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ON LEBESGUE MEASURABILITY OF
HENSTOCK-KURZWEIL INTEGRABLE FUNCTIONS

BY ARKADIUSZ LEWANDOWSKI

Abstract. Every Henstock—Kurzweil integrable function on a compact in-
terval in R is Lebesgue measurable. We give a new elementary proof.

1. Introduction. The following result is well-known.

THEOREM 1.1. FEvery function that is Henstock—Kurzweil integrable on a
compact interval in R is also Lebesgue measurable.

Standard proofs of this result use advanced tools, like the Vitali Covering
Theorem and the Fundamental Theorem of Calculus (see for example [I, 3]).
We shall prove Theorem [I.1] using definition of Henstock—Kurzweil integrability
and some basic properties of the Lebesgue measure only. A proof of a more
general theorem can be found in [2].

2. Some definitions and notations. Let £* denote the outer Lebesgue
measure in R and let £ : ¢ — [0, 400] be the Lebesgue measure, where ¢
denotes the o-algebra of Lebesgue measurable sets in R. We consider a closed
interval P = [a,b] C R, a < b, and M(P, L), the collection of all Lebesgue

measurable functions f: P — R.
n

In the rest of this note we use the following notation. If P = J P;, where

=1
P = [zio1,2), a = x9g < x1 < ... < xp, = b, then we say that {P;}]'
is a partition of P. If & € P;, i = 1,...,n, then the set of ordered pairs
{(P,&) : i=1,...,n} = (P,&)}, is called a tagged partition of P. We
denote by T(P) the collection of all tagged partitions of P.
For any function 6: P — Ry, let

8(6) :=={(F,&)it1 € T(P) : [Pl :=wi —wio1 <6(&), i=1,...,n}.
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DEFINITION 2.1. We say that a function f: P — R is Henstock—Kurzweil
integrable on P if there exists a number I € R such that for every € > 0 there
exists a function §: P — Ry such that if (P;, &), € 8(J), then

S @RI 1] <=
=1

In this case we say that I is the Henstock—Kurzweil integral of f and put
Jpf = 1. We denote by HIK(P) the collection of all Henstock-Kurzweil
integrable functions on P.

3. Proof of Theorem First we shall show that if the following
lemma holds true, then we can prove Theorem

LemmA 3.1. If f ¢ M(P,L), then there exist an A € £ such that
0 < L(A) < oo and numbers a < [ such that L(AN{f < a}) = L*X(AN

{f = 8}) =L(A).
Indeed, assume for a while that Lemma [3.1] holds.

PROOF OF THEOREM [[L1] Without loss of generality, assume that
P=]0,1]. Fix an f € HX(P). Suppose that f ¢ M(P,L). Then, by Lemma
we find an A € ¢ such that 0 < £L(A) < oo, and numbers a < 3 such that
LA(AN{f <a}) =L(AN{f = B}) = L(A).

Fix an € > 0 satisfying £(A) > 52_5& + 2¢. Let §: P — R+ be such that

S f@IRI- [ ] <e torevry (B €50)
i=1 P

Define
o(x
Ap = ANn{f<a}nf{zecp:L <oy
Bm::Aﬂ{fZﬁ}ﬂ{xEP:%S@}, m €N, m#0.

Then there exists an mg > 1 such that £*(A,,,) > L(A) — ¢ and
L*(Bymg) > L(A) — <.
Indeed, suppose that £*(A,,) < L(A) — € for every m € N, m # 0. Thanks
to the regularity of L, for every m € N, m # 0, there exists a C), € £ such
that £L(C,,) = L*(A;,) and A,,, C Cp, C A. We may assume that the sequence
{C }o0_, is increasing.

To see this, for given C1,Cy, ... define D" := C)y \Cj, me N, m#0,

! o0 /
j=m+1 and C = Cp \ U Dj. Then {C,,}7_ is increasing and
j=m+1

A, CCh C A, as well as £(C),) = L(Cr) = L*(Am).
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Finally we obtain £( U m) < L(A)—e,but AnN{f<a}C U Cn CA,
m=1

my > 1 such that £*(A,,)
such that £*(B,,,) > ( )
Then mg := max{ml7 ma}.

C
OO

which implies £(A) = L( U 'm); a contradiction. Thus, there exists an
§ ( ) — e. Analogously, there exists an mg > 1

Define ¢’ := min{¢ }. Fix an (P;, &), € 8(¢') and finally let

’2m

L:={ie{l,...,n}: PNAy,, =92}, IL:={ie{l,...,n}:P,NBy, =9},

I3 := {1,...,77,}\([1UIQ).
We see that £(AN | P) < £(A)—L(AN( U P)°) < L(A)—L*(Ap,) <

el i€l
and similarly L(AN |J P;) <e. For i € I3, there is Y |P;| > L(A) — 2¢ and
i€l 1€l3

PN Ay, # 9, PN By, # &, so. Thus, for i € I3, we find & € P, N Ap,,
€' € PN By, Fori ¢ I3, let § = & = &/ Consider tagged partitions
(P, &)1y, (P, €N ,. We observe that (P;, &)™, (P, &), € 8(6 (]ID Now,
since f is integrable, we get

(Zf )P — Zf
DB — Zf = (£(&) - f(&)IP;]| and
i€l3

D (FE) = FENIPI = (8- ) Y IB] = (B = a)(L(A) - 2¢) > 2,

i€l i€l

< 2e.

On the other hand,

which is a contradiction. O
To prove Lemma, suppose for a while that the following lemma holds.

LEMMA 3.2. For every A ¢ £ there exists a B € £ such that A C B and
L*(ANC) = L(BNC) for every C € ¢ (then we will write B € AY).

PRrROOF OF LEMMA Bl Step 1. If B ¢ ¢, then there exists a D € £ such
that 0 < £(D) < oo and L*(D N B) = L*(D \ B) = L(D).

'For example: since |P;| < § (&), then |P;| < ﬁ, i =1,...,n. For i € I3, there is
L < ng). Therefore, |P;| < 6(&)) and (P, &)1 € 8(6).

mo —
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Indeed, there exists a C' € ¢ of finite measure such that BNC ¢ ¢. Thanks
to Lemma we find Ay, Ay € € such that A, € (BN CO)Y, 4, € (C\ B).
Then

(1) C\A,CcCNBC CNA;.

Consider D := (CNA;)\ (C\A) =CnNANAy €& Then and the fact
that the Lebesgue measure is complete implies £(D) > 0. Also, £(D) < oo,
because D C C. Finally, L*(DNB) = L(DNCNB)=L(DNA;) =L(D)
and L*(D\ B) =L*(DN(C\ B)) =L(DnNAy) =L(D).

Step 2. Choose an f ¢ M(P,L). Then there exists an a € R such that
{f < a} ¢ ¢ From Step 1, we find a D € ¢ such that 0 < £(D) < oo and
LADN{f <a}) =L(D\{f <a}) =L(D). Thus, D € (DN{f < a})".
Consider an increasing family of sets A := {D N {f > a + 5= }}nen. Then
UA = D\{f < a}. Thus, there exists a § > « for which L*(DN{f > §}) > 0.
We find a measurable set A C D such that DN{f > 5} C Aand L(A) = £*(DN
{f > B)). Finally, £(AN{f < a}) = L(ANDN{f < a}) = £(AND) = L(A)
and L*(AN{f > 8)) = L(D N {f > B}) = £(A). 0

It remains to prove Lemma [3.2]

PRrROOF OF LEMMA [3.2] Step 1. If A C B € ¢, then B € AL iff for every
D € ¢ satistying D C B\ A there is £(D) = 0.

Assume first that B € A% and fix a measurable set D C B \ A. Then
L(D)=L(BND)=L*(AND)=0.

Conversely, assume that for every measurable set D C B\ A there holds
L(D) = 0. Suppose, seeking a contradiction, that B ¢ A%, Then there exists a
C € ¢such that L*(ANC) < L(BNC). Choose aset D € ¢satisfying ANC C D
and L(D) = L(ANC). Let £ :== (BN C)\ D. Then L(D) < L(BNC),
which implies £(E) > 0. Obviously, £ € ¢. But we have also £ C B and
ANE C (ANC)\ D = @; a contradiction.

Step 2. If A Cc |J A, where 4,, € ¢ and L(A,) < oo, n = 1,2,...,

n=1
then there exists a set from AY. Indeed, thanks to the regularity of L, for
every n = 1,2,..., there exists a B, € £ such that AN A, C B, and

L(By,) = L(ANA,). In fact, B, € (AN A,)L
To see this, choose a measurable set D C By, \ (AN A,). Then (AN A,) C
By \ D, hence L(B),, \ D) = L(By,). But L(B,,) < oo, thus £(D) = 0 and Step
1 implies B, € (AN A4,)%
[e.e]
Let B = |J B,. Obviously, A C B. Moreover, if we take a measurable set

n=1
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D c B\ A, then DN B,, C B, \ (AN A,). Therefore, from Step 1 there follows
o0
L(DNCy)=0,80 D= |J DnN B, is of measure zero and Step 1 completes

n=1

the proof of Step 2.

Step 3. Every set in R satisfies the assumption of Step 2. O
Theorem [I.1] is proved.
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