(m1)
1 , . . . , x(mn)

n ) = (m1h1, . . . ,mnhn).

Let us denote byH the set of all values of h such that there areK0 ∈ Z andK =
(K1, . . . ,Kn) ∈ Zn with the properties: K0h0 = d0 and (K1h1, . . . ,Knhn) = c.
Set

R1+n
h = { (t(r), x(m)) : (r,m) ∈ Z1+n }

and Ωh = Eh ∪ E0.h ∪ ∂0Eh, where

Eh = E ∩ R1+n
h , E0.h = E0 ∩ R1+n

h , ∂0Eh = ∂0E ∩ R1+n
h .

Let N ∈ N be defined by the relations: Nh0 ≤ a < (N + 1)h0 and

E′h = { (t(r), x(m)) ∈ Eh : 0 ≤ r ≤ N − 1 }.

For a function z : Ωh → R, we write z(r,m) = z(t(r), x(m)). Classical differ-
ence methods for (1), (2) or (7), (8) consist in replacing partial derivatives
with difference operators. Moreover, because equations (1) and (7) contain
the functional variable zα(t,x) which is an element of the space C(D,R) and
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solutions of difference equations are defined on the mesh, we need an interpo-
lating operator Th : F(Ωh,R) → C(Ω,R). We define Th in the following way.
Set

Λ+ = {λ = (λ1, . . . , λn) : λi ∈ { 0, 1 } for 1 ≤ i ≤ n }.
Suppose that z ∈ F(Ωh,R) and (t, x) ∈ Ω. Two cases will be distinguished.

I. Suppose that there exists (r,m) ∈ Z1+n such that t(r) ≤ t ≤ t(r+) and
x(m) ≤ x ≤ x(m+1), where m+ 1 = (m1 + 1, . . . ,mn + 1) and (t(r), x(m)) ∈ Ωh,
(t(r+1), x(m+1)) ∈ Ωh. Write

(Th[z])(t, x) =
(

1− t− t(r)

h0

) ∑
λ∈Λ+

z(r,m+λ)
(x− x(m)

h′

)λ(
1− x− x(m)

h′

)1−λ

+
t− t(t)

h0

∑
λ∈Λ+

z(r+1,m+λ)
(x− x(m)

h′

)λ(
1− x− x(m)

h′

)1−λ
,

where (x− x(m)

h′

)λ
=

n∏
i=1

(xi − x(mi)
i

hi

)λi
,

(
1
x− x(m)

h′

)1−λ
=

n∏
i=1

(
1−

xi − x(mi)
i

hi

)1−λi

and take 00 = 1 in the above formulas.
II. Suppose that (t, x) ∈ Ω and Nh0 < t ≤ a. Thus we put (Th[z])(t, x) =

(Th[z])(Nh0, x). Then we have defined Th[z] : Ω→ R and Th[z] ∈ C(Ω,R).
The above interpolating operator was introduced and widely studied in [9].
We consider the following seminorms in functional spaces. For z ∈ C(Ω,R)

we put

‖z‖t = max{ |z(τ, y)| : (τ, y) ∈ Ω ∩
(
[−d0, t]× Rn

)
}, 0 ≤ t ≤ a.

For z ∈ F(Ωh,R) we write

‖z‖h.r = max{ |z(r,m)| : (t(i), x(m)) ∈ Ωh ∩
(
[−d0, t

(r)]× Rn
)
}, 0 ≤ r ≤ N.

The maximum norm in the space C(D,R) is denoted by ‖ · ‖D. The following
properties of the operator Th are important in the paper.

Lemma 2.1. Suppose that the function v : Ω → R is of class C1 and
vh = v |Ωh. Let C̃ ∈ R+ be defined by the relations

|∂tv(t, x)|, |∂xiv(t, x)| ≤ C̃ for i = 1, . . . , n and (t, x) ∈ Ω.

Then ‖Th[vh]− v ‖t ≤ C̃‖h‖ for 0 ≤ t ≤ Nh0, where ‖h‖ = h0 + h1 + . . .+ hn.
Moreover, for z ∈ F(Ωh,R), there is ‖Th[z] ‖t(r) = ‖z‖h.r for 0 ≤ r ≤ N.
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Lemma 2.2. Suppose that the function v : Ω → R is of class C2 and
vh = v |Ωh. Let C̄ ∈ R+ be defined by the relations

|∂ttv(t, x)|, |∂txiv(t, x)|, ∂xixjv(t, x)| ≤ C̄ for i, j = 1, . . . , n and (t, x) ∈ Ω.

Then ‖Th[vh]− v ‖t ≤ C̄‖h‖2 for 0 ≤ t ≤ Nh0.

The proofs of the above properties of Th are similar to the proof of Theorem
5.27 in [9].

Write
Ah = {x(m) : −1 ≤ mi ≤ 1 for 1 ≤ i ≤ n }.

For a function η : Ah → X, we put η(m) = η(x(m)). If z : Ωh → R and
(t(r), x(m)) ∈ Eh then the function z〈r,m〉 : Ah → X is defined by z〈r,m〉(y) =
z(t(r), x(m) +y), y ∈ Ah. Then z〈r,m〉 is the restriction of z to the set

( {
t(r)
}
×[

x(m)−h′, x(m) +h′
] )
∩R1+n

h and this restriction is shifted to the set Ah. The
norm in the space F(Ah,R) is defined by

‖η‖Ah = max { |η(m)| : x(m) ∈ Ah }.

Set Yh = E′h×C(D,R)×F(Ah,R) and suppose that the functions Fh : Yh → R,
α : E′h → R1+n, are given. The function α is required to fulfil α(r,m) ∈ Ē

and α
(r,m)
0 ≤ t(r) for (t(r), x(m)) ∈ E′h. For (t(r), x(m), z, η) ∈ Yh we write

Fh[w, η](r,m) = Fh(t(r), x(m), z, η). Given ϕ ∈ F(E0.h ∪ ∂0Eh,R), we consider
the functional difference equation

(9) z(r+1,m) = Fh[ (Th[z] )α(r,m) , z〈r,m〉 ]
(r,m)

with the initial boundary condition

(10) z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh.

It is clear that there exists exactly one solution zh : Ωh → R of (9), (10).

Remark 2.3. Difference functional equations generated by (1) or (7) have
the form

(11) z(r+1,m) = Fh(t(r), x(m), z),

where Fh : E′h × F(Ωh,R) → R is an operator of the Volterra type. We give
comments on the functional dependence in (11).

Discretization of partial derivatives ∂xz and ∂xxz at the point (t(r), x(m))
leads to the following observation: the numbers z(r,m+κ), κ = (κ1, . . . , κn),
κi ∈ {−1, 0, 1} for 1 ≤ i ≤ n, appear in definitions of difference operators
corresponding to these derivatives. Difference operators for the derivatives ∂tz
involve the numbers z(r+1,m) and z(r,m+κ), where −1 ≤ κi ≤ 1 for i = 1, . . . , n.
Thus we see that the right hand side of (11) depends on the function z〈r,m〉.
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Since the right hand sides of (1) or (7) depend on the functional variable
zα(t,x), then the right hand side of (11) depends on the functional variable
(Th[z])α(r,m) .

It is clear that assumptions on z〈r,m〉 and on the functional variable corre-
sponding to (Th[z])α(r,m) are not the same in convergence theorems. Accord-
ingly, we have decided to consider difference functional equations with two
functional variables.

Suppose that the functions vh : Ωh → R and α̃, γ̃ : H → R+ satisfy the
conditions∣∣v(r+1,m)

h − Fh[ (Th[vh])α(r,m) , (vh)〈r,m〉 ]
(r,m)

∣∣ ≤ γ̃(h) on E′h,∣∣ϕ(r,m)
h − v(r,m)

h

∣∣ ≤ α̃(h) on E0.h ∪ ∂0Eh and lim
h→0

α̃(h) = 0, lim
h→0

γ̃(h) = 0.

The function vh satisfying the above relations is considered as an approximate
solution of (9), (10). We give a theorem on the estimate of the difference
between the exact and approximate solutions of (9), (10).

Write I = [−d0, 0] and J = [0, a]. For a function ξ : I ∪ J → R and a point
t ∈ J we define ξt : I → R by ξt(τ) = ξ(t + τ), τ ∈ I. The maximum norm in
the space C(I,R) is denoted by ‖ · ‖I . Put

Ih = {t(r) : −K0 ≤ r ≤ 0}, Jh = {t(r) : 0 ≤ r ≤ N}, J ′h = Jh \ { t(N) }.

For ζ : Ih ∪ Jh → R we write ζ(r) = ζ(t(r)). We need a discrete version of the
operator t→ ξt. For ζ : Ih ∪ Jh → R and t(r) ∈ Jh, we define ζ[r] : Ih → R by
ζ[r](τ) = ζ(t(r) + τ), τ ∈ Ih.

Let Th0 : F(Ih,R)→ C(I,R) be an interpolating operator given by

(12) Th0 [ϑ](t) =
t− t(r)

h0
ϑ(r+1) +

(
1− t− t(r)

h0

)
ϑ(r) for t(r) ≤ t ≤ t(r+1),

where ϑ ∈ F(Ih,R). It is clear the Th0 is a particular case of Th. We will need
the operator V : C(D,R) → C(I,R), which for w ∈ C(D,R) is defined as
follows:

V [w](t) = max { |w(t, x)| : x ∈ [−d, d] }, t ∈ I.

We formulate assumptions on comparison operators corresponding to
(9), (10).

Assumption H[σ]. The function σ : J × C(I,R+) → R+ satisfies the
conditions:

1) σ is continuous and nondecreasing with respect to the both variables,
2) σ(t, θ) = 0 for t ∈ J , where θ ∈ C(I,R+) is given by θ(τ) = 0 for τ ∈ I,
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3) the function ω̃(t) = 0, for t ∈ I ∪ J , is the maximal solution of the
Cauchy problem

(13) ω′(t) = σ( t, ωt), ω(t) = 0 for t ∈ I.

Having done the above preparation, we formulate a theorem on the estimate
of the difference between the exact and approximate solutions to problem (9),
(10) in the form convenient for our purposes.

Theorem 2.4. Suppose that Fh : Yh → R, ϕh : E0.h → R, α : E′h → R1+n

and
1) α(r,m) ∈ Ē, α(r,m)

0 ≤ t(r) for (t(r)x(m)) ∈ E′h and zh : Ωh → R is a
solution of (9), (10),

2) there exists σ : J × C(I,R+) → R+ such that Assumption H[σ] is
satisfied and

(14) ‖Fh[w, η ](r,m)−Fh[ w̄, η̄ ](r,m)‖ ≤ ‖η− η̄‖Ah +h0σ( t(r), V [w− w̄] ) on Yh,

3) vh : Ωh → X and there are β0, γ : H → R+ such that∣∣v(r+1,m)
h − Fh

[ (
Th[vh]

)
α(r,m) , (vh)〈r,m〉

](r,m)∣∣ ≤ h0γ(h) on E′h

and limh→0γ(h) = 0,
(15)

(16)
∣∣ϕ(r,m)
h − v(r,m)

h

∣∣ ≤ β0(h) on E0.h ∪ ∂0Eh and limh→0β0(h) = 0.

Then there is β : H → R+ such that

(17)
∣∣(zh − vh)(r,m)

∣∣ ≤ β(h) on Eh and lim
h→0

β(h) = 0.

Proof. The proof will be divided into two steps.
I. Let us denote by βh : Ih∪Jh → R+ the solution of the difference problem

(18) ζ(r+1) = ζ(r) + h0σ( t(r), Th0 [ζ[r]] ) + h0γ(h), 0 ≤ r ≤ N − 1,

(19) ζ(r) = β0(h) for −K0 ≤ r ≤ 0.

We prove that

(20)
∣∣(zh − vh)(r,m)

∣∣ ≤ β(r)
h on Eh.

It follows from (16) that (20) holds for r = 0 and (t(0), x(m)) ∈ Eh. Assuming
(20) to hold for 0 ≤ i ≤ r, (t(i), x(m)) ∈ Eh, we will prove it for r + 1 and
(t(r+1), x(m)) ∈ Eh. It follows easily that∣∣(Th[zh − vh]

)
(t,x)

(τ, y)
∣∣ ≤ Th0 [(βh)[r]](τ),



56

where (τ, y) ∈ D and (t, x) ∈ E, t ≤ t(r). We conclude from Assumption H[σ],
(14), (15) and the above inequality that∣∣∣(zh − vh)(r+1,m)

∣∣∣
≤
∣∣∣Fh[

(
Th[zh]

)
α(r,m) , (zh)〈r,m〉 ]

(r,m) − Fh[
(
Th[vh]

)
α(r,m) , (vh)〈r,m〉 ]

(r,m)
∣∣∣

+
∣∣∣v(r+1,m)
h − Fh[

(
Th[vh]

)
α(r,m) , (vh)〈r,m〉 ]

(r,m)
∣∣∣

≤ β(r)
h + h0σ( t(r), Th0 [(βh)[r]]) ) + h0γ(h) = β

(r+1)
h .

Hence the proof of (20) is completed by induction with respect to r, 0 ≤ r ≤ N.
II. We prove that there is β : H → R+ such that β(r)

h ≤ β(h) for 0 ≤ r ≤ N
and limh→0 β(h) = 0. Consider the Cauchy problem

(21) ω′(t) = σ( t, ωt + (µ(h))t ) + γ(h),

(22) ω(t) = β0(h) for t ∈ I,
where µ : H → (0,+∞), limh→0 µ(h) = 0 and (µ(h))t ∈ C(I,R+) is a constant
function: (µ(h))t(τ) = µ(h) for τ ∈ I. It follows from Assumption H[σ] that
there is ε̃ > 0 such that the maximal solution ω( · , h) of (21), (22) is defined
on I ∪ J for ‖h‖ < ε̃ and

(23) lim
h→0

ω(t, h) = 0 uniformly on I ∪ J.

Suppose that h̃ ∈ H is fixed and ‖h̃‖ < ε̃. Let us denote by C[h̃] the set of all
h ∈ H such that ‖h‖ < ε̃ and µ(h) ≤ µ(h̃, γ(h) ≤ γ(h̃). Then the maximal
solution ω( · , h) of (21), (22), where h ∈ C[h̃], satisfies the condition

(24) ω(t, h) ≤ ω(t, h̃) for t ∈ I ∪ J.
Let ωh0( · , h) denote the restriction of ω( · , h) : I ∪ J → R+ to the set Ih ∪ Jh.
It follows from (12) that for t(r) ∈ Jh, h ∈ C[h̃] there is

(25) (ω( · , h))t(r)(τ)− Th0 [(ωh0(·, h))[r]](τ) ≥ −h0ω
′(a, h) ≥ −h0ω

′(a, h̃),

where τ ∈ I. There is ε̄ > 0 such that for h ∈ C[h̃], ‖h‖ < ε̄:

(26) µ(h̃) ≥ µ(h) ≥ h0ω
′(a, h̃).

We conclude from condition 1) of Assumption H[σ] and from (25), (26) that
for h ∈ C[h̃], ‖h‖ < ε̄, we have

ω′(t(r), h) = σ( t(r), (ω(·, h))t(r) + (µ(h))t(r) ) + γ(h)

= σ
(
t(r), Th0 [ (ωh0(·, h))[r] ]+(ω(·, h))t(r)−Th0 [ (ωh0(·, h))[r] ]+(µ(h))t(r)

)
+γ(h)

≥ σ( t(r), Th0 [ (ωh0(·, h))[r] ] ) + γ(h), 0 ≤ r ≤ N,
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and consequently

ωh0(t(r+1), h) ≥ ωh0(t(r), h) + h0σ( t(r), Th0 [(ωh0(·, h))[r]) ] ) + h0γ(h),
0 ≤ r ≤ N − 1.

Since βh satisfies (18), (19), the above relations and (21) show that β(r)
h ≤

ωh0(t(r), h) ≤ ω(a, h) for 0 ≤ r ≤ N. It follows from (23), (24) that condition
(17) is satisfied with β(h) = ω(a, h). This proves the theorem.

Now we formulate a particular case of Theorem 2.4. We assume that the
function σ(t, · ) is linear and that (13) is a classical Cauchy problem.

Lemma 2.5. Suppose that Fh : Yh → R, ϕh : E0.h ∪ ∂0Eh → R, α : E′h →
R1+n and

1) the conditions 1), 2) of Theorem 2.4 are satisfied,
2) there is L̃ ∈ R+ such that the estimate∣∣Fh[w, η ](r,m) − Fh[ w̄, η̄](r,m)

∣∣ ≤ ‖η − η̄‖Ah + h0L̃‖w − w̄]‖D on E′h.

Then

(27)
∣∣u(r,m)
h − v(r,m)

h

∣∣ ≤ β̃(h) on Eh,

where

β̃(h) = β0(h)eL̃a + γ(h)
eL̃a − 1
L̃

if L̃ > 0,

β̃(h) = β0(h) + aγ(h) if L̃ = 0.

Proof. It easily follows that the solution βh : Jh → R+ of the difference
problem

ζ(r+1) = (1 + L̃h0)ζ(r) + h0γ(h), 0 ≤ r ≤ N − 1, ζ(0) = β0(h),

satisfies the condition: β
(r)
h ≤ β̃(h), 0 ≤ r ≤ N. Hence (27) follows from

Theorem 2.4.

The above example is important in simple applications. On the other hand,
the connection with functional differential problem (21), (22) is important in
our considerations.

Example 2.6. If ν ≥ µ > 1, L0 ∈ R+, c̃ > 0, then the maximal solution of
the Cauchy problem

(28) ω′(t) = c̃ ν
√
ω(tµ) + L0ω(t), ω(0) = 0′

is ω̃(t) = 0 for t ∈ [0, a], where a ≤ 1.

This property of problem (28) may be proved by using a method of differ-
ential inequalities. Note that the maximal solution of (28) for ν > 1, µ = 1 is
positive on (0, a].



58

3. Applications

In this part of the paper we give sufficient conditions for the convergence
of difference schemes corresponding to nonlinear partial functional differential
equations of the evolution type.

3.1. Mixed problems for nonlinear first order partial differential
functional equations. Let D, E, E0, ∂0E, Ω and Eh, E0.h, ∂0Eh, Ωh, Ah be
the sets defined in Sections 1 and 2. We formulate a difference method for
initial boundary value problem (1), (2). For 1 ≤ i ≤ n, we define ei =
(0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 standing on the i-th place. Let δ0 and
(δ1, . . . , δn) = δ be the difference operators given by

(29) δ0z
(r,m) =

1
h0

[
z(r+1) − 1

2n

n∑
i=1

(
z(r,m+ei) + z(r,m−ei)

) ]
,

(30) δiz
(r,m) =

1
2hi

[
z(r,m+ei) − z(r,m−ei)

]
, i = 1, . . . , n,

where z : Ωh → R and (t(r), x(m)) ∈ E′h. Write δz = (δ1z, . . . , δnz). We approx-
imate classical solutions of (1), (2) with solutions of the difference functional
equation

(31) δ0z
(r,m) = f( t(r), x(m),

(
Th[z]

)
α(r,m) , δz

(r,m) )

with the initial boundary condition

(32) z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh,

where ϕh : E0.h ∪ ∂0Eh → R is a given function. Difference method (31), (32)
with δ0 and δ defined by (29), (30) is called the Lax scheme. We claim that
problem (31), (32) is a particular case of (9), (10). Let Fh : Yh → R be defined
by

(33) Fh[w, η](r,m) = ∆η(θ) + h0f( t(r), x(m), w, δη(θ) ),

where

∆η(θ) =
1

2n

n∑
i=1

(
η(ei) + η(−ei)

)
, δη(θ) =

(
δ1η

(θ), . . . , δnη
(θ)
)
,

δiη
(θ) =

1
2hi

[
η(ei) − η(−ei)

]
, i = 1, . . . , n.

It is easily seen that (31), (32) is equivalent to (9), (10) with Fh defined by
(33).

Assumption H[f, α]. The function f : Ω→ R in the variables (t, x, w, q),
q = (q1, . . . , qn), is continuous and
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1) there exists σ : J × C(I,R+) → R+ such that Assumption H[σ] is
satisfied and

(34) |f(t, x, w, q)− f(t, x, w̄, q)| ≤ σ( t, V [w − w̄]) on Σ,

2) the partial derivatives
(
∂q1f, . . . , ∂qnf

)
= ∂qf exist on Σ and ∂qf ∈

C(Σ,Rn) and ∂qf is bounded on Σ,
3) α ∈ C(E,R1+n) and α(t, x) ∈ Ē, α0(t, x) ≤ t for (t, x) ∈ E.

Theorem 3.1. Suppose that Assumption H[f, α] is satisfied and
1) h ∈ H and

(35)
1
n
− h0

hi

∣∣ ∂qif(t, x, w, q)
∣∣ ≥ 0, on Σ, for i = 1, . . . , n,

2) zh : Ωh → R is a solution of (31), (32) and there is β0 : H → R+ such
that

(36)
∣∣ϕ(r,m) − ϕ(r,m)

h

∣∣ ≤ β0(h) on E0.h ∪ ∂0Eh and lim
h→0

β0(h) = 0,

3) v : Ω→ R is a classical solution of (1), (2) and v is of class C1 on Ω.
Then there is β : H → R+ such that

(37)
∣∣(vh − uh)(r,m)

∣∣ ≤ β(h) on E′h and lim
h→0

β(h) = 0,

where vh is the restriction of v to the set Ωh.

Proof. We apply Theorem 2.4 to prove (37). Suppose that Fh is given
by (33). It follows that zh satisfies (9), (10) and there are γ, β0 : H → R+

such that conditions (15), (16) are satisfied. Now we estimate the difference
Fh[w, η]− Fh[w̄, η̄], where w, w̄ ∈ C(D,R) and η, η̄ ∈ F(Ah,R). Write

(38) U (r,m) = h0

[
f(t(r), x(m), w, δη(θ))− f(t(r), x(m), w̄, δη(θ))

]
and

(39) Q(r,m)(τ) =
(
t(r), x(m), w̄, δη̄(θ) + τδ(η − η̄)θ)

)
.

It follows from (33) and from Assumption H[f, α] that

(40) Fh[w, η](r,m) − Fh[w̄, η̄](r,m) = U (r,m)

+
1
2

n∑
j=1

(
η − η̄

)(ej)[ 1
n

+
h0

hj

∫ 1

0
∂qjf(Q(r,m)(τ))dτ

]
+

1
2

n∑
j=1

(
η − η̄

)(−ej)[ 1
n
− h0

hj

∫ 1

0
∂qjf(Q(r,m)(τ))dτ)

]
.

It is easily seen that

(41)
∣∣ U (r,m)

∣∣ ≤ h0σ(t(r), V [w − w̄]) on E′h.
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We conclude from (35), (40), (41) that the operator Fh satisfies condition (14).
Thus we see that all the assumptions of Theorem 2.4 are satisfied and assertion
(37) follows.

Now we formulate a result on the error estimate for the difference Lax
scheme. For x = (x1, . . . , xn) ∈ Rn we put [|x|] =

(
|x1|, . . . , |xn|

)
and ‖x‖ =

|x1|+ . . .+ |xn|.

Lemma 3.2. Suppose that the function f : Σ→ R is continuous and
1) the partial derivatives (∂q1f, . . . , ∂qnf) = ∂qf exist on Σ and ∂qf ∈

C(Σ,Rn),
2) h ∈ H and there are L,M ∈ Rn

+, L = (L1, . . . , Ln), M = (M1, . . . ,Mn)
such that

(42)
[∣∣∂qf(t, x, w, q)

∣∣] ≤ L on Σ and nh0L ≤ h′ ≤ h0M

3) there is L̃ ∈ R+ such that

(43) |f(t, x, w, q)− f(t, x, w̄, q)| ≤ L̃‖w − w̄‖D on Σ,

4) zh : Ωh → R is a solution of (31), (32) and there is β0 : H → R+ such
that condition (36) is satisfied,

5) condition 3) of Assumption H[f, α] is satisfied and v : Ω → R+ is a
classical solution of (1), (2) and v is of class C2 on Ω,

6) the constant C ∈ R+ is defined by the relations

|∂ttv(t, x)|, |∂txiv(t, x)|, |∂xixjv(t, x)| ≤ C, (t, x) ∈ Ω, i, j = 1, . . . , n.

Then

(44) |(zh − vh)(r,m)| ≤ β̃(h) on Eh,

where vh = v |Ωh and

(45) β̃(h) = α0(h)eL̃a + γ̃(h)
eL̃a − 1
L̃

if L̃ > 0,

(46) β̃(h) = α0(h) + aγ̃(h) if L̃ = 0,

where γ̃(h) = Ah0 +Bh2
0 and

A =
C

2

[
1 +

1
n

n∑
i=1

M2
i + ‖L‖‖M‖

]
, B = L̃C

(
1 + ‖M‖

)2
.

Proof. It follows from (42), (43) that condition (35) is satisfied and, con-
sequently, difference method (31), (32) is convergent. We deduce from (42),
(43) and from Lemma 2.2 that the operator Fh given by (33) satisfies condition
(15) with γ(h) = γ̃(h). We thus get estimate (44) from Lemma 2.5 and the
proof is complete.
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Remark 3.3. In the result on the error estimate, we need estimates of the
derivatives of the solution v of problem (1), (2). One may obtain them by the
method of differential inequalities.

Now we consider functional difference problem (31), (32) with δ0 and δ =
(δ1, . . . , δn) given by

(47) δ0z
(r,m) =

1
h0

[
z(r+1,m) − z(r,m)

]
and

(48) δiz
(r,m) =

1
hi

[
z(r,m+ei) − z(r,m)

]
for 1 ≤ i ≤ κ0,

(49) δiz
(r,m) =

1
hi

[
z(r,m) − z(r,m−ei)

]
for κ0 + 1 ≤ i ≤ n,

where 0 ≤ κ0 ≤ n is fixed. Difference scheme (31), (32) with δ0 and δ defined
by (47)–(49) is called the Euler method. Let Fh : Yh → R be defined by

(50) Fh[w, η](r,m) = η(θ) + h0f(t(r), x(m), w, δη(θ)),

where

(51) δiη
(θ) =

1
hi

[
η(ei) − η(θ)

]
for 1 ≤ i ≤ κ0,

(52) δiη
(θ) =

1
hi

[
η(θ) − η(−ei)

]
for κ0 + 1 ≤ i ≤ n.

It is clear that problem (31), (32) with δ0 and δ given by (47)–(49) is
equivalent to (9), (10) with Fh defined by (50)–(52).

Theorem 3.4. Suppose that Assumption H[f, α] is satisfied and
1) h ∈ H and for (t, x, w, q) ∈ Σ we have

(53) ∂qif(t, x, w, q) ≥ 0 for 1 ≤ i ≤ κ0,

(54) ∂qif(t, x, w, q) ≤ 0 for κ0 + 1 ≤ i ≤ n,
and

(55) 1− h0

n∑
i=1

1
hi

∣∣ ∂qif(t, x, w, q)
∣∣ ≥ 0,

2) zh : Ωh → R is a solution of (31), (32) with δ0 and δ given by (47)–(49)
and there is β0 : H → R+ such that condition (36) is satisfied,

3) v : Ω→ R is a classical solution of (1), (2) and v is of class C1 on Ω.
Then there is β : H → R+ such that condition (37) is satisfied, where vh =
v |Ωh.
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Proof. We apply Theorem 2.4 to prove (37). It follows that zh satisfies
(9), (10) with Fh defined by (50)–(52) and there is γ : H → R+ such that
condition (15) is satisfied. Now we estimate the function Fh[w, η] − Fh[w̄, η̄],
where w, w̄ ∈ C(D,R) and η, η̄ ∈ F(Ah,R). Let U (r,m) and Q(r,m)(τ) be defined
by (38), (39) with δη and δη̄ given by (51), (52). It follows from Assumption
H[f, α] that

(56) Fh[w, η](r,m) − Fh[w̄, η̄](r,m) = U (r,m)

+
[
1− h0

n∑
i=1

1
hi

∣∣∣∫ 1

0
∂qif(Q(r,m)(τ)) dτ

∣∣∣] (η − η̄)(θ)
+h0

κ0∑
i=1

1
hi

∫ 1

0
∂qif(Q(r,m)(τ)) dτ

(
η − η̄

)(ei)
−h0

n∑
i=κ+1

1
hi

∫ 1

0
∂qif(Q(r,m)(τ)) dτ

(
η − η̄

)(−ei).
It follows from (41), (53)–(56) that the operator Fh satisfies (14). Then all the
assumptions of Theorem 2.4 are satisfied and the assertion (37) follows.

Remark 3.5. In Theorem 3.4 we have assumed that the function

sign ∂qf =
(

sign ∂q1f, . . . , , sign ∂qnf
)

is constant on Σ. Relations (53), (54) can be considered as a definition of κ0.

Now we give a result on the error estimate of the Euler difference method.

Lemma 3.6. Suppose that
1) all the assumptions of Theorem 3.4 are satisfied with σ(t, w) = L0‖w‖D,

where L0 ∈ R+,
2) v : Ω→ R is a solution of (1), (2) and v is of class C2 on Ω,
3) there are L,M ∈ Rn

+ such that h0L ≤ h′ ≤ h0M.

Then there are A,B ∈ R+ such that estimate (44) is satisfied with β̃(h) given
by (45), (46) and γ̃(h) = Ah0 +Bh2

0.

The above Lemma is a consequence of Lemmas 2.2 and 2.5.

3.2. Nonlinear parabolic functional differential equations. We for-
mulate a difference method for initial boundary value problem (7), (8). Write

Γ = { (i, j) ∈ N2 : 1 ≤ i, j ≤ n, i 6= j }

and suppose that we have defined the sets Γ+, Γ− ⊂ Γ such that Γ+∪Γ− = Γ,
Γ+∩Γ− = ∅. In particular, it may happen that Γ+ = ∅ or Γ− = ∅.Moreover, we
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assume that (i, j) ∈ Γ+ when (j, i) ∈ Γ+. Let z : Ωh → R and (t(r), x(m)) ∈ Eh.
We define

δ+
i z

(r,m) =
1
hi

[
z(r,m+ei)−z(r,m)

]
, δ−i z

(r,m) =
1
hi

[
z(r,m)−z(r,m−ei)

]
, 1 ≤ i ≤ n.

We consider the difference operators (δ1, . . . , δn) = δ defined by (30) and (47),
respectively. We apply the difference operators δ(2) =

[
δi j
]
i,j=1,...,n

given by

(57) δiiz
(r,m) = δ+

i δ
−
i z

(r,m), i = 1, . . . , n,

and

(58) δijz
(r,m) =

1
2
[
δ+
i δ
−
j z

(r,m) + δ−i δ
+
j z

(r,m)
]

for (i, j) ∈ Γ−,

(59) δijz
(r,m) =

1
2
[
δ+
i δ

+
j z

(r,m) + δ−i δ
−
j z

(r,m)
]

for (i, j) ∈ Γ+.

In the same way we define the difference expressions δη(θ) = (δ1η
(θ), . . . , δnη

(θ))
and δ(2)η(θ) =

[
δijη

(θ)
]
i,j=1,...,n

, where η : Ah → R. Suppose that ϕh : E0.h ∪
∂0Eh → R is a given function. We approximate classical solutions of (7), (8)
with solutions of the difference functional equation

(60) δ0z
(r,m) = F

(
t(r), x(m),

(
Th[z]

)
α(r,m) , δz

(r,m), δ(2)z(r,m)
)

with the initial boundary condition

(61) z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh.

It is clear that there exists exactly one solution zh : Ωh → R of the above
difference scheme. We claim that difference method (60), (61) is a particular
case of (9), (10). Let Fh : Yh → R be defined by

(62) Fh[w, η](r,m) = η(θ) + h0F
(
t(r), x(m), w, δη(θ), δ(2)η(θ)

)
with the above defined δη(θ) and δ(2)ηθ). It is clear that problem (60), (61) is
equivalent to (9), (10) with Fh defined by (62).

Assumption F [F, α]. Suppose that the function F : Ξ → R in the vari-
ables (t, x, w, q, s), s = [sij ]i,j=1,...,n, is continuous and

1) the partial derivatives

∂qF =
(
∂q1F, . . . , ∂qnF

)
, ∂sF =

[
∂sijF

]
i,j=1,...,n

exist on Ξ and ∂qF ∈ C(Ξ,Rn), ∂sF ∈ C(Ξ,Mn×n) and the functions
∂qF , ∂sF are bounded on Ξ,
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2) for each P = (t, x, w, q, s) ∈ Ξ the matrix ∂sF (P ) is symmetric and

(63) ∂sijF (P ) ≥ 0 for (i, j) ∈ Γ+, ∂sijF (P ) ≤ 0 for (i, j) ∈ Γ−,

(64) 1− 2h0

n∑
i=1

1
h2
i

∂siiF (P ) + h0

∑
(i,j)∈Γ

1
hihj

∣∣∂sijF (P )
∣∣ ≥ 0,

(65)
1
hi
∂siiF (P )−

n∑
j=1
j 6=i

1
hj

∣∣∂sijF (P )
∣∣− 1

2

∣∣∂qiF (P )
∣∣ ≥ 0, 1 ≤ i ≤ n,

3) there is σ : J × C(I,R+)→ R+ such that Assumption H[σ] is satisfied
and

(66)
∣∣F (t, x, w, q, s)− F (t, x, w̄, q, s)

∣∣ ≤ σ( t, V [w − w̄] ) on Ξ,

4) α ∈ C(E,R1+n) and α(t, x) ∈ Ē, α0(t, x) ≤ t for (t, x) ∈ E.
We give comments on assumptions (63)–(66).

Remark 3.7. Suppose that h1 = h2 = . . . = hn and there is ε0 > 0 such
that

∂siiF (P )−
n∑
j=1
j 6=i

∣∣∂sijF (P )
∣∣ ≥ ε,

where P ∈ Ξ. Assume also that the function ∂qf is bounded on Ξ. Then there
is ε̃ > 0 such that for ‖h‖ < ε̃ condition (64) is satisfied.

Remark 3.8. We have assumed that the functions sign ∂sijF : Ξ → R,
(i, j) ∈ Γ, are constant on Ξ. Relations (63) can be considered as the definition
of Γ+ and Γ−.

Remark 3.9. Inequality (64) states that we have assumed relations be-
tween h0 and h′. More precisely, we assume that h0 is sufficiently small if h′ is
fixed.

Theorem 3.10. Suppose that Assumption H[F, α] is satisfied and
1) there is c̃ > 0 such that hi ≤ c̃hj, i, j = 1, . . . , n,
2) zh : Ωh → R is a solution of (60), (61) and there is β0 : H → R+ such

that

(67)
∣∣ϕ(r,m) − ϕ(r,m)

h

∣∣ ≤ β0(h) on E0.h ∪ ∂0Eh and lim
h→0

β0(h) = 0,

3) v : Ω→ R is a classical solution of (7), (8) and v is of class C2 on Ω.
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Then there is β : H → R such that

(68)
∣∣(vh − zh)(r,m)

∣∣ ≤ β(h) on Eh and lim
h→0

β(h) = 0,

where vh = v |Ωh.

Proof. We apply Theorem 2.4 to prove (68). Suppose that Fh is given by
(62). It follows that zh satisfies (9), (10) and there is γ : H → R+ such that
condition (15) is satisfied. Now we consider the difference Fh[w, η] − Fh[w̄, η̄]
where w, w̄ ∈ C(D,R) and η, η̄ ∈ F(Ah,R)). Write

W (r,m)) = h0

[
f
(
t(r), x(m), w, δη(θ), δ(2)η(θ)

)
− f

(
t(r), x(m), w̄, δη(θ), δ(2)η(θ)

) ]
,

where (t(r), x(m)) ∈ E′h. It follows from Assumption H[F, α] and from (63)–(65)
that there are functions

S̃h : E′h → Rn
+, S̃h = (S̃h.1, . . . , S̃h.n),

S̄h : E′h → Rn
+, S̄h = (S̄h.1, . . . , S̄h.n),

Qh : E′h →Mn×n, Qh =
[
Qh.ij

]
i,j=1,...,n

such that

Q
(r,m)
h.ij ≥ 0 on E′h for (i, j) ∈ Γ,

n∑
i=1

Q
(r,m)
h.ii ≤ 1 on E′h,

and

(69) Fh[w, η](r,m) − Fh[w̄, η̄](r,m) = W (r,m) +
[
1−

n∑
i=1

Q
(r,m)
h.ii

]
(η − η̄)(θ)

+
n∑
i=1

S̃
(r,m)
h.i (η − η̄)(ei) +

n∑
i=1

S̄
(r,m)
h.i (η − η̄)(−ei)

+
∑

(i,j)∈Γ+

Q
(r,m)
h.ij

(
η − η̄)(−ei+ej) |+ (η − η̄)(−ei−ej)

)
+

∑
(i,j)∈Γ−

Q
(r,m)
h.ij

(
η − η̄)(−ei+ej) |+ (η − η̄)(ei−ej)

)
.

Moreover,

(70)
n∑
i=1

S̃
(r,m)
h.i +

n∑
i=1

S̄
(r,m)
h.i + 2

∑
(i,j)∈Γ

Q
(r,m)
h.ij −

n∑
i=1

Q
(r,m)
h.ii = 0 on E′h.

We conclude from (66) that∣∣W (r,m)
∣∣ ≤ σ(t(r), V [w − w̄]) on E′h.

The above inequality, (69) and (70) imply (14). Thus we see that all the
assumptions of Theorem 2.4 are satisfied and the assertion (68) follows.
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Now we formulate a result on the error estimate for difference method (60),
(61). For X,Y ∈Mn×n, where

X =
[
xij
]
i,j=1,...,n

, Y =
[
yij
]
i,j=1,...n

,

we put [∣∣X∣∣] =
[
|xij |

]
i,j=1,...n

, ‖X‖? =
n∑

i,j=1

|xij |

and we write X ≤ Y if xij ≤ yij for i, j = 1, . . . , n. Let us denote by M+
n×n the

class of all X ∈Mn×n such that xij ≥ 0 for i, j = 1, . . . , n.

Lemma 3.11. Suppose that
1) F : Ξ → R satisfies conditions 1), 2), 4) of Assumption H[F, α] and

there is L̃ ∈ R+ such that∣∣F (t, x, w, q, s)− F (t, x, w̄, q, s)
∣∣ ≤ L̃‖w − w̄‖D on Ξ,

2) h ∈ H and there are L ∈ Rn
+, and B ∈M+

n×n, such that[∣∣ ∂qF (P )
∣∣] ≤ L, [∣∣ ∂sF (P )

∣∣] ≤ B, P = (t, x, w, q, s) ∈ Ξ,

3) zh : Ωh → R is a solution of (60), (61) and there is β0 : H → R+ such
that condition (67) is satisfied,

4) v : Ω → R is a classical solution of (7), (8) and v is of class C4 on Ω
and C̃ ∈ R+ is defined by the relations∣∣∂xixjv(t, x)

∣∣, ∣∣∂xixjxµv(t, x)
∣∣, ∣∣∂xixjxµxνv(t, x)

∣∣ ≤ C̃ on Ω,

where i, j, µ, ν = 0, 1, . . . , n and x0 = t.

Then

(71)
∣∣(zh − vh)(r,m)

∣∣ ≤ ᾱ(h) on Eh,

where vh = v |Ωh and

ᾱ(h) = α0(h)eL̃a + γ̄(h)
eL̃a − 1
L̃

if L̃ > 0,

ᾱ(h) = α0(h) + aγ̄(h) if L̃ = 0
and

γ̄(h) =
1
2
h0 + L̃C̃‖h‖2 + C̃

( 1
6
‖L‖+

3
4
‖M‖?

)
max {hi : 1 ≤ i ≤ n }.

Proof. We deduce from condition 2) and from Lemma 2.2 that the oper-
ator Fh : Sh[R] → R given by (62) satisfies condition (15) with γ(h) = γ̄(h).
We thus get estimate (71) from Lemma 2.5 and the proof is complete.
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