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On di eomorphisms over surfaces trivially
embedded in the 4-sphere

Susumu Hirose

Abstract A surface in the 4-sphere is trivially embedded, if it bounds a 3-
dimensional handle body in the 4-sphere. For a surface trivially embedded
in the 4-sphere, a di eomorphism over this surface is extensible if and only
if this preserves the Rokhlin quadratic form of this embedded surface.
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This paper is dedicated to Professor Mitsuyoshi Kato on his 60th birthday.

1 Introduction

We denote the closed oriented surface of genus g by 4, the mapping class group
of 4 by Mg. Let : 4 ¥ S*beanembedding, and K be its image. We call
(S*;K) a g-knot. Two 4-knots (S*;K) and (S*; K') are equivalent if there
is a di eomorphism of S* which brings K to K'. A 3-dimensional handlebody
Hg is an oriented 3-manifold which is constructed from a 3-ball with attaching
g 1-handles. Any embeddings of Hg into S* are isotopic each other. Therefore,
(S*;@Hy) is unique up to equivalence. We call this 4-knot (S*;@Hg) a trivial

g-knot and denote this by (S* 4). For a 4-knot (S* K), we de ne the
following group,

there is an element 2 Di *(S%)

ES“ ,K)= 2 ¢Di "(K
( ) 0 () such that jk represents

and de ne a quadratic form (the Rokhlin quadratic form) gk : H1i(K;Zy) ¥ Z,:
Let P be a compact surface embedded in S*, with its boundary contained
in K, normal to K along its boundary, and its interior is transverse to K.
Let P! be a surface transverse to P obtained by sliding P parallel to itself
over K. De ne g ([@P]) = #(intP \ (P’ [ K)) mod 2, where int means the
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792 Susumu Hirose

interior. This is a well-de ned quadratic form with respect to the Z,-homology
intersection form (;)2 on K, i.e. for each pair of elements x, y of H1(K;Zy),
Ok (X +Y) = g (X) +ak (y) + (X;y)2. For the trivial g-knot (S g), let SPq
be the subgroup of My whose elements leave q  invariant. This group SPy
is called the spin mapping class group [3]. In the case when g = 1, Montesinos
showed:

Theorem 1.1 [10] E(S* 1) =SP;.
In this paper, we generalize this result to higher genus:
Theorem 1.2 Forany g 1, E(S% 4)=SPy.

The group E(S*; K) remains unknown for many non-trivial g-knots K. On
the other hand, for some class of non-trivial 1-knots (S*; K), lwase [6] and
the author [5] determined the groups E(S*; K).

Finally, the author would like to express his gratitude to Professor Masahico
Saito for his helpful comments, and to Professor Nariya Kawazumi for introduc-
ing him results of Johnson [8]. This paper was written while the author stayed
at Michigan State University as a visiting scholar sponsored by the Japanese
Ministry of Education, Culture, Sports, Science and Technology. He is grateful
to the Department of Mathematics, Michigan State University, for its hospital-

ity.
2 Some elements of E(S* )

For elements a, b and ¢ of a group, we write T = ¢, and a b = aba . Here, we
introduce a standard form of the trivial 4-knot (S g)- We decompose S =
D4 [D2 and call S® = D4 \D? the equator S® , and decompose S° = D3 [D2
and call S2 = D3 \D? the equator S? . Let Py be a planar surface constructed
from a 2-disk by removing g copies of disjoint 2-disks. As indicated in Figure
1, we denote the boundary components of Py by yo;Yy2;::: ;Y2g, and denote
some properly embedded arcs of Py by y1;y3;:::;Yog+1, 2, 4;:::; 29—2 and

S L 2g ». We parametrize the regular neighborhood of the equator
S? in the equator S® by S? [—1;1], such that S?> f0g = the equator S2,
S? [-1;1\D3 =S2 [0;1] and S? [-1;1\D3 =S2 [-1;0]. We put P4 on
the equator S2. Then, Py [-1;1] S? [—1;1] isa 3-dimensional handle body,
so that, (S*;@(Pg [—1;1])) is the trivial ¢-knot. On @(Py [-1;1]) = q,
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Figure 2

Figure 3

we de ne Czi—1 = @(y2i-1  [~1;1) (0 1 g+1), by =0( 2 [~1:1]),
by =0(% [-L1) @ § g-1),andcax=vx fog( k g).

In Figures 2 and 3, these circles are illustrated and some of them are oriented.
For a simple closed curve a on 4, we denote the Dehn twist about a by Ta.
The order of composition of maps is the functional one: TyT, means we apply
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Ta rst, then Ty. We de ne some elements of My as follows:

Ci = Tei; Bi =Ty B =Ty

Xi = Ci+1CiCjs1; X; =Civ1 CiCisx (1 1 29);

Y2j = CiB2jCoj ; Yo =Cpj B2jCoj 2 j g—1);

Di=C2 (1 i 2g9+1);

DB,j=B% (2 j g-1);

T =C1C3Cs; Ty = C1C3B4; T2 = BaCsCr Coga:
When g 3, the subgroup of My generated by X; (1 i 2g9), Y25 (2 ]
g—1),Di 1 i 29+1),DBy (2 J g9—1), Ty, and T, is denoted by
Gg. Itisclear that X; and Y, are elements of Gg. When g = 2, the subgroup
of My generated by X; (1 i 4),D; (1 j 5),and T isdenoted by G.

For two simple closed curves | and m on ¢, | and m are called Gg-equivalent

(denote by I~ m) if there is an element  of Gy such that (I) = m. We set
Gg

X1 X2 X3 Xg
Y1 ¥ ¥3 Ye

Figure 4
a basis of H1( ¢;Z) as in Figure 4, then for the quadratic form q , de ned in
XL g ,xi)=q 4(yi)=0(1 i g). Bythede nitions of g , and SPy, we
have:

Lemma 2.1 E(S% ) SPy.

In this section, we show:

Lemma 2.2 Gy E(S% ).

As a straightforward corollary of these lemmas, we have:
Corollary 2.3 Gy SPy.

If Gg SPg, then Theorem 1.2 is proved. We prove Gg  SPg in the next
section.
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Proof of Lemma 2.2 First we show that, if g =2, T = C;C3Cs is an ele-
ment of E(S%; ,). We parametrize the regular neighborhood of the equator S3
in S* by S® [—1;1], such that S® f0g = the equator S, S® [—1;1]\ D%
=53 [-1;0],and S® [-1;1]\ D% = S® [0;1]. We deform ; in S#, in

/[ 2\
/O\\
\\/J
/

the equator S?

Figure 5

such a way that the surface obtained as a result of this deformation projects
onto the equator S° as indicated in Figure 5. In this gure, there are 6 in-
tersecting circles. For each circle, we take two regular neighborhoods N1 and
Nz in . For 0< <1, weputN;intoS* f5gand N, into S® f—5g.
This deformation de nes an orientation preserving di eomorphism W; of S*.
Let r( ): S? ¥ S2? pe the angle rotation whose axis passes through N. We
de ne R(): S® ¥ S8 py

R(O)GGE) = (r(t )();t) onS? [0;1]
R()=id onD?3
R( ) = theangle rotation on D3 —S2 [0;1]:
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We de ne an orientation preserving di eomorphism W, of S* by
Wox;t) = (R )(x);t) onS3® [—; ]

6= R@ 1000t onS® [

= RE T hit  ons® [-L- ]

1
W,=id onS*—S® [-1;1]

Then wl‘lwzwlj , = C1C3Cs. In the same way as above, we can show for
g 3 that T; and T, are elements of E(S%; ).

Next, for g = 3, we show that X3 = C4,C3C, and D3 = C3 are elements of
E(S% ). We review a theorem due to Montesinos [10]. We can construct
S* from B® S! and S? D? by attaching their boundary with the natural
identi cation. Let D?> S be the solid torus trivially embedded in B3. We
regard D2 S S! B2 S!  S# as the regular neighborhood of a trivial

1-knot. Let E* be the exterior of this trivial 1-knot. The 3 simple closed
curves | = @D?2 . r= st | s= St on @E* represent a
basis of H1(@E*; Z). Montesinos showed:

Theorem 2.4 [10, Theorem 5.3] Let g: @E* ¥ @E* be a di eomorphism

which induces an automorphism on H{(@E*;Z),

(@]
m a b

g (I;r;8) =(;r;8)@n VA
P

There is a di eomorphism G: E* ¥ E* such that Gjge+ = g if and only if
a=b=0and + +y+ iseven.

Let p be a point on st s! disjoint from r ['s, N(p) be a regular neigh-
borhood of p in the equator S®, then N = S!S —N¢(p) in a regular
neighborhood of r [s. Figure 6 illustrates deformation of 4 into D> S! S,
We bring c3 and ¢4 to r and s and deform as is indicated by arrows. Then,
we can deform 3 in such a way that a regular neighborhood N? of c3 [ ¢4
coincides with N and 3 — N’ N(p). Let di eomorphisms f1, T, over

D? S! S! pede nedby f; =idpe (1) i , Fo = idpe _21 o (where
we present di eomorphisms on S st by its action on the basis fr;sg

of Hi( S! S';Z) and r and s are oriented as in Figure 6), then fyj , =
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Figure 6

C§ = D3, faj , = C4C3C4 = X3. Since the actions of these homeomorphisms
on Hy(@E*;Z) are described by

o) 1
100
(F@E®) (I;r;s) = (I;r;s)@0 1 2A;
001
o) 1
1 0 0
(FJ0E%) (I;r;s) =(I;rs)@0 2 1A;
0 -1 0

there are di eomorphisms F; and F, such that Fijp2 g1 g1 = T1, Fojp2 g1 st
= f,. These di eomorphisms F;, F, are extensions of f;, F, respectively. By
the same method as above, we can show that other Xj, Yj, Dj, and DBy; are
elements of E(S%; ¢) forany g 2. O

3 A nite set of generators for the spin mapping
class group

In Corollary 2.3, we showed that Gg  SP4. In this section, we show that
Gy = SPgy. That is to say, we show:

Theorem 3.1 If g = 2, SP, is generated by Cj+1CiCi+1 (1 i 4),
Cj2 (1 j 5), and C1_C3C5. If g 3, SPy is generated by Ci+1CiCi+1
(L i 29), C3ByCy (2 9-—1), CZ (1 k 29+1), B
(1 | g-— 1), C1C3B,4 and B4Cs5Cy ng+1.

When g = 2, we use Reidemeister{Schreier’s method to show this. On the
other hand, when g 3, we use other methods. We start from the case when
g 3.
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3.1 The hyperelliptic mapping class group

Let Hy be the subgroup of the mapping class group Mg generated by Cy; Cy;
i1 Cog+1. This group is called the hyperelliptic mapping class group. In this
group (and also in My), C;’s satisfy the following equations:

CiCi+1Ci = Ci+1CiCivry; (1 1 29)
CiCj = CjCi; (ji —jj 2)2
These equations are called braid equation. In this paper, we use these relations
frequently. In this section, we show the following lemma for Hg.

Lemma 3.2 Forany i=1;2;:::,;2g+1, and any element W of Hg, W C;iC;W
is an element of Gy.

Proof We call C; a positive letter and C; a negative letter. A sequence of
positive letters is called a positive word. If indices of two letters C;, C; satisfy
ji—Jj =1, then we say C; is adjacent to C;. If there is a negative letter B in
a sequence of letters W, which presents an element of Hg, we replace B by a
sequence of letters B B B. This shows that every element of Hy is represented
by a sequence of positive letters and C_J C_J 's(l J 2g9+1). Ifthereis a
sequence of letters XX ( X =Cjor Cj ) in W, say W = W1 XXW,, then we
rewrite,

WCiCiW = WlXXWZCiCiWZ Y Y Wl
= W]_XXW]_ W]_WzCiCiWZ W]_ W]_Y Y W]_ .

Therefore, the following claim shows this lemma:

Claim For any positive word W without C;C;(1  j 29+ 1), WCiCiwW
is an element of Gy.

If the word length of W is 0, the above claim is trivial. We assume that the
word length of W is at least 1, and we show this claim by the induction on the
word length. If the right most letter L of W is not adjacent to A;j, and say
W = W!L, then

WCiCiW =W'LC;C;L W' =W!'C,LL C;W' = wW'C;C;W7:

By the induction hypothesis, WC;C;W is an element of Gg. Therefore, from
here to the end of this proof, we assume that the right most letter of W is
adjacent to C;. Let | be the word length of W, and W = X;Xj—1:::X>X;. The
letter x; of W is called a jump, if X;—; and X; are not adjacent. The letter X;
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of W is called a turn, if xj and xj—z are not jumps and X; = Xj—». Considering
jumps and turns, we need to show this claim for the following three cases.

Case 1 When there is not any jump or any turn: Since X; and X;—; are
adjacent, x;x—1Xj is an element of Gy. We rewrite,

WCiCW =xx—1X] XiXi—2Xi—3  X1CiCiX1 X3 X2 Xi XiXi—1 X :
By the induction hypothesis, WC;iCiW is an element of Gg.
Case 2 When there are jumps, but there is not any turn: We show in the
induction on the number of jumps in W. Let Xx; be the right most jump in W.

First we consider the case when j = 2, say W = W"%»x;. If X, is not adjacent
to C;, we rewrite,

= W%, CiCixi W :
By the induction hypothesis on the word length of W, WC;C;W is an element
of Gg. If X is adjacent to C;, we rewrite,
WCiCiW = W0X2X1CiCiX_1 X2 w?
= WOXZG X1X1CiX2 wo
=W%,Ci Ci CixixiCi CiCixg W'
=W"%C; Ci X WI W%,Cix1x:Ci Xz WI W '%,C;Cixz WU :
By the induction hypothesis on the word length of W, the rst and third terms
are elements of G¢. By the induction hypothesis on the number of jumps in
W, the second term is an element of Gy. Therefore, WC;C;W is an element
of Gy. Next, we consider on the case when j is at least 3. If x; is not adjacent
to Xj—1;:::; Xy then,
W = iXjXj—1 i Xy = i Xj—1 0 XX
Therefore, it comes down to the case j = 2. If there are some letters adjacent
to xj in fXj—g; ;1 X10, let X; be the left most element among them. By the
de nition of jumps, j > i+1, and by the de nition of X, Xj = Xj—1. Therefore,
W= Xj Xi+iXiXi-1 X1
= Xj+1XjXiXj—1 X1
= Xj+1Xj—1XiXj—1 X1
= Xi+1XiXj—1Xi  Xi:
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Since there is not any jump or any turn in the sequence XjXj—1 X1, Xj com-
mutes with Xj—»;::: ;X1. Therefore, W =  X;Xj and it comes down to the
case j = 2.

Case 3 When there are turns in W : Let x; be the right most turn in W. By
the de nition of turn, t is at least 3. By applying the argument for Case 2 to
Xt—1Xt—2 X1, We assume that there is no turn and no jump in X(—1Xt—2  X1.
Since we assume that X; is adjacent to C;, there may be a case when x, = C;.
In that case, we rewrite,
WCiCiW =  x3xpx1CiCiX1 Xz X3
x3Cix1CiCiX1 Ci X3
= x3X1Cix1X1 Cj X1X3
= X3X1X1X3
By the induction hypothesis on the word length of W, W C;C;W is an element
of Gg. If X2 & Cj, then X¢—1; Xt—2; ; X2 are not adjacent to Cj. We rewrite,
W= XXt—1Xt—2Xt-3 X1
= Xt—2Xt—1Xt—2Xt—3 X1
= Xt—1Xt—2Xt—1Xt—3  Xi:
Since we assume that there is no jump and no turn iN Xi—1Xt—2 X1, Xt—1
is not adjacent to X¢—3;:::;X1. Therefore, W = Xt—1Xt—2Xt—3  X1Xt—1.
With remarking that x¢—1 is not adjacent to C;, we rewrite,
WCiCIW =  Xi1Xt—2Xt—3  XiXi—1CiCiXe—1 X1 Xt—3 Xt—2 Xe—1
=  Xe—1Xt—2Xt—3  X1CiXt—1Xe—1 CiX1  X¢—3 X¢—2 X¢—1

Xt—1Xt—2Xt—3  X1CiCiX1  Xi—3 Xi—2 Xi—1
By the induction hypothesis on the word length of W, WC;C;W is an element
of Gy. m]

3.2 The Torelli group I,

In this subsection, we assume g 3. There is a natural surjection : Mg ¥
Sp(29;Z) de ned by the action of My on the group Hi( g¢;Z). We denote the
kernel of by Iy and call this the Torelli group. In this subsection, we prove
the following lemma:

Lemma 3.3 The Torelli group 14 is a subgroup of Gg.
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|
e

Figure 7

Johnson [7] showed that, when g is larger than or equal to 3, I4 is nitely gener-
ated. We review his result. We orient and call simple closed curves as indicated
in Figure 2, and call (cq;C2;:::;Co9+1) and (C ;Cs;::: ;Cag+1) as chains. For
oriented simple closed curves d and e which mutually intersect in one point,
we construct an oriented simple closed curve d+e from d [ e as follows: choose
a disk neighborhood of the intersection point and in it make a replacement as
indicated in Figure 7. For a consecutive subset fci;cj+1;:::;¢jg of a chain,
let ci +  +c; be the oriented simple closed curve constructed by repeated
applications of the above operations. Let (i1;::: ;ir+1) be a subsequence of
(1;2;:::;29 +1) (Resp. ( ;5;:::;2g +1)). We construct the union of circles
C =g+ +Cj,—1 L Ci, + +Ciz—1 [ Lci,+ +¢j,,—1. If risodd,
the regular neighborhood of C is an oriented compact surface with 2 boundary
components. Let  be the element of Mg de ned as the composition of the
positive Dehn twist along the boundary curve to the left of C and the negative
Dehn twist along the boundary curve to the right of C. Then, is an element

of Ig. We denote by [iy;::: ;ir+1], and call this the odd subchain map of
(c1;Co;:it s Cag+1) (Resp. (C ;Cs;5::i;Cog+1)). Johnson [7] showed the following
theorem:

Theorem 3.4 [7, Main Theorem] For g 3, the odd subchain maps of the
two chains (c1;C2;::: ;Cog+1) and (C ;Cs;::: ;Cog+1) generate lg.

We use the following results by Johnson [7].

Lemma 3.5 [7] (a) Cj commutes with [iz;ip; ]ifandonly if j and j+1
are either both contained in or are disjoint from the i’s.

() Hi&j+1,tenC [ ji; 1=1 ;j+4Li 1, and Cj

[ B 1=10 k6 00 i+yi 171 k6 1

() Ifk&j,thenC; [ kij+1; ]=[ kij; landC; [ ;kij+
Lo1=[ skji+1 I ki 171 ski+1 1

(d) [1;2;3;4][1;2;5;6;:::;2n]Bg4 [3;4;5;:::;2n] = [5;6;:::;2n][1;2;3;4;::: ;
2n], where3 n g.

First we show that some odd subchain maps are elements of Gg.
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Lemma 3.6 [1;2;3;4], [1;3;5;7;:::;2i+1;:::;2n—1] (niseven, and 4
n g+1),and [1;2;4;6;:::;2I;:::;2n—2] (niseven,and4 n g+2)
are elements of Gg.

Proof In this proof, for a sequence ff;g of elements of Mg, we write,

C
hi _ Fafher fmy n m

(1) [1;2:3;4] is an element of Gg: [1;2;3;4] is equal to B4Bj
Since C4C3C2C1C1C2C3C4(b4) = b04,

[1;2;3;4] = B4C4C3C,C1C1C2C3C4B4 C4 C3C2 C1 C1 C2 C3Cy
=B4C4Bs C3C,C3 C3C; C3C,C3 C3Cs BsCs4Bs C4C3Cy
C;C1Cy CoC1Cy CCy CsC3Cy CuCyc
Therefore, [1;2;3;4] is an element of Gy.

(2) [1;3;5;7;:::;2i+1;:::;2n—=1] (niseven,and 4 n g+1) are elements
of Gy: By (b) of Lemma 3.5,

Y el
[1;3;5;7;::: 52+ 1, ;2n—=1] = ( Ci) [1,2;3:4;:::;n]
k=n—1 i=2k
Since [1;2;3;4;::: ;n] = B,BY, , and bl, = szn Ci CiCy Q;‘=2 Ci(bn),
Y h'd . Y_ Y _
[1,2;3;4; ;n]=Bn Cj CiCy Ci Bn Ci C1C Ci
i=n i=2 i=n i=2

A4
f(Bn Ci) (Ck-1Ck-1)9 Bn (CnChp)

k=2 i=n
Y Y o
f( Ci) (Ck-1Ck-1)9 ChCn:
k=2 i=n
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Therefore,
¥ Y "Wyl A4
[1;3;5;7;:::;2n—1] = f( Ci Bn Ci) (Ck-1Ck-1)9
k=2 I=n—-1 i=2l i=n
Y n**'-l_
( Ci Bn) (CnCn)
I=n—1 i=2l
¥ Y "y:
( Ci Ci) (Ck-1Ck-1)9
k=2 I=n—-1 i=2l i=n
Y nwy:ioooo
( Ci) (ChGCh):
o o |=n—1Qi=2| o
By Lemma 3.2, N (g o tCi X, Ci) (Ck—1 Ck—1 )g and
(i, “M71Ci) (Ch Cn ) are elements of Gy. By braid relations for My,
(in the following equations j n—1)
Y NA Y _
Cj—1  Ci) (Cj—1Cj—1) =Cj—1  Cj CjCj—1Cj—1C;j Ci Cj—1
i=n i=n i=j+1
N Y
= Ci Cj_]_CjCj_le_le Cj_l Ci
i=n i=j+1

o v _ M
= Ci Cj Cj_1Cj Cj Cj_l Cj Ci = ( Ci) (Cj Cj);
i=n i=j+1 i=n
(Ch-1Ch) (Cn—1Cn-1) = Cn—1CnCn—1Cn—1C_n Ch-1
= CnCn-1CnCn Cn—1 Cn = CnCp:
By the above equation and the fact that B, commutes with C; (1 j n—1),

A4 Y Y
(Bn Ci) (Ck_lck_l) = ( Cj Bn Ci) (C1C1) where 3 k n;

i=n ji=k—2 i=n

Y
Bn (CnCn):(_ Cj Bn_ Ci) (CiCy):

j=n—1 i=n
Since, for3 k n+1,
Y w1 W Y Y w1
Ci Cj = (Coj Cpj-1C2j) Ci;
I=n—1 i=2I j=k—2 j=k—2 I=n—1 i=2I
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we obtain,
Y "Wl WY Y
( Ci Cj Bn Ci) (C:iCy)
I=n—1 =2l j=k—2 i=n
Y Y Nl Y
=( (Caj C2j-1Cyj) Ci Bn Ci) (C1Cy):
Jj=k—-2 I=n—1 i=2l i=n

Therefore, for %Sowing&at [1,3;5;7;:::52n—1] is an element of Gg, it su ces
1

to show that (~ 1., — oot GQB” 2_.Ci) <(2C1C1) is an element of Gg.
Figure 8 illustrates u = ~1_ _, ~"1Ci Bn “Z, Ci(c1). We investigate
N — ——
n-1
Figure 8

the action of elements of G4 on u. As indicated in Figure 9, Xg5X3X; acts

((0/0@0 i @) 5 0000- @)
¢ X;
on u. We make szg_z x4i+1x4i_Flig:: Zn this circle. In the middle of this

action, X,;,,X,;_, acts locally as in Figure 10. Hence, Qizzg_z Xaiv1Xai-1

Xi(u) is as the rst of Figure 11. This gure shows that, by the action of
Xe Xa Yg Xyn_3Xon_s, this curve is changed to the u of n—4. Therefore, for
our purpose, it su ces to show that T,Ty is an element of Gy only for n =4
or n = 6. Figure 12 shows that, when n =4, T Ty = (X1 X3 X5 ) (Y, Y,).
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Figure 12

Figure 13 shows that, when n =5, T Ty = (X1 X3 X5 X; Xg Yg X4Xg) Dsg.
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ﬁiﬂg

ocoo(©o

Figure 13

) [1;2;4;,6;:::;2i;:::;2n—2] (niseven,and 4 n g+ 2) are elements
of Gy: By (b) of Lemma 3.5,

Y "l
[1;2;4;6;8;:::;2n—=2] = ( Ci) [1,2;3:4;:::;n]
k=n—2 i=2k+1
In the same way as (2),
¥ Y "Nl ¥
[1,2;4,6;8;:::;2n—=2] = f( Ci Bn Ci) (Ck-1Ck-1)9
k=2 I=n—2i=2l+1 i=n
Y n**'-l_
( Ci Bn) (CnCn)
I=n—2i=2I+1
L' A S S
( Ci Ci) (Ck—1Ck-1)9
k=2 I=n—2i=2l+1 i=n
Y ™1 o
( Ci) (ChCh):
I=n+2i=2]+1
Q  Quii~ Q ~ S
B()\S Lemma 3.2, ( iy LT ¥,Ci ) (Cit Ckr ) and
(Ciepen 35 Ci) (Ch Cn ) are elements of Gy. By the same method
as in (2), but using
Y "wl Y Y Y "Wl
Ci Cj = (Cj—1 C2j—2C2j—1) Ci Ci,
I=n—2i=2I+1 j=k—2 j=k—2 I=n—2i=2I+1
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in place of,
Y "l Y Y Y el
Ci Cj = (Coj Cpj-1C2j) Ci;
I=n—1 i=2I i=k—2 i=k—2 I=n—1 i=2l
we c%sclude that, for our purpos&, itsu ces to show that Qllzn_z Q?=+2||111 Ci
1

Bn ~2,Ci) (CiCi)and (C1 “i—,_, f‘“.:lfb Bn ~2,Ci) écici) are

i=n
1

elements of Gy. Figure 14 illustrates v =~ _, 11 C; B, ~2_, Ci(c1)

Figure 14

and w = Cy(v). First we investigate the actions of elements of Gy on v. In
the following argument, we will refer the pictures in Figure 15 and Figure 18
by the number with (). By the action of To,DB, , v is changed to (0). Now,
we show (1) is Gg-equivalent to (6). (1) is altered to (2) by the action of Yg .
We make a sequence of X,;,,; X,_; 's act on this circle. In the middle of this
process, each X,;,, X,;_; acts locally as indicated in Figure 16. Hence, (2) is
Gg-equivalent to (3). By the action of X,,_, , (3) is deformed to (4). In the
middle of a sequential action of X,;, 5 X,;,1 'S, each X,;, 5 X444 acts locally
as shown in Figure 17. Hence, (4) and (5) are Gy-equivalent. As a result of
the action of X,,,_5 , (5) is altered to (6). The above argument shows that
(1) is G4-equivalent to (6). For (0), we apply the above process from (1) to (6)

repeatedly, then we get (7). The element X5 X; Yq alters (7) into (8). If 5 is

even, DBf_1 deforms (8) into (9). Since (9) is changed to (10) by the action
of X3, there exists an element h of Gy such that h (T, Ty) = X1 X;. If g is

n—2
odd, DB, * deforms (8) into (11). Since (11) is changed to (12) by the action
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Figure 17

. n .
2- L twists 1- = twists

" (©@8p0) v (@Doo )
o @oo ) 10 @ooo )
(1) oo ) 12 Co:ooo )

Figure 18

of Xlﬁ , there exists an element h of Gy such that h (T, Ty) = D3. Next,
we investigate the actions of Gy on w. The action of T, T, deforms w into
(1) of Figure 19. After the repeated application of the actions from (1) to (6)
of Figure 15, this circle is altered to (2) of Figure 19. By the same argument
for v, when g is even, there is a h of G4 such that h (TyTw) = D3, on the
other hand, when g is odd, there is a h of Gy such that h (T Tw) = X1 X;.

Therefore, [1,2;4;6;8;:::;2n — 2] is an element of Gg. O

We prove that any odd subchain map of (c1;C2;C3;::: ;Cog+1) OF (C ;Cs5;Cp; 550 ;
C2g) is @ product of elements listed on Lemma 3.6 and elements of G4. The
following lemma shows that any odd subchain map of (¢ ;Cs;Cs;::: ;Coq) is @
product of an odd subchain map of (cy;c2;C3;::: ;Cog+1) and elements of Gg.

Algebraic & Geometric Topology, Volume 2 (2002)



810 Susumu Hirose

M @Q. 000 .)

n .
3_5tw1sts
.' \
(2) ‘O ."\@oooo )
Figure 19

Lemma 3.7 D3Ty (¢ ) = c3 + Cq.

Proof Figure 20 proves this lemma. O

Figure 20

From here to the end of this subsection, odd subchain maps mean only those
of (C1;C2;C3;5::: ;Cog+1). The following lemma shows that any odd subchain
map, whose length is at least 5 and which begins from 1;2; 3; 4, is a product of
shorter odd subchain maps and elements of Gg.

Lemma 3.8
[12;3;4]11:2;3;5] 1 [L;2; 3, 4][1;2; 4,6, 7, ; 2n]
(C4B4sCys) [3;4;5;:::;2n] =[4;6;7;::::2n][1;2;3;4;::: ;2n]
Proof By (a) of Lemma 3.5, C4 [3;4;5;::::2n] = [3;4;5;::: ;2n], and by
(d) of Lemma 3.5,
[1,2;3;4][1;2;5;6;::: ;2n] (B4Cq) [3;4;5;:::;2n] =
=1[5;6;:::;2n][1;2;3;4;::: ;2n]:

By applying C4 to the above equation, we get the equation which we need. O
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For any odd subchain map [i1;iz;::: ;ir], we de ne a sequence [[ 1; 2;:::;
2g+2]] as follows: =1 if k is a member of fiq;iz;:::;irg, and , =0 if k is
not a member of fiy;ip;::: ;irg. For this sequence [[ 1; 2;:::; 2g+2]], We con-
struct the sequence [[ 1; 2;:::; 2g+2]] by the following rule: ( 2i—1; 2i) = (0;0)
if (2i—1; 2i) = (0;0), (2i-1; 2i) = (1;0) if (2i=1; 2i) = (0;1), ( 2i-1; 2i) =
;1) if ( 2i—1; 2i) = (1;0), ( 2i-1; 2i) = (1;1) if ( 2i—1; 2i) = (1,1). The odd
subchain map [j1;]J2;::: ;jr], which corresponds to the sequence [[ 1; 2;:::;
2g+2]], is called the reversion of [iq;ip;::: ;ir].

Lemma 3.9 (1) For any odd subchain map c, there is an element of Gg
which brings ¢ to its reversion.
(2) Whenk i—3, (Ci—1 Ci—2Ci—1) [:skiigiil=[Lski—2;g;5:00].

(3) Whenk i—2,(CiCi—1Ci) [:::kiii+ 1 1=[:1;ki—1i;:::].

Proof Lemma 3.5 shows (2) and (3). Since, T To =C; C3Cs  Cpg+1 and
Doi—1 = Ci—1Coi—1 (1 i g+ 1) are elements of Gy, C,; 'C;*! ng1+1
is an elements of Gy for any choice of 1's. Let [[ 1; 2;:::; 2g+2]] be the
0-1 sequence corresponding to [ig;ip;:::;ir]. Wedeney; (1 i g+1)
as follows: y; = +1 if ( 2i—1; 2i) = (0;0);(0;1), or (1;1), and y; = —1 if
(2i-1; 2i) = (1;0). Then (C{*C}? Cg’gfl) [i1;::: ;iy] is the reversion of
[ig; 0], D

By (2) of the above lemma, any odd subchain map is deformed to an odd

subchain map [iy;i2;::: ;i¢] such that i,y — iy 2 under the action of Gg4. If
there are at least two disjoint pairs of indices (ij; ij+1) in an odd subchain map
[i1;12;::: ;0] such that ij+1 = i+ 1, then, by (3) of the above lemma, this odd

subchain map is altered to the odd subchain map which begins from 1;2;3;4
under the action of Gy. Therefore, by Lemma 3.8, this odd subchain map is a
product of shorter odd subchain maps and elements of Gy. Hence, it su ces to
show that [1;3;5;7;9;:::1, [2;4;6;8;10;:::1, [1;2;3;5;7;:::1, [1;2;4;6;8;:::],
and [1;2;3;4] are elements of Gy. By (1) of Lemma 3.9, the second ones
are changed to the rst ones, and the third ones are changed to the fourth
ones by the action of Gyg. On the other hand, we have already shown that
[1;3;5;7,9;:::], [1,2,4,6;8;:::], and [1,;2;3;4] are elements of Gy in Lemma
3.6. Therefore, Lemma 3.3 is proved.

3.3 The level 2 prime congruence subgroup of Sp (29; %)

In this subsection, we assume g 3. Let , be the natural homomorphism
from My to Sp(29;Z,) de ned by the action of Mgy on the Z;-coe cient rst
homology group Hi( g;Z). In this section, we show the following lemma.
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Lemma 3.10 ker ; is a subgroup of Gy.

We denote the kernel of the natural homomorphism from Sp(2g; Z) to Sp(29; Z,)
by Sp®(2g). We set a basis of Hi( ¢;7Z) as in Figure 4, and de ne the inter-
section form (;) on Hi( ¢;Z) to satisfy (Xi;yj) = ij, Xi;Xj) = (Yi;yj) =0
@ 135 9). Anelement a of Hyi( 4;Z) is called primitive if there is no ele-
ment n(6& 0; 1) of Z, and no element b of Hy( ¢;Z) such that a =nb. For a
primitive element a of Hi( 4;Z), we de ne an isomorphism Ta: Hi( ¢;Z) ¥
Hi( ¢;Z) by Ta(v) = v + (a;v)a. This isomorphism is the same as the action
of Dehn twist about a simple closed curve representing a on Hy( g;Z). We call
T2 the square transvection about a. Johnson [8] showed the following result.

Lemma 3.11 Sp®(2g) is generated by square transvections.
Sp@(2g) is nitely generated. In fact, we show:

Lemma 3.12 Sp(ZIZ{ZQ) is generated by the square transvections about the
primitive elements ?:1( iXi + iyi), where ;=0;1and ;=0;1.

We de ne, for any primitive element a and b of Hi( 4;Z), two operation H
and B by
afib=a+2(a;b)bh; aBb=a—2(a;b)bh:

We remark that Tiy, = T, °T2TZ, Tiy, Sol2T4T, 2, and (aBb)Bb =
a = (@aBb)@b. We denote the element = _,(alx; + a?yi) of Hi( 4;7Z)
by [(a}; a2); (ad;ad);  ;(al;a2)], and call each (a};a?) as a block. For a pos-

itive integer k, a(@b)X is the result of the k-fold application of Bb on a, and
a(E@b) 7 is the result of the k-fold application of Eb on a.

Lemma 3.13 For any primitive element a of Hi( ¢;Z), by applying H[(0; 0);
:115(0;0);(1;0); (0;0);:::5(0;0)] or H[(0;0);:::;(0;0); (0;1); (0;0);::: 5 (0; 0)]
several times, each block of a is altered to (0;0), (p;0), (0;p), or (p;p).

Proof Let (m;n) be the i-th block of a. First we consider the case when
jmj > jnj & 0. There is an integer k such that jm — 2knj jnj. Let e; be the
element of Hy( ¢;Z), the i-th block of which is (1;0), and every other block
of which is (0;0). Since, [ ;(m;n); JHe =[ ;(M-—2n;n); ], and
[ :;(m;n); ]18e=[ :;(m+2n;n);, Jweget[ ;(m;n); ](Be)*=
[ ;(m—=2kn;n); ]. This means that, by repeated application of He;j, the i-
th block (m;n) is altered such that jmj  jnj. Next, we consider the case when
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0 & jmj < jnj. Let f; be the element of Hi( ¢;Z), the i-th block of which
is (0;1), and other blocks of which are (0;0). Since, [ ;(m;n); JBTf; =
[ s(mn+2m); Jand[ ;(min); JBEFfi=[ ;(mn-—2m); ] by
the same argument as the previous case, by repeated application of Hf;, the
i-th block is altered such that jmj  jnj. The above arguments show that, after
several application of He; or Hf;, the i-th block (m;n) of a is altered to be

jmj=jnj,or m =0, or n =0. If n = —m, the i-th block changed to (m;m)
by the application of EBf;. For each i-th block, we do the same operation as
above. Then, this lemma follows. D

For a primitive element of Hy( 4;Z), each of whose blocks is (p; 0), or (0;p), or
(p; p), (where p can be di erent from block to block) we apply several operations
H[:::;Ci; i);:::], where § =0;1 and ; =0;1. Then we obtain the following
equations, where means a sequence of (0;0), and means the part
which is not changed.

[ (;0);(;0); 180 5(1;0);(0;1); B[ ;(0,0);(0;1); ]
=[  :(P—29;0);(@;0); [,

[ (;0);(;0); 18] 5(1;0);(0;1); 180 (0;0);(0;1); ]
=[ :(p+29;0);(q;0); I

[ :(p;0); (q;0); 180 :(0;1);(1;0); 18[  ;(0;1);(0;0); ]
=L @0:@—2p:0; [

[ :(p;0); (q;0); 1B :(0;1);(1;0); 18[  ;(0;1);(0;0); ]
=L @0):@+2p:0); [

[ 50;p);(0;0); 1B[  ;(0;1);(1;0); 180 ;(0;0);(1;0); ]
=L Op—20);0;a); [

[ :(0;p);(0;q); 180 :(0;1);(1;0); B[ ;(0:0);(1,0); ]
=[  Op+29)(0a); [

[ :(0;p);(0;q); 180  (1;0);(0;1); 1801  ;(1,0);(0;0), ]
=L Op;@©ag—2p); [

[ 50;p);0;); 180 ;(1;0);(0;1); IB[  ;(1;0);(0;0); ]
=L @p;©@a+2p); I

[ (0);(0;a); 18B[  ;(1;0);(1;0); 180  ;(0;0); (1;0); ]
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=[  (—29;0);0:q); T

[ 5(:0);(0;0); IE[  :(30);(1;0); 18[  5(0;0);(1;0); ]
=0 (P+290;0:0q); [

[ 5(:0);(0;0); IE[  ;(0;1);(0;1); 18[  5(0;1);(0;0); ]
=l (m0);@©q—2p); [

[ (p:0);(0;0); I8 ;(0;1);(0;1); 18[  5(0;1);(0;0); ]
=L @0 Oa+2p); I

[ 0;p);(a;0); 180 ;(0;1);(0;1); B[ ;(0;0);(0;1); ]
=[ Op—20):(0:; [

[ (0;p);(a;0); 180  (0;1);(0;1); 180 :(0;0);(0;1); ]
=[  Op+29)(a;0); [

[ :(0;p);(q;0); 180 (1;0);(1;0); 180 (10);(0;0); ]
=L Op;@—2p;0); [

[ 50;p);(0); 180 ;(1;0);(1;0); B[ ;(10);(0;0); ]
=L @p;@+2p:0); I

[ :(0:p); (g;0); 180 :(0;1);(0;1); B[ ;(0;0);(0;1); ]
=[  ;0Op—29);(@a); [

[ :(0:p); (g;0); I8 5(0;1);(0;1); 1B 5(0;0);(0;1); ]
=[  ;Op+29);(@a); [

[ :(0:p); (g;0); I8[ 5(10);(1;1); 18 5(10);(0;0); ]
=[ ;0Op;@—2p0—2p);

[ 5p);(a); 180 @&o;@LY;, 18 (@000, ]
=[  ;0Op;@+2p;9+2p); ]

[ :(p;p); (0;0); 1B 5(1;1);(L1;0); 180 5(0;0); (1;0); ]
=[ (p—20;p—29);(0;0); l;

[ :(p;p); (0;0); 1B (1;1);(L1;0); 18[  5(0;0); (1;0); ]
=[ (p+20;p+29);(0;0); l;

[ sEp):(0a); 18[  :(0:;1);(0;1);  JH[ :(0;1);(0;0); ]
=[  @Ep);©@aq—2p); I
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[ :(p;p); (0; 0); 18
=

[ (0@ a); 181

;(0;1); (0; 1); 18
; (p; p); (0; 0 + 2p); I;

;(1,0);(0; 1), 18]

=[  (P—29;0);(@;q); I

[ (0);(g;0); 1B ;(10);(0;1); 181
=[  (P+29,0);(a0); L

[ (0);(q;0); 180 5(0;1);(1;1); 18[
=[ @E0);@—2pa—2p); I

[ 5m0);(wa); 18 501);%1); 18]
=0 @E0:@+2pa+2p);

[ (:p);(4;0); 181

1 (1;1); (0; 1); 18

=[  ;(—20p—20);(q;0); I;

[ Ep);@@0);  18[  (151);(0;1); 181
=[  ;(+20p+20);0;0); I

[ sEp;(@0);  18[  :(0:1);(10);  [8][
=[ ;(:p);@—2p;0); l;

[ :(p;p);(0;0); B[ ;(0;1);(1;0); 181
=[ ;(:p;(@+2p;0); l;

[ (sp);(a;a); 181

;(1,1);(0; 1), 18]

=[  (—20p—29);(;0); l;

[ esp)(aa); 18 (11);(0:1); 181
=[  s(+20p+2);(@9); l;

[ s(e)@@a; 180 5(0:1);(1); 18]
=[ mEp;@—2p0—2p); [

[ s(e)@@a;  TEH[  5(0:1):(1); 181
=[  ;@Ep;@+2p;g+2p); [

Therefore, by the same argument as the proof of Lemma 3.13, we obtain:

;(0;1); (0;0);

;(0;0); (0; 1),

;(0;0);(0; 1),

;(0;1);(0;0);

;(0;1); (0;0);

;(0;0); (0;1);

;(0;0); (0;1);

;(0;1); (0;0);

;(0;1);(0;0),

;(0;0); (0;1);

;(0;0); (0;1);

;(0;1); (0;0);

;(0;1); (0;0);

815

Lemma 3.14 For any primitive element a of Hi( 4;Z), by applying
7(gs g)] (where § = 0;1, and ; = 0;1) several times, a is

BI( 15 1)
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deformed to H[( 1; 1); (g g)] (Where ; = 0;1, and ; = 0;1) or [
(=10 1. D

Since T2,(v) = v + 2(—a;V)(—V) = v + 2(a;v)v = T2(v), we do not need to

consider the elements [  (—1;0); ]. Hence, Lemma 3.12 follows.
o Ke)
Q) ) %) @) 3) +)
Figure 21
For each element [( 1; 1); ;(gr g)l (wWhere §=0;1, §=0;1)of Hi( ¢;%),

we construct an oriented simple close curve on ¢ which represent this homol-
ogy class. For each i-th block, if ( i; i) = (0;0), we prepare (0) of Figure 21,
if (i; i) = (0;1), we prepare (1) of Figure 21, if (; i) = (1;1), we prepare
(2) of Figure 21, if (i; i) = (1;0), we prepare (3) of Figure 21. After that, we
glue them along the boundaries and cap the left boundary component by (-) of
Figure 21 and the right boundary component by (+) of Figure 21. We denote
this oriented simple closed curve on ¢4 by f( 1; 1);  ;(g; ¢)9. Here, we re-
mark that the action of Tg( ;. 1) :(4: g9 ON Hi( g;Z) equals Ty ;1) (41 1
and, forany of Mg,  Tr(piay (s 0 = T (f(1i1) (i 0

Lemma 3.15 Forany f( 1; 1); (g ¢)g, thereisanelement of Gy such
that

(FC1; 1) (g 9)9) =T(0;1);(0;0);(0;0);  ;(0;0)g
or =1(1;1);(0;0);(0;0); ;(0;0)g
or =1(0;0);(1;1);(0;0); ;(0;0)g:

Proof If the i-th block is (3), by the action of Y; , this block is changed to
(1). Therefore, it su ces to show this lemma in the case when each block is not
(3). First we investigate actions of elements of Gy on adjacent blocks, say the
i-th block and the i + 1-st block. Each picture of Figure 22 shows the action
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o (lerel) < (o of) = (oo
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I

ﬁg2i+2

X5 X

‘ool ef)-(feel-( ool

(lee)-(le"o (oo

Figure 22

of Gg on this adjacent blocks.

DB,

(a) shows £ :(0;0);(0;1); g o, f o 5(0:1);(0;0);
(b) shows £ ;(0;0); (1;1); g o f (L) (0; 1):
(©) shows ¥ (L) (LD g T 50100
(@) shows ¥ (O:1; (1) g T (0100
@ shows £ (O LiLY; g F (WD)
For an oriented simple closed curve x = f( 1; 1); (g5 ¢)9, each of

g
g:

whose

block is (0;0) or (0;1) or (1;1), let the right most non-(0; 0) block be the j-th
block. By the induction on j, we show that x is G4-equivalent to £(0; 1); (0; 0);
(0;0);  ;(0;0)g or (1;1); (0;0); (0; 0);

;(0;0)g or T(0;0); (1;1); (0;0);
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(0;0)g. If J = 1, itis trivial.

When the j-th block is (0;1). If each block between the rst block and the (j —
1)-st block is (0;0), then, by repeated application of (a), x is Gg-equivalent to
T(0;1); (0;0);  ;(0;0)g. If there is a block between the rst block and the (j —
1)-st block which is not (0;0), by the induction hypothesis, the sequence from

the rst block to the (j —1)-st block is Gg-equivalent to (0; 1); (0; 0); (0; 0);

(0;0) or (1;1);(0;0);(0;0);
rst case,

;(0;0) or (0;0);(1;1);(0;0),

;(0;0). In the

X 1(0;1);(0;0);(0;0);  ;(0;0);(0;1);  ;(0;0)g( by the hypothesis )
o £(0;1);(0;1); (0;0);  ;(0;0);(0;0);  ;(0;0)g( by (a) )
o £(0;1);(0;0); (0;0);  ;(0;0); (0;0); 5 (0;0)g( by (d) ):
In the second case,
X 1(1;1);(0;0);(0;0);  ;(0;0);(0;1);  ;(0;0)g9( by the hypothesis )
o f(1;1);(0;1); (0;0);  5(0;0);(0;0);  5(0;0)g( by (a) )
o £(0;0);(1;1);(0;0);  ;(0;0); (0;0); 5 (0;0)9( by (b) ):
In the third case,
X, £(0;0);(1;1);(0;0);  ;(0;0);(0;1);  ;(0;0)g( by the hypothesis )
o £(0;0);(1;1); (0;1);  ;(0;0);(0;0);  ;(0;0)g( by (a) )
. £(1;1);(0;1);(0;1);  ;(0;0);(0;0);  ;(0;0)g( by (b))
. £(1;1);(0;1);(0;0);  ;(0;0);(0;0);  ;(0;0)g( by (d) )
;(0;0);(0;0); 5 (0;0)g( by (b) ):

. £(0;0); (1;1); (0;0);

When the j-th block is (1;1). If every block between the rst block and (j —1)-
st block is (0;0), then,

X o f(1,1):(0;1);(0;1)  ;(0;1);  ;(0;0)g( by (b))
o f(1;1);(0;1);(0;0);  ;(0;0);  ;(0;0)g( by (d) )
;(0;0);  5(0;0)g( by (b))

. £(0;0); (1;1); (0; 0);
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If there is a block between the

to the (J — 1)-st block is Gg-equivalent to (0;1);(0;0); (0;0);
;(0;0) or (0;0); (1;1); (0;0);

;(0;0);(1;1);

(1;1); (0; 0); (0; 0);
X o £(0; 1); (0; 0); (0; 0); (0; 0);

o 1(0;1); (1;1);(0;1); (0; 1);
o (0;1); (1;1); (0;1); (0; 0);
o (1;1); (0;0); (0;1); (0; 0);
o (1;1); (0;1); (0;0); (0; 0);
o (0;0); (1;1); (0;0); (0; 0);

In the second case,
X o (1, 1); (0;0); (0;0); (0, 0);
g

o (1;1);(1;1);(0;1); (0; 1);
o (1;1);(1;1);(0;1); (0; 0);
o (0;1); (0;0); (05 1); (0; 0);
o (0; 1); (0;1); (0;0); (0; 0);
o (0; 1); (0;0); (0;0); (0; 0);

In the third case,
X o T(0;0); (1;1); (0; 0); (0; 0);
g

o 1(0;0); (1;1);(1;1); (0; 1);
o (0;0); (0; 1); (0; 0); (0; 1);
o (0;0); (0; 1); (0; 0); (0; 1);
o (0; 1); (0;1); (0;0); (0; 0);
o (0; 1); (0;0); (0;0); (0; 0);

rst block and the (J — 1)-st block which
is not (0;0), by the induction hypothesis, the sequence from the rst block

;(0;1); (0; 1);
; (0;0); (0;0);
; (0;0); (0;0);
; (0;0); (0;0);
; (0;0); (0; 0);

1 (0;0); (1;1);
;(0;1); (0; 1);
; (0;0); (0;0);
; (0;0); (0; 0);
; (0;0); (0; 0);
; (0;0); (0; 0);

;(0;0); (1;1);
;(0;1); (0; 1);
;(0;1); (0; 1);
; (0;0); (0;0);
; (0;0); (0; 0);
; (0;0); (0; 0);
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;(0;0) or
;(0;0). In the rst case,

; (0;0)g( by the hypothesis )
;(0;0)9( by (b))
;(0;0)g( by (d) )
:(0;0)g( by (e) )
;(0;0)g( by (a) )
;(0;0)g( by (b) ):

; (0;0)g( by the hypothesis )
; (0;0)g( by (b))

; (0;0)g( by (d) )

; (0;0)g( by (c) )

; (0;0)g( by () )

; (0;0)g( by (d) ):

; (0;0)g( by the hypothesis )
; (0;0)9( by (b))

;(0;0)9( by (¢) )

; (0;0)9( by (d) )

1 (0;0)g( by (a) )

1 (0;0)g( by (d) ):
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2 — 2 — 2
By the fact that Tf(0;1);(0;0): (009 T D2, Tf(l;l);(O;O); (009 (X)),

Thooy@y: ©og = (Y2)?, and Lemma 3.3, Lemma 3.10 is proved.

3.4 The modulo 2 orthogonal group

In this subsection, we assume ¢ 3. As in the previous subsection, let

2. Mg ¥ Sp(29;Z) be the natural homomorphism. Let q: Hi( ¢;Z2) ¥ Z»
be the quadratic form associated with the intersection form (;). of Hi( g;Z2)
which satis es q(Xj) = q(yi) = 0 for the basis Xxj;y;i of Hi( ¢;Z>) indi-
cated on Figure 4. We de ne O(29;Z2) = T 2 Aut(Hi( ¢;Z2))ja( (X)) =
q(x) for any x 2 Hy( ¢;Z2)g, then SPy = 2_1(0(29; Z5)). Because of Lemma
3.10, if we show »(Gq) = O(29;Z,), then Gy = SP follows. For any z 2
H1( g¢;Z>) such that q(z) =1, we de ne T,(X) =X+ (z;X)2 z. Then T; is an
element of O(2g;Z,), and we call this a Z,-transvection about z. Dieudonne
[2] showed the following theorem.

Theorem 3.16 [2, Proposition 14 on p.42] When g 3, O(29;7Z>) is gener-
ated by Z,-transvections.

Let 4 be the set of z of Hi( ¢;Z2) such that q(z) = 1. For any elements
zy and zp of 4, we de ne z;00z, = 73 + (22;21)2 z». Here, we remark that
T2, = id, T, T, Ty, = Tz, and z:0z,0z, = z;. We denote an element
X1+ 1y1+  + gXg+ gYg of Hi( ¢;Z2) by [( 15 1);  ;(gqi )], and call
each ( j; j) the i-th block. 4 is a set nitely generated by the operation [J.
In fact, we have:

Lemma 3.17 Under the operation [0, 4 isgenerated by Xj+y; (1 i 0),
Xi+Yi+Xiv1 (1 1 g—1),and Xj +Xj+1 +Yyiva (1 1 g—1).

Proof For anelement [( 1; 1); (g g)] of Hi( g¢;Z>), let the j-th block
be the right most block which is (1;1). When j 3, there exist 4 cases of the
combination of the (j — 1)-st block and the j-th block: [ ;(1;1);(L;1); 1,
[ @051 L[ O, 1, [ @0);(E1); 1. Ineach
case, we can reduce j at least 1. In fact,

[ @GD@GY 10—+ x+y) =0 5(0:1):(0:0);  [;

[ 5O0: @1 P& +yj—1+x)=[ (@101, [

[ @@ 0+ +y) =0 ((11):0:0: T

[ 5@0)@1);  JOXj—1+Yj-D)BUXj—1+X+y)) = ;(11);(0;0); [
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When j =2, since q([( 1; 1); ;(g; g)D)=1, there are 3 cases of combination
of the rst block and the second block: [(0;0);(1;1); 1, [(1;0);(1;1); ], or
[(0;1);(2;1); 1. Ineach case, j can be reduced to 1. In fact,

[(0:0);(L; 1) JO(x1 +y1+x2) =[(1;1):(0;1); [
[(10);(1;0); ]0Ga +y)Dxa +xz +y2) = [(1,1); (0:0); ]y
[(0;1);(1;1); 18 +x2+y2) =[(1;1);(0;0);  I:
When j =1, if every i-th (i  2) block is (0;0), then it is x; +y;. If there
exist at least one of the i-th (i 2) blocks which are (1;0) or (0; 1), then,

[ @00 0 +xi+y) =[O T
[ @O0 IOt +Yic+x)=[ (OO
[ @O D0 +xi+y) =1 @LONEo);

[ ;(0;1);(0;i0); O&i—1+yi-i+xi) = (50 (L0); ]

Therefore, we can alter this to an element, each i-th (i 2) block of which is
(1;0) or (0;1). If the i-th block of this is (0;1), then

[ (01, 1Oxi+y)=[ @0, I

Therefore, it su ces to consider the case when the rst block is (1;1) and other
blocks are (1;0). In this case,

[ 5(10);(1;0)]0(Xg—1 + Yg—1 + Xg)U(Xg—1 + Yg—1) =[ ;(1;0);(0; 0)[:

By applying the same operation repeatedly, we get [(1;1); (1;0); ] as a
result. O

This lemma and Theorem 3.16 show:

Corollary 3.18 0(29;Z>) is generated by Tx;+y; (1 1 0), Tx+yi+xiza
(1 i g-— 1), and Txi+xi+1+yi+1 (1 i g-— 1)- o

Since Gy is a subgroup of SPgy, 2(Gg) O(29;Z2). On the other hand, the
fact that 2(X2i) = Txj+yi+xiaa (1 1 9—=1),  2(Xaiv1) = Txiaxias+yins
1 0 g=1), 2X1) = Tugwys 2(Y2j) = Tgeyy; (20§ 9 — 1),

2(Xzg) = Txg+y,, and Corollary 3.18, show (Gg)  O(29;Z;). Therefore
we proved that, if g 3, then SPy = Gq.
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3.5 Genus 2 case: Reidemeister-Schreier method
Birman and Hilden showed the following Theorem.

Theorem 3.19 [1] M is generated by Ci;C,;C3;C4;Cs and its de ning
relations are:

1) GC; =CiCy, ifji—j) 2,1, =1,2;3,4,5,
(@) CiCi+1Ci = Ci+1CiCis1, 1 = 1;2;3; 4,

(3) (C1C2C3C4Cs)® =1,

(4) (C1C2C3C4C5C5C4C3C2Cr)% = 1,

(5) C1C,C3C4C5C5C4C3CLCL =Gy, 1=1;2;3;4;5,

where 2 means "‘commute with".

We call (1) (2) of the above relations braid relations. We will use the well-known
method, called the Reidemeister{Schreier method [9, x2.3], to show SP, G.
We review (a part of) this method.

Let G be a group generated by nite elements g;;::: ;gm and H be a nite
index subgroup of G. For two elements a, b of G, we write a b mod H
if there is an element h of H such that a = hb. A nite subset S of G
is called a coset representative system for G mod H, if, for each elements g
of G, there is only one element § 2 S such that ¢ @ mod H. The set
fsgis:gi_lj i=1;:::;m; s2 Sg generates H.

For the sake of giving a coset representative system for M, modulo SP,, we
will draw a graph I which represents the action of M, on the quadratic forms
of Hi( 2;7Z,) with Arfinvariants 0. Let [ 1; 2; 3; 4] denote the quadratic form
o' of Hi( 2;Z2) such that ¢'(x1) = 1, ¢'(y1) = 2, ¢'(x2) = 3, ¢'(y2) = a.
Each vertex of I corresponds to a quadratic form. For each generator C; of
M., we denote its action on Hi( »;Z,) by (Ci) . For the quadratic form ¢’
indicated by the symbol [ 1; 2; 3; 4], let 1 = q'((Ci) X1), 2 = q'((Ci) y1),
3 = q%((Ci) x2), and 4 = q°((Ci) y2). Then, we connect two vertices, cor-
responding to [ 1; 2; 3; al, [ 1; 2; 3; 4] respectively, by the edge with the
letter Cj. We remark that this action is a right action. For simplicity, we
omit the edge whose ends are the same vertex. As a result, we get a graph
" as in Figure 23. (Remark: The same graph was in [4, Proof of Lemma
3.1]. ) In Figure 23, the bold edges form a maximal tree T of I'. The
words S = fl; Cp; Cy; Cgz; Cy4; Cs; C1C4; CoC4; CoCs; CoC4Czg, which
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[0717170] [1707071]

[1707170]

Cs
[1,1,1,1]

Figure 23

correspond to the edge paths beginning from [0;0;0;0] on T, de ne a coset
representative system for M, modulo SP,. For each element g of M5, we
can give a § 2 S with using this graph. For example, say g = C,C4C5C»,
we follow an edge path assigned to this word which begins from [0;0;0; 0],
(note that we read words from left to right) then we arrive at the vertex
[0;0;1;0]. The edge path on T which begins from [0;0;0;0] and ends at
[0;0;1;0] is C4. Hence, C,C4CsC, = C4. We list in Table 1 the set of gener-
ators fsC;sC; 1j 1=1;:::,5 s28Sg of SPy. In Table 1, vertical direction
is a coset representative system S, horizontal direction is a set of generators
fCq; Cy; Cs; Cs; Csg. We can check this table by Figure 23 and braid rela-
tions. For example,

:_1 —
C2C4C3 C1CyC4C3 C; = CpC4C3C1(C2C4sC3) 7t
= C,C4C3C1C5 1 C 1t = CoCiCo 1t = Xy

This table shows that SP, G, .
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Table 1: Generators of SP»

Ci C Cs Cs GCs
1 1 1 1 1 1
Cy D X TD;?! 1 TD;?
Cz X1 D X, 1 1
Cs |TDst X D3 X; TD;?
Cy 1 1 X3 Ds X,
Cs TD;! 1 TD ! X, Ds
C1C4 D: X e Ds X,
CCs | X1 Dy 1 Ds X,
CCs | X1 D X, Xs Ds
CoCsCs | X1 Xz (X)) IDsX, X, X,
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