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Abstract In a recent paper, Dimca and N�emethi pose the problem of
�nding a homogeneous polynomial f such that the homology of the com-
plement of the hypersurface de�ned by f is torsion-free, but the homology
of the Milnor �ber of f has torsion. We prove that this is indeed possible,
and show by construction that, for each prime p , there is a polynomial with
p-torsion in the homology of the Milnor �ber. The techniques make use of
properties of characteristic varieties of hyperplane arrangements.
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1 Introduction

Let f : (C‘+1;0) ! (C; 0) be a homogeneous polynomial. Denote by M =
C‘+1 n f−1(0) the complement of the hypersurface de�ned by the vanishing of
f , and let F = f−1(1) be the Milnor �ber of the bundle map f : M ! C� . In
[10, Question 3.10], Dimca and N�emethi ask the following.

Question Suppose the integral homology of M is torsion-free. Is then the
integral homology of F also torsion-free?

The Milnor �ber F has the homotopy type of a �nite, ‘-dimensional CW-
complex. If f has an isolated singularity at 0 (for example, if ‘ = 1), then F
is homotopic to a bouquet of ‘-spheres, and so H�(F ;Z) is torsion-free. The
purpose of this paper is to prove the following result, which provides a negative
answer to the above question, as soon as ‘ > 1.

Theorem 1 Let p be a prime number, and let ‘ be an integer greater than 1.
Then there is a homogeneous polynomial fp;‘ : C‘+1 ! C for which H�(M ;Z)
is torsion-free, but H1(F ;Z) has p-torsion.
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512 Cohen, Denham and Suciu

Let x1; : : : ; x‘+1 be coordinates for C‘+1 . The theorem is proven by �nding
criteria for the construction of such polynomials, then by explicitly exhibiting a
family of 3-variable polynomials fp = fp(x1; x2; x3) with the desired properties,
for all primes p:

fp =

(
x1x2(xp1 − x

p
2)2(xp1 − x

p
3)(xp2 − x

p
3); if p is odd,

x2
1x2(x2

1 − x2
2)3(x2

1 − x2
3)2(x2

2 − x2
3); if p = 2.

(1)

It then su�ces to take fp;‘(x1; : : : ; x‘+1) = fp(x1; x2; x3).

The above polynomials are all products of powers of linear factors, and so
de�ne multi-arrangements of hyperplanes. See [16] as a general reference on
arrangements. For each prime p, the underlying arrangement Ap is a deletion
of the arrangement associated to the complex reflection group G(3; 1; p), and
has de�ning polynomial Q(Ap) = x1x2(xp1 − xp2)(xp1 − xp3)(xp2 − xp3). As is
well known, for any hyperplane (multi)-arrangement, the homology groups of
the complement are �nitely-generated and torsion-free. Thus, Theorem 1 is a
consequence of the following result, which identi�es more precisely the torsion
in the homology of the Milnor �ber of the corresponding multi-arrangement.

Theorem 2 Let Fp = f−1
p (1) be the Milnor �ber of the polynomial de�ned

in (1). Then:

H1(Fp;Z) =

(
Z3p+1 � Zp � T; if p is odd,

Z3p+1 � Z2 � Z2; if p = 2,

where T is a �nite abelian group satisfying T ⊗ Zq = 0 for every prime q such
that q - 2(2p + 1).

The p-torsion in H1(Fp;Z) is the smallest it can be (without being trivial).
Indeed, if H�(M ;Z) is torsion-free, then an application of the Wang sequence
for the Milnor �bration F ! M ! C� shows that if the 2-torsion summand
of H1(F ;Z) is non-trivial, then it must contain a repeated factor (compare [10,
Prop. 3.11]).

The complement M of a (central) arrangement of n hyperplanes admits a
minimal cell decomposition, that is, a cell decomposition for which the number
of k -cells equals the k -th Betti number, for each k � 0, see [18], [11]. On
the other hand, it is not known whether the Milnor �ber of a reduced de�ning
polynomial for the arrangement admits a minimal cell decomposition. As noted
in [18], this Milnor �ber does admit a cell decomposition with n � bk(U) cells
of dimension k , where U is the complement of the projectivized arrangement.
Our results show that there exist multi-arrangements for which the Milnor �ber
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F admits no minimal cell decomposition. Indeed, by the Morse inequalities,
the existence of such a cell decomposition would rule out torsion in H�(F ;Z).

This paper is organized as follows. Relevant results concerning �nite abelian
covers, characteristic varieties, and Milnor �brations of multi-arrangements are
reviewed in Sections 2 and 3. Criteria which insure that the homology of the
Milnor �ber of a multi-arrangement has torsion are established in Section 4.
Multi-arrangements arising from deletions of monomial arrangements are stud-
ied in Sections 5 and 6. The proof of Theorem 2 is completed in Section 7.
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2 Finite abelian covers and cohomology jumping loci

We start by reviewing some basic facts about �nite abelian covers, and how to
derive information about their homology from the strati�cation of the character
torus of the fundamental group by cohomology jumping loci. A more detailed
treatment in the case of line arrangements may be found in the survey [20].

2.1 Homology of �nite abelian covers

Let (X;x0) be a based, connected space with the homotopy type of a �nite CW-
complex, and let G = �1(X;x0) be its fundamental group. Let Y be a �nite,
regular, abelian cover of X , with deck transformation group A. Finally, let K
be a �eld, with multiplicative group of units K� , and let bG = Hom(G;K�) be
the group of K-valued characters of G.

We shall assume that K is algebraically closed, and that the characteristic of
K does not divide the order of A. With these assumptions, �nitely-generated
K[A]-modules are semisimple. Since A is abelian, irreducible representations
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are one-dimensional, given by characters � : A! K� . By composing with the
map G� A, we obtain one-dimensional G-modules denoted K� .

The lemma below is not new, and its proof can be found in various special
cases. See [12], [19], [14] in the context of 2-complexes; [5] in the context of
cyclic covers of complements of arrangements; and [2] in an algebraic setting.
For completeness, we will sketch a proof of the version needed here.

Lemma 2.2 Let p : Y ! X be a �nite, regular, abelian cover with group
of deck transformations A, and let K be an algebraically closed �eld, with
charK - jAj. Then

H�(Y ;K) �=
M
�2Â

H�(X;K�); (2)

where K� denotes the rank one local system given by lifting a character � 2bA = Hom(A;K�) to a representation of G = �1(X;x0). Furthermore, the direct
summand indexed by a character � is the corresponding isotypic component of
H�(Y ;K) as a K[A]-module.

Proof The Leray spectral sequence of the cover p : Y ! X degenerates to
give an isomorphism

H�(Y ;K) �= H�(X;K[A]);

where the action of G on K[A] is induced by left-multiplication of G on A =
�1(X)=p�(�1(Y )). That is, H�(Y ;K) is the homology of C�(Y ) ⊗K[G] K[A], a
chain complex of A-modules under the right action of A. By our assumptions on
K, all K[A]-modules are semisimple, so the group algebra of A is isomorphic,
as an A-module, to a direct sum of (one-dimensional) irreducibles: K[A] �=L

�2ÂK� . This decomposition into isotypic components commutes with ⊗K[G]

and homology, yielding (2).

2.3 Characteristic varieties

Assume that H1(X;Z) = Gab is torsion-free and non-zero, and �x an isomor-
phism � : Gab ! Zn , where n = b1(X). Let K be an algebraically closed �eld.
The isomorphism � identi�es the character variety bG = Hom(G;K�) with the
algebraic torus T(K) = (K�)n .

The cohomology jumping loci, or characteristic varieties, of X are the subva-
rieties �q

d(X;K) of the character torus de�ned by

�q
d(X;K) = ft = (t1; : : : ; tn) 2 (K�)n j dimKH

q(X;Kt) � dg; (3)
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where Kt denotes the rank one local system given by the composite G
ab−!

Gab �−! Zn t−! K� , and the last homomorphism sends the j -th basis element to
tj . For �xed q > 0, these loci determine a (�nite) strati�cation

(K�)n � �q
1(X;K) � �q

2(X;K) � � � � � ;:
De�ne the depth of a character t : G! K� relative to this strati�cation by

depthqX;K(t) = maxfd j t 2 �q
d(X;K)g:

The varieties �1
d(G;K), the jumping loci for 1-dimensional cohomology of the

Eilenberg-MacLane space K(G; 1), are particularly accessible. Indeed, these
varieties are the determinantal varieties of the Alexander matrix associated to
a (�nite) presentation of G, see for instance [14, Rem. 5.2].

Now assume that H2(X;Z) is also torsion-free, and that the Hurewicz homo-
morphism h : �2(X) ! H2(X) is the zero map. Then H2(X) = H2(G), and
this readily implies �1

d(X;K) = �1
d(G;K). Thus, we may compute depthK(t) :=

depth1
X;K(t) directly from the Alexander matrix of G.

2.4 Finite cyclic covers

Consider the case where A = ZN is a cyclic group of order N . Assume the
characteristic of the �eld K does not divide N , so that the homomorphism
� : ZN ! K� which sends a generator of ZN to a primitive N -th root of unity
in K is an injection. For a homomorphism � : G! ZN , and an integer j > 0,
de�ne a character �j : G! K� by �j(g) = �(�(g))j .

Let X be a �nite CW-complex, with H1(X) and H2(X) torsion-free, and such
that the Hurewicz map h : �2(X)! H2(X) is trivial. In view of the preceding
discussion, Theorem 6.1 in [14] applies as follows.

Corollary 2.5 Let p : Y ! X be a regular, N -fold cyclic cover, with clas-
sifying map � : �1(X)�ZN . Let K be an algebraically closed �eld, with
charK - N . Then

dimKH1(Y ;K) = b1(X) +
X

16=kjN
’(k) depthK

(
�N=k

�
;

where ’ is the Euler totient function.

This result was �rst used in [14] to detect 2-torsion in the homology of certain
3-fold covers of the complement of the deleted B3 arrangement (see x7.3 below).
We will apply this result to Milnor �brations in what follows.
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3 Homology of the Milnor �ber of a multi-arrange-
ment

In this section, we review some facts concerning the Milnor �bration of a com-
plex (multi)-arrangement of hyperplanes, following [5] and [9].

3.1 Hyperplane arrangements

Let A be a central arrangement of hyperplanes in C‘+1 . The union of the
hyperplanes in A is the zero locus of a polynomial

f = Q(A) =
Y
H2A

�H ;

where each factor �H is a linear form with kernel H . Let C� ! C‘+1 n f0g !
CP‘ be the Hopf bundle, with �ber C� = C n f0g. The projection map of this
(principal) bundle takes the complement of the arrangement, M = M(A) =
C‘+1 n f−1(0), to the complement U of the projectivization of A in CP‘ . The
bundle splits over U , and so M = U � C� .
It is well known that U is homotopy equivalent to a �nite CW-complex (of
dimension at most ‘), and that H�(U ;Z) is torsion-free. Furthermore, for each
k � 2, the Hurewicz homomorphism h : �k(U) ! Hk(U) is the zero map, see
[17]. Thus, the assumptions from x2.4 hold for X = U .

The fundamental group �1(M) is generated by meridian loops (positively ori-
ented linking circles) about the hyperplanes of A. The homology classes of these
loops freely generate H1(M) = Zn , where n = deg(f) = jAj. We shall abuse
notation and denote both a meridian loop about hyperplane H 2 A, and its im-
age in �1(U) by the same symbol, γH . Note that these meridians may be chosen
so that

Q
H2A γH is null-homotopic in U . In fact, �1(U) �= �1(M)=h

Q
H2A γHi,

and so H1(U) = �1(U)ab = Zn−1 .

3.2 The Milnor �bration

As shown by Milnor, the restriction of f : C‘+1 ! C to M de�nes a smooth
�bration f : M ! C� , with �ber F = f−1(1) and monodromy h : F ! F
given by multiplication by a primitive n-th root of unity in C.

The restriction of the Hopf map to the Milnor �ber gives rise to an n-fold cyclic
covering F ! U . This covering is classi�ed by the epimorphism � : �1(U)�Zn
that sends all meridians γH to the same generator of Zn . See [5] for details.
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Now �x an ordering A = fH1;H2; : : : ;Hng on the set of hyperplanes. Let
a = (a1; a2; : : : ; an) be an n-tuple of positive integers with greatest common
divisor equal to 1. We call such an n-tuple a choice of multiplicities for A.
The (unreduced) polynomial

fa =
nY
i=1

�aiHi

de�nes a multi-arrangement Aa =
�
H

(1)
1 ; : : : ;H

(a1)
1 ; : : : ;H

(1)
n ; : : : ;H

(an)
n

}
. Note

that Aa has the same complement M , and projective complement U , as A,
for any choice of multiplicities. Let fa : M ! C� be the corresponding Milnor
�bration. As we shall see, the �ber Fa = f−1

a (1) does depend signi�cantly on
a.

3.3 Homology of the Milnor �ber

Let N =
Pn

i=1 ai be the degree of fa , and let ZN = hg j gN = 1i be the
cyclic group of order N , with �xed generator g . As in the reduced case above,
the restriction of the Hopf map to Fa gives rise to an N -fold cyclic covering
Fa ! U , classi�ed by the homomorphism �a : �1(U)�ZN which sends the
meridian γi about Hi to gai .

For any �eld K, let � : (K�)n ! K� be the map which sends an n-tuple
of elements to their product. Since the meridians γi may be chosen so thatQn
i=1 γi = 1, if s 2 (K�)n satis�es �(s) = 1, then s gives rise to a rank one

local system on U , compare x2.3. We abuse notation and denote this local
system by Ks .

Suppose that K is algebraically closed, and charK does not divide N . Then
there is a primitive N -th root of unity � 2 K. Let t 2 (K�)n be the character
with ti = �ai , for 1 � i � n. Note that �(t) = 1. Let ha : Fa ! Fa

be the geometric monodromy of the Milnor �bration fa : M ! C� , given by
multiplying coordinates in C‘+1 by a primitive N -th root of unity in C. The
action of the algebraic monodromy (ha)� : H�(Fa;K) ! H�(Fa;K) coincides
with that of the deck transformations of the covering Fa ! U . Lemma 2.2
yields the following.

Lemma 3.4 With notation as above, we have

H�(Fa;K) =
N−1M
k=0

H�(U ;Ktk):

Furthermore, the k -th summand is an eigenspace for (ha)� with eigenvalue �k .
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The next lemma appeared in [9] in the complex case. For convenience, we
reproduce the proof in general.

Lemma 3.5 Let K be an algebraically closed �eld, and let s 2 (K�)n be an el-
ement of �nite order, with �(s) = 1. Then there exists a choice of multiplicities
a for A so that Hq(U ;Ks) is a monodromy eigenspace of Hq(Fa;K).

Proof Let � 2 K be a primitive k -th root of unity, where k is the order of s.
Then, for each 2 � i � n, there is an integer 1 � ai � k such that si = �ai .
By choosing either 1 � a1 � k or k + 1 � a1 � 2k suitably, we can arrange
that the sum N =

Pn
i=1 ai is not divisible by p = charK, if p > 0. Since s

and � both have order k , we have gcd fa1; : : : ; ang = 1. Since the product of
the coordinates of s is 1, the integer k divides N .

By insuring p - N , there is an element � 2 K for which �N=k = � . By construc-
tion, a = (a1; : : : ; an) is a choice of multiplicities for which s = tN=k in the de-
composition of Lemma 3.4, so Hq(U ;Ks) is a direct summand of Hq(Fa;K).

Remark 3.6 The choice of multiplicities a in Lemma 3.5 is not unique. As
above, write si = �ai for integers ai , where � is a k -th root of unity and
1 � ai � k . Let a = (a1; : : : ; an). Then Hq(U ;Ks) is also a monodromy
eigenspace of Fb if b = a + �, for all � 2 (kZ)n for which satisfy bi > 0 for
each i and, if p > 0, p -

Pn
i=1 bi .

4 Translated tori and torsion in homology

4.1 Characteristic varieties of arrangements

Let A = fH1; : : : ;Hng be a central arrangement in C‘+1 . Let M denote
its complement, and U the complement of its projectivization. Then the
restriction of the Hopf �bration C� ! M ! U induces an isomorphism
�1(U) �= �1(M)= h

Qn
i=1 γii, as in the previous section. For this reason, al-

though the rank of �1(U)ab is n−1, we shall regard the characteristic varieties
of U as embedded in the character torus of �1(M):

�q
d(U;K) =

�
t 2 ker � �= (K�)n−1 j dimKH

q(U ;Kt) � d
}
; (4)

(compare with (3)), where, as above, � : (K�)n ! K� is the homomorphism
given by �(t1; : : : ; tn) = t1 � � � tn .
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Proposition 4.2 For q � 1 and d � 0,

�q
d(M;K) =

d[
j=0

�q
d−j(U;K) \�q−1

j (U;K):

In particular, for t 2 ker � , we have

depthqM;K(t) = depthqU;K(t) + depthq−1
U;K(t):

Proof Let Kt be the local system on M corresponding to t 2 (K�)n . There is
an induced local system i�Kt on C� , with monodromy �(t), where i : C� !M
is the inclusion of the �ber in the Hopf bundle C� ! M ! U . Fix a section
s : U !M of this trivial bundle, and let s�Kt be the induced local system on
U . Recall that we denote this local system by Kt in the case where �(t) = 1.
To prove the Proposition, it su�ces to show that, for each q � 1,

Hq(M ;Kt) =

(
0; if �(t) 6= 1;
Hq(U ;Kt)�Hq−1(U ;Kt); if �(t) = 1:

Let C�(fM ) and C�(eU) be the chain complexes of the universal covers of M
and U , viewed as modules over the group rings of �G = �1(M) and G =
�1(U), respectively. Then the cohomology of M with coe�cients in Kt is (by
de�nition) the cohomology of the complex �C� = HomZ �G(C�(fM);K), where

the Z �G-module structure on K is given by the representation �G ab−! �Gab �−!
Zn t−! K� . Similarly, H�(U ; s�Kt) is the cohomology of the complex C� =
HomZG(C�(eU );K). Denote the boundary maps of the complexes �C� and C� by
�� and �� , respectively.

Multiplication by 1−�(t) gives rise to a chain map C� ! C� . Since M = U�C�
is a product, and the monodromy of the induced local system i�Kt on C� is
�(t), the complex �C� may be realized as the mapping cone of this chain map.
Explicitly, we have �Cq = Cq � Cq−1 , and �q : Cq � Cq−1 ! Cq+1 � Cq is given
by

�q(x; y) =
(
�q(x); �q−1(y) + (−1)q(1− �(t)) � x

�
:

If �(t) 6= 1, it is readily checked that the complex �C� is acyclic. If �(t) = 1, it
follows immediately from the above description of the boundary map �� that
Hq(�C�) �= Hq(C�)�Hq−1(C�) for each q .

Now let dA be the decone of A with respect to one of the hyperplanes (which,
after a linear change of variables, may be assumed to be a coordinate hyper-
plane). The complement, M(dA), in C‘ is di�eomorphic to the complement
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U of the projectivization of A. An isomorphism �1(U) ! �1(M(dA)) is ob-
tained by deleting the meridian corresponding to the deconing hyperplane. Let
� : (K�)n ! (K�)n−1 be the map that forgets the corresponding coordinate.
Then � induces a bijection �] : �q

d(U;K)! �q
d(M(dA);K).

If s is a nontrivial character, then H0(U;Ks) = 0 and depth1
U;K(s) < n − 1.

Consequently, as shown in [8] using properties of Fitting ideals, for q = 1 and
d < n, the above proposition simpli�es to:

�1
d(M(A);K) =

�
t 2 (K�)n j �(t) 2 �1

d(M(dA);K) and �(t) = 1
}
: (5)

Each irreducible component of �q
d(U;C) (resp., �q

d(M(dA);C)) is a torsion-
translated subtorus of the algebraic torus T(C) = (C�)n , see [1]. That is, each
component of �q

d(U;C) is of the form gT , where T is a subgroup of T(C)
isomorphic to a product of 0 or more copies of C� , and g 2 T(C) is of �nite
order. Recall that every algebraic subgroup of T(K) can be written as the
product of a �nite group with a subtorus [15, p. 187]. If the order of an element
g 2 T(K) is �nite, we will denote its order by ord(g).

4.3 Jumping loci and the Milnor �bration

Write Hi = ker(�i) and let fa =
Qn
i=1 �

ai
i be the polynomial of degree N =Pn

i=1 ai corresponding to a choice of multiplicities a = (a1; : : : ; an) for A.
Recall that Fa , the Milnor �ber of fa : M ! C� , is the regular, N -fold cyclic
cover of U classi�ed by the homomorphism �a : �1(U)�ZN given by �a(γi) =
gai . Recall also that b1(U) = jAj − 1 = n − 1. From Corollary 2.5, we obtain
the following.

Theorem 4.4 Let K be an algebraically closed �eld, with charK - N . Then

dimKH1(Fa;K) = n− 1 +
X

16=kjN
’(k) depthK

(
�
N=k
a

�
:

4.5 Jumping loci in di�erent characteristics

Our goal for the rest of this section is to show that if a translated torus gT is
a positive-dimensional component of a characteristic variety �q

d(U;C), but T
itself is not a component, then there exist choices of multiplicities a for which
Hq(Fa;Z) has integer torsion (Theorem 4.11). In fact, we will describe how
to choose such exponents explicitly, and give a more general criterion for the
existence of torsion (Theorem 4.9).
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We start by comparing representations of the fundamental group over �elds of
positive characteristic with those over C. Let � be a root of unity, and denote
by Z[�] the ring of cyclotomic integers.

Lemma 4.6 Let i : Z[�]! C and j : Z[�]! K be ring homomorphisms, and
assume that i is an injection. For any t 2 (Z[�]�)n with �(t) = 1, let i�t and
j�t denote the images of t in T(C) and T(K), respectively. Then

dimCHq(U ;Ci�t) � dimKHq(U ;Kj�t):

Proof Since the character t satis�es �(t) = 1, it gives rise to a homomorphism
 : ZG ! Z[�], where G = �1(U) and ZG is the integral group ring. Let
K� = C�(eU) ⊗ Z[�] denote the corresponding tensor product of the chain
complex of the universal cover of U with Z[�], a chain complex of Z[�]-modules.
Then the homology groups under comparison are just those of K� ⊗i�t C and
K�⊗j�tK, respectively. Since the �rst map i is flat, the inequality follows.

Lemma 4.7 Given an arrangement A and positive integers q , d, the following
two statements are equivalent.

(1) The characteristic variety �q
d(U;C) contains an element g of �nite order

for which the cyclic subgroup hgi 6� �q
d(U;C). Moreover, there exists

h 2 hgi n �q
d(U;C) and a prime p with p j ord(g) but p - ord(h).

(2) There exist s; t 2 T(C), a prime p, and integer r � 1 for which

(a) depthqU;C(t) < depthqU;C(s) = d;

(b) ord(st−1) = pr ;

(c) p - ord(t).

Proof (1)) (2): Write hgi �=
Lm

i=1 Z=(p
ri
i Z), where the primes p1; p2; : : : ; pm

are all distinct. For each h 2 hgi , de�ne an m-tuple �(h) as follows: for
1 � i � m, let �(h)i = ai , where the projection of h to Z=(prii Z) has order paii .
Clearly 0 � ai � ri .

Let S consist of those elements h 2 hgi for which h 2 �q
d(U;C). Since

characteristic varieties are closed under cyclotomic Galois actions, two ele-
ments h1; h2 2 hgi of the same order are either both in S or both not in
S . By reordering the pi ’s, our hypothesis states that there exists h =2 S with
�(h) = (a1; : : : ; aj ; 0; : : : ; 0), for some nonzero integers a1; a2; : : : ; aj , where
j < m. Choose h =2 S of this form for which j is minimal. Since 1 2 S and
�(1) = (0; 0; : : : ; 0), we have j � 1. Then for some h0 2 hgi of order prj−ajj ,
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we have �(hh0) = (a1; : : : ; aj−1; 0; 0; : : : ; 0). By minimality, hh0 2 S . Then
the pair of t = h and s = hh0 together with p = pr , r = rj − aj satisfy the
conditions (2).

(2) ) (1): Let g = s, h = t, and h0 = gh−1 . By hypothesis, ord(hh0) =
ord(h) ord(h0), from which it follows that hgi = hhh0i = hh; h0i. In particular,
h 2 hgi, but by (a), h =2 �q

d(U;C).

4.8 Torsion jumps

Once again, let K be an algebraically closed �eld of positive characteristic p.

Theorem 4.9 If A is an arrangement for which the characteristic variety
�q
d(U;C) satis�es one of the equivalent conditions of Lemma 4.7, then

dimKHq(U ;Kt) � d:

Proof Let k = ord(t); from condition (2), parts (b) and (c), we have ord(s) =
prk . Let � be a root of unity in C of order prk , so that s; t 2 (Z[�]�)n . Let
j : Z[�] ! K be given by choosing a k -th root of unity j(�) in K. Since
ord(st−1) is a power of the characteristic of K, we have j�g = j�h. Then

dimKHq(U ;Kj�t) = dimKHq(U ;Kj�s) � d ;

by condition (2)(a) and Lemma 4.6.

Corollary 4.10 Suppose A is an arrangement for which the characteristic
variety �q

d(U;C) satis�es the equivalent conditions of Lemma 4.7. Then there
is a choice of multiplicities a for A for which the group Hq(Fa;Z) contains
p-torsion elements.

Proof Assume that t 2 T(C) satis�es condition (2)(a) of Lemma 4.7. Then,
since t 62 �q

d(U;C), we have dimCHq(U ;Ct) < dimKHq(U ;Kt). Lemma 3.5
implies that there exists a choice of multiplicities a for which Hq(U ;Kt) and
Hq(U ;Ct) are monodromy eigenspaces. Using Lemmas 3.4 and 4.6, with one
of the inequalities being strict, we �nd that dimCHq(Fa;C) < dimKHq(Fa;K).
The result follows.

The following statement is a special case of Theorem 4.9 that applies to some
speci�c behavior observed in characteristic varieties (see [21] and [4]). In par-
ticular, we will use it in what follows to �nd torsion for our family of examples.
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Theorem 4.11 Let sT be a component of �q
d(U;C), where T is a subtorus

of T(C) and s is a �nite-order element in T(C). Suppose that T 6� �q
d(U;C).

Then there exist choices of multiplicities a for A for which the group Hq(Fa;Z)
has p-torsion, for some prime p dividing ord(s).

Proof First, note that T is positive-dimensional, since 1 is contained in all
non-empty characteristic varieties. Since T is not contained in �q

d(U;C), there
exist in�nitely many �nite-order elements h 2 T for which h 62 �q

d(U;C). (In
fact, for each su�ciently large integer k , there exist elements h with ord(h) = k
and h =2 �q

d(U;C).)

Choose any element h as above, of order relatively prime to that of s, and let
u = hr for an r for which uord(s) = h. Let g = su. Then, by construction, g
and h satisfy the �rst condition of Lemma 4.7. By Corollary 4.10, Hq(Fa;Z)
has torsion of order p for those a given by Lemma 3.5.

5 Deletions of monomial arrangements

Now we turn to a detailed study of arrangements obtained by deleting a hy-
perplane from a monomial arrangement. Using results from [21] and [4], we
check that these arrangements satisfy the hypotheses of Theorem 4.11. Hence,
there are corresponding multi-arrangements whose Milnor �bers have torsion
in homology.

5.1 Fundamental group of the complement

Let Ap be the arrangement in C3 de�ned by the homogeneous polynomial
Q(Ap) = x1x2(xp1 − x

p
2)(xp1 − x

p
3)(xp2 − x

p
3). This arrangement is obtained by

deleting the hyperplane x3 = 0 from the complex reflection arrangement asso-
ciated to the full monomial group G(3; 1; p).

The projection C3 ! C2 de�ned by (x1; x2; x3) 7! (x1; x2) restricts to a bundle
map M(Ap) ! M(B), where B is de�ned by Q(B) = x1x2(xp1 − xp2). The
�ber of this bundle is the complex line with 2p points removed. Thus, Ap is a
�ber-type arrangement, with exponents (1; p + 1; 2p). Hence, the fundamental
group G(Ap) = �1(M(Ap)) may be realized as a semidirect product

G(Ap) = F2p o� G(B); (6)
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where F2p = �1(C n f2p pointsg) is free on 2p generators corresponding to
the hyperplanes de�ned by (xp1 − x

p
3)(xp2 − x

p
3), and G(B) �= Fp+1 � Z is the

fundamental group of M(B).

The monodromy � : G(B) ! Aut(F2p) which de�nes the semidirect product
structure (6) factors as G(B)

�−! P2p ,! Aut(F2p), where the inclusion of the
pure braid group on 2p strands P2p in Aut(F2p) is given by the restriction of
the Artin representation. The \braid monodromy" � : G(B) ! P2p may be
determined using the techniques of [6], [7], and [3]. In fact, this map may be
obtained by an appropriate modi�cation of the calculation in [3, x2.2] of the
braid monodromy of the full monomial arrangement de�ned by x3Q(Ap), which
we now carry out.

5.2 Braid monodromy

Fix a primitive p-th root of unity � 2 C. Let B2p be the full braid group on
2p strands, and let �i , 1 � i � 2p− 1, be the standard generators. The indices
of the strands correspond to the hyperplanes Hi3:r = ker(xi − �rx3) and the
generators y1; : : : ; y2p of F2p , as indicated below:

strand # 1 2 � � � p p+ 1 p+ 2 � � � 2p
hyperplane H13:p H13:p−1 � � � H13:1 H23:p H23:p−1 � � � H23:1

generator y1 y2 � � � yp yp+1 yp+2 � � � y2p

De�ne braids �0; �1 2 B2p by

�0 = �p−1�p−2 � � � �1 and �1 = �−1�1�3 � � � �2p−3�2p−1�;

where

� = (�2�4 � � � �2p−2)(�3�5 � � � �2p−3) � � � (�p−2�p�p+2)(�p−1�p+1)(�p); (7)

see Figure 1. The braids �i are obtained from the \monomial braids" of [3] by
deleting the central strand, corresponding to the hyperplane H3 = ker(x3) in
the full monomial arrangement, but not in the monomial deletion. As in [3], the
braid monodromy � : G(B) ! P2p may be expressed in terms of these braids,
as follows.

De�ne pure braids Z1; Z2; A
(1)
1;2; : : : ; A

(p)
1;2 in P2p by Z1 = �p0 , Z2 = �1�

p
0�
−1
1 , and

A
(r)
1;2 = �r−p0 �2

1�
p−r
0 for 1 � r � p. Let γj and γ12:r be meridian loops in M(B)

about the lines Hj = ker(xj) and H12:r = ker(x1− �rx2). These loops generate
the fundamental group G(B).
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Figure 1: The braids �0 and �1 , for p = 3

Proposition 5.3 The braid monodromy � : G(B) ! P2p of the �ber bundle

M(Ap)!M(B) is given by �(γj) = Zj , �(γ12:r) = A
(r)
1;2 .

Corollary 5.4 The fundamental group of M(Ap) has presentation

G(Ap) =

*
γ1; γ2; γ12:1; : : : ; γ12:p

y1; y2; y3; : : : ; y2p

���� γ−1
j yiγj = �(γj)(yi)

γ−1
12:ryiγ12:r = �(γ12:r)(yi)

+
;

where i = 1; : : : ; 2p, j = 1; 2, and r = 1; : : : ; p, and the pure braids �(γ) act
on the free group F2p = hy1; : : : ; y2pi by the Artin representation.

5.5 Fundamental group of the decone

Let Γ = γ1γ12:1 � � � γ12:p−1γ2γ12:p 2 G(B). Note that �(Γ) = A[2p] is the full
twist on all strands. As is well known, this braid generates the center of P2p .
It follows that Γ is central in G(B), so

G(B) = Fp+1 � Z = hγ1; γ12:1; : : : ; γ12:pi � hΓi:

To simplify calculations in x6 below, we will work with an explicit decone
of the arrangement Ap , as opposed to the projectization. Let dAp denote
the decone of Ap with respect to the hyperplane H2 = ker(x2). This is
an a�ne arrangement in C2 (with coordinates x1; x3 ), de�ned by Q(dAp) =
x1(xp1−1)(xp1−x

p
3)(1−xp3). From the above discussion, we obtain the following

presentation for the fundamental group of the complement of dAp :

G(dAp) =

*
γ1; γ12:1; : : : ; γ12:p

y1; y2; : : : ; y2p

���� γ−1
1 yiγ1 = �(γ1)(yi)

γ−1
12:ryiγ12:r = �(γ12:r)(yi)

+
; (8)

where, as before, i = 1; : : : ; 2p and r = 1; : : : ; p.
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5.6 Characteristic varieties

Set n = 3p+ 2 = jApj. Denote the coordinates of the algebraic torus (K�)n by
z1; z2; z12:1; : : : ; z12:p; z13:1; : : : ; z13:p; z23:1; : : : ; z23:p; where zi corresponds to the
hyperplane Hi = ker(xi) and zij:r to the hyperplane Hij:r = ker(xi − �rxj).

The following theorem was proved for p = 2 in [21], and for p � 2 in [4], in the
case K = C. The same proofs work for an arbitrary, algebraically closed �eld
K.

Theorem 5.7 In addition to components of dimension 2 or higher, the variety
�1

1(M(Ap);K) has 1-dimensional components C1; : : : ; Cp−1 , given by

p−1[
i=1

Ci =

(
(up; vp; w; : : : ; w; v; : : : ; v; u; : : : ; u) 2 (K�)n

����
Pp−1

j=0 w
j = 0

and uvw = 1

)
;

where Ci is obtained by setting w equal to the i-th power of a �xed primitive
p-th root of unity in K.

If charK = p, then Ci is a subtorus of (K�)n , so passes through the origin 1.
However, if charK 6= p, then Ci is a subtorus translated by a character of order
p. The results of x4.8 imply that there exist choices of multiplicities a for Ap
such that the �rst homology group of the corresponding Milnor �ber, Fa , has
p-torsion. In particular, we have the following.

Corollary 5.8 Let Fp = f−1
p (1) be the Milnor �ber of the polynomial de�ned

in (1). Then H1(Fp;Z) has p-torsion.

Proof Let U = M(dAp) be the complement of the projectivization of Ap .
Note that for t 2 Ci , we have �(t) = 1. So Ci � �1

1(U;K) by Proposition 4.2.
In the case K = C, let si =

(
1; 1; �i; : : : ; �i; �−i; : : : ; �−i; 1; : : : ; 1

�
. where � =

exp(2� i =p), and

T = f
(
up; vp; 1; : : : ; 1; v; : : : ; v; u; : : : ; u

�
2 (C�)n j uv = 1g:

Then ord(si) = p, T is a one-dimensional subtorus of (C�)n , and Ci = siT .
One can check that T 6� �1

1(U;C) using known properites of characteristic
varieties of arrangements, see [13]. Hence, Theorem 4.11 implies that there are
choices of multiplicities a for Ap for which H1(Fa;Z) has p-torsion. Arguing
as in the proof of that theorem, and using Lemma 3.5, reveals that among
these choices of multiplicities are a = (2; 1; 3; 3; 2; 2; 1; 1) in the case p = 2, and
a = (1; 1; 2; : : : ; 2; 1; : : : ; 1; 1; : : : ; 1) in the case p 6= 2. These choices yield the
polynomials fp of (1).
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6 Homology calculations

Keeping the notation from the previous section, we analyze the homology of
G(dAp) = �1(M(dAp)) with coe�cients in the rank one local systems that
arise in the study of the Milnor �bration fp : M(Ap)! C� . In this section, we
consider the case where p 6= 2 is an odd prime.

Let K be an algebraically closed �eld. Recall that dAp is the decone of Ap
with respect to the hyperplane H2 = ker(x2), which has multiplicity 1 in the
multi-arrangement de�ned by fp . Consequently, to analyze the homology of
the Milnor �ber Fp using Theorem 4.4, we will consider the modules Kt(k)

corresponding to characters t(k) de�ned by

t(k) = (t; t2; : : : ; t2; t; : : : ; t; t; : : : ; t) 2 (K�)n−1; (9)

where t = �N=k is a power of a primitive N -th root of unity, N = 4p+ 2, k 6= 1
is a positive integer dividing N , and n = 3p + 2.

Proposition 6.1 If k 6= 2 and charK - N , then H1(G(dAp);Kt(k)) = 0.

Proof The braid Z1 = �(γ1) is a full twist on strands 1 through p, given in
terms of the standard generators Ai;j of P2p by

Z1 = A1;2(A1;3A2;3) � � � � � � (A1;p � � �Ap−1;p):

Consider the generating set fu1; : : : ; up; v1; : : : ; vpg for the free group F2p given
by ur = y1y2 � � � yr and vr = yp+r , 1 � r � p. The action of the braid Z1 on this
generating set is given by Z1(ui) = upuiu

−1
p and Z1(vj) = vj for 1 � i; j � p,

see [7, x6.4].

Taking γ1; γ12:r; ur; vr (1 � r � p) as generators for G(dAp), we obtain from
(8) a presentation with relations

uiγ1up = γ1upui; upγ1 = γ1up; vjγ1 = γ1vj;

ujγ12:r = γ12:rA
(r)
1;2(uj); vjγ12:r = γ12:rA

(r)
1;2(vj);

where 1 � i � p− 1, 1 � j � p, and 1 � r � p.

Let A denote the Alexander matrix obtained from this presentation by taking
Fox derivatives and abelianizing. This is a 2p(p + 1) � (3p + 1) matrix with
entries in the ring of Laurent polynomials in the variables γ1; γ12:r; ur; vr , and
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has the form

A =

0BBBBBB@

� 0 � � � 0 0 I2p − γ1�(Z1)
0 � 0 0 I2p − γ12:1�(A(1)

1;2)
...

. . .
...

0 0 � 0 I2p − γ12:p−1�(A(p−1)
1;2 )

0 0 � � � 0 � I2p − γ12:p�(A(p)
1;2)

1CCCCCCA ;

where � is the column vector (u1 − 1; : : : ; up − 1; v1 − 1; : : : ; vp − 1)> , Im is the
m�m identity matrix, and �: P2p ! GL(2p;Z[u�1

1 ; : : : ; u�1
p ; v�1

1 ; : : : ; v�1
p ]) is

the Gassner representation.

Let A(k) denote the evaluation of the Alexander matrix at the character t(k).
This evaluation is given by γ1 7! t, γ12:r 7! t2 , yi 7! t, so ur 7! tr and vr 7! t.
To show that H1(G(dAp);Kt(k)) = 0, it su�ces to show that A(k) has rank
3p.

A calculation (compare [7, Prop. 6.6]) reveals that the evaluation at t(k) of
I2p − γ1�(Z1) is upper triangular, with diagonal entries 1 − tp+1 and 1 − t.
Recall that � is a primitive N -th root of unity, where N = 4p+ 2, that k 6= 1
divides N , and that t = �N=k . Since p is prime and k 6= 2 by hypothesis, k
does not divide p+1. Consequently, all of the diagonal entries of the evaluation
at t(k) of I2p − γ1�(Z1) are nonzero. It follows that rank A(k) = 3p.

For the character t(2) = (−1; 1; : : : ; 1;−1; : : : ;−1;−1; : : : ;−1), and the corre-
sponding module Kt(2) , there are several cases to consider.

First, note that if charK = 2, then t(2) = 1 is the trivial character.

If charK = p, Theorem 5.7 and equation (5) combine to show that t(2) 2
�1

1(M(dAp);K). Moreover, t(2) 6= 1, since p 6= 2. Hence, in this case the
depth of t(2) is at least 1.

If charK 6= 2 or p, one can show that the character t(2) does not lie in any
component of �1

1(M(dAp);K) of positive dimension. However, this does not
rule out the possibility that t(2) is an isolated point in �1

1(M(dAp);K). This
is not the case, as the next result shows.

Proposition 6.2 Let K be an algebraically closed �eld. If charK = p, then
depthK(t(2)) = 1. If charK 6= 2 or p, then depthK(t(2)) = 0.

We will sketch a proof of this proposition by means of a sequence of lemmas.
As above, we will analyze the Alexander matrix arising from a well-chosen
presentation of the group G(dAp).
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The presentation of G(dAp) given in (8) is obtained from the realization of this
group as a semidirect product, G(dAp) = F2p o� Fp+1 . The homomorphism
� : Fp+1 ! Aut(F2p) is the composition of the Artin representation with the
braid monodromy � : Fp+1 ! P2p given by � : γ1 7! Z1 , γ12:r 7! A

(r)
1;2 . We �rst

modify the map � , as follows.

Recall the braid � 2 B2p from (7). Conjugation by � induces an automorphism
cong� : P2p ! P2p , � 7! ���−1 . Then, cong� �� : Fp+1 ! P2p is another choice
of braid monodromy for the (�ber-type) arrangement dAp , and the presentation
of G(dAp) resulting from composing cong� �� and the Artin representation is
equivalent to that obtained from �.

Lemma 6.3 In terms of the standard generating set for the pure braid group

P2p , the braids cong� (A
(p)
1;2) and cong� (Z1) are given by

cong�
(
A

(p)
1;2

�
= A1;2A3;4 � � �A2p−1;2p;

cong� (Z1) = A1;3(A1;5A3;5) � � � (A1;2p−1A3;2p−1 � � �A2p−3;2p−1):

Proof Recall that �0 = �p−1�p−2 � � � �1 , �1 = �−1�1�3 � � � �2p−1� , and A
(r)
1;2 =

�r−p0 �2
1�
p−r
0 . Hence, cong� (A

(p)
1;2) = �2

1�
2
3 � � � �2

2p−1 = A1;2A3;4 � � �A2p−1;2p . Also
recall that Z1 = A[p] = A1;2(A1;3A2;3) � � � � � � (A1;pA2;p � � �Ap−1;p) is the full
twist on strands 1 through p. We will show that cong� (Z1) is as asserted (for
any integer p � 2) by induction on p.

Write � = �p . When p = 2, we have �2A[2]�
−1
2 = �2�

2
1�
−1
2 = A1;3 . So induc-

tively assume that �pA[p]�
−1
p = AO[p] , where O[p] = f1; 3; : : : ; 2p−1g. Using (7)

and the braid relations, we have �p+1 = �p�p+1 , where �p+1 = �2p�2p−1 � � � �p+1 .
Note that �p+1 commutes with A[p] . Hence,

�p+1A[p+1]�
−1
p+1 = �p�p+1A[p](A1;p+1A2;p+1 � � �Ap;p+1)�−1

p+1�
−1
p

= �pA[p]�
−1
p � �p�p+1(A1;p+1A2;p+1 � � �Ap;p+1)�−1

p+1�
−1
p

= AO[p] � �p�p+1(A1;p+1A2;p+1 � � �Ap;p+1)�−1
p+1�

−1
p

= AO[p] � �p(A1;2p+1A2;2p+1 � � �Ap;2p+1)�−1
p

by induction, and the readily checked fact that �p+1Ai;p+1�
−1
p+1 = Ai;2p+1 . The

result now follows from the equality �pAi;2p+1�
−1
p = A2i−1;2p+1 , which may

itself be established by an inductive argument.

Write z = cong� (Z1) and a = cong� (A
(p)
1;2). We specify a generating set for the

free group F2p = hy1; : : : ; y2pi for which the action of these braids is tractable.
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For 1 � r � p, let ur = y1y2 � � � y2r−1y2r and vr = y2r−1 . Write V = v1v2 � � � vp .
It is readily checked that the set of elements fu1; : : : ; up; v1; : : : ; vpg generates
F2p . Moreover, a calculation using the Artin representation yields the following.

Lemma 6.4 The action of the braids z and a on the set fur; vrgpr=1 is given
by

z(ur) = ur[vr+1 � � � vp; v1 � � � vr]; a(ur) = ur;

z(vr) = V vrV
−1; a(vr) = u−1

r−1urvru
−1
r ur−1:

Note that z(up) = up and that a(v1) = u1v1u
−1
1 .

Now consider the presentation of the group G(dAp) obtained from the braid
monodromy cong� � � : Fp+1 ! P2p and the Artin representation, using the
generating set fur; vrgpr=1 for the free group F2p . Identify the generators
γ1; γ12:j of Fp+1 with their images in P2p via γ1 7! cong� (γ1) = z, γ12:p 7!
cong� (γ12:p) = a, and write γ12:j 7! cong� (γ12:j) = aj for 1 � j � p − 1. With
this notation, the presentation for G(dAp) has relations

urz = zur[vr+1 � � � vp; v1 � � � vr]; ura = aur;
vrz = zV vrV −1; vra = au−1

r−1urvru
−1
r ur−1;

(10)

and uraj = aj � aj(ur), vraj = aj � aj(vr), for 1 � j � p− 1 and 1 � r � p.

Let A be the Alexander matrix obtained from this presentation, and A(2)
the evaluation at the character t(2). This evaluation is given by γ1 7! −1,
γ12:j 7! 1, yr 7! −1, so z 7! −1, a 7! 1, aj 7! 1, ur 7! 1, vr 7! −1. Let M,
A, and Aj denote the evaluations at t(2) of the Fox Jacobians of the actions
of the pure braids z, a, and aj , respectively. With this notation, we have

A(2) =

0BBBBB@
�(2) 0 � � � 0 0 I2p + M

0 �(2) 0 0 I2p − A1

...
. . .

...
0 0 �(2) 0 I2p − Ap−1

0 0 � � � 0 �(2) I2p − A

1CCCCCA;

where �(2) =
(
0 � � � 0 −2 � � � −2

�> is the evaluation of � at t(2). Note
that the entries of A(2) are integers, and recall that A(2) has size 2p(p+ 1)�
(3p + 1).

To establish Proposition 6.2, we must show that rankKA(2) = 3p−1 or 3p, ac-
cording to whether the �eld K has characteristic p or not (recall that charK 6= 2
by assumption). In the case charK = p, we already know that t(2) belongs to
�1

1(M(dAp);K), so the inequality rankKA(2) � 3p− 1 holds. Thus, it su�ces
to prove the next result.
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Lemma 6.5 The (integral) Smith normal form of the matrix A(2) has diag-
onal entries 2; : : : ; 2 (repeated 3p− 1 times) and 2p.

Proof The matrix A(2) is equivalent, via row and column operations, to the
matrix 0BBBBB@

0 0 � � � 0 0 2I2p + M− A
0 �(2) 0 0 I2p − A1

...
. . .

...
0 0 �(2) 0 I2p − Ap−1

0 0 � � � 0 �(2) I2p − A

1CCCCCA: (11)

A Fox calculus exercise using (10) shows that all entries of the matrices I2p−A
and I2p − Aj , 1 � j � p− 1, are divisible by 2, and that

2I2p + M− A = 2
�

Ip P
L− Ip Q

�
;

where Li;j = �i;j+1 (Kronecker delta), Qi;j = (−1)j+1 , and

Pi;j =

8><>:
(−1)j if i odd and j > i;

(−1)j+1 if i even and j � i;
0 otherwise:

Let U =
�

Ip 0
Ip − L Ip

��
Ip 0
0 R

�
and V =

�
Ip −P
0 Ip

��
Ip 0
0 S

�
, where

R =

0BBBBBBB@

1 0 0 � � � 0 0
0 1 0 0 −1
0 2 1 0 −2
...

. . .
...

0 2 2 1 −(p− 2)
0 2 2 � � � 2 −(p− 2)

1CCCCCCCA
; S =

0BBBBBBB@

1 0 0 � � � 0 0
0 1 0 0 −1
0 0 1 0 −2
...

. . .
...

0 0 0 1 −(p− 2)
0 0 0 � � � 0 1

1CCCCCCCA
:

Then one can check that det R = det S = 1, and that U(2I2p + M − A)V is a
2p�2p diagonal matrix with diagonal entries 2; : : : ; 2; 2p (in this order). Using
these facts, further row and column operations reduce the matrix (11) to0@0 2I3p−1 0

0 0 2p
0 0 v

1A ;

where v is a column vector whose entries are even integers. Now recall that if
K is a �eld of characteristic p, then rankKA(2) � 3p − 1. Consequently, the
entries of v must be divisible by p. The result follows.
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7 Proof of Theorem 2

We are now in position to complete the proof of Theorem 2 from the Introduc-
tion. Recall we are given a prime p and the homogenous polynomial fp speci�ed
in (1), and we need to compute the �rst homology group of the Milnor �ber
Fp = f−1

p (1). We shall treat the cases of odd and even primes p separately.

7.1 The case p 6= 2

Recall that Ap is the arrangement in C3 de�ned by the polynomial Q(Ap) =
x1x2(xp1 − x

p
2)(xp1 − x

p
3)(xp2 − x

p
3). The choice of multiplicities

a = (1; 1; 2; : : : ; 2; 1; : : : ; 1; 1; : : : ; 1)

yields the homogeneous polynomial fp = x1x2(xp1 − xp2)2(xp1 − xp3)(xp2 − xp3).
This gives rise to a Milnor �bration fp : M(Ap) ! C� , with �ber Fp = Fa .
Let ZN be the cyclic group of order N = deg(fp) = 4p + 2, with generator
g . The N -fold cyclic cover Fp ! M(dAp) is classi�ed by the epimorphism
� : G(dAp)! ZN given by �(γ1) = g , �(γ12:r) = g2 , �(γi3:r) = g .

Let K be an algebraically closed �eld, of characteristic not dividing N . The
homology group H1(Fp;K) may be calculated using Theorem 4.4:

dimKH1(Fp;K) = 3p + 1 +
X

16=kjN
’(k) depthK t(k);

where t(k) are the characters de�ned in (9). Using Propositions 6.1 and 6.2,
we �nd:

dimKH1(Fp;K) =

(
3p + 1; if charK - 2p(2p + 1),
3p + 2; if charK = p.

(12)

Now recall that we have an isomorphism H1(Fp;Z) �= H1(G;Z[ZN ]) between
the �rst homology of Fp and that of G = G(dAp), with coe�cients in the G-
module Z[ZN ] determined by the epimorphism � : G! ZN . Let Z2 � ZN be
the subgroup generated by gN=2 , and let Z[Z2] � Z[ZN ] be the corresponding
G-submodule. Denote by J the kernel of the augmentation map � : Z[Z2]! Z.
Notice that gN=2 acts on J �= Z by multiplication by −1. Hence, the induced

G-module structure on J is given by the composite G ��ab−−−! Z3p+1 t(2)−−! f�1g,
which shows that J is the integral analogue of the local system Kt(2) . Let
Q = Z[ZN ]=J be the quotient G-module, and consider the homology long exact
sequence corresponding to the coe�cient sequence 0! J ! Z[ZN ]! Q! 0:

� � � ! H2(G;Q)! H1(G;J)! H1(G;Z[ZN ])! H1(G;Q)! � � � (13)
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By Lemma 6.5, we have H1(G;J) �= (Z2)3p � Zp . Over an algebraically closed
�eld K with charK - N , the G-module Q decomposes as the direct sum of the
modules Kt(k) , k 6= 2, together with the trivial module. So Proposition 6.1
implies that that H1(G;Q) has no q -torsion, for any odd prime q not dividing
2p+1. Note that H2(G;Q) is free abelian, since the cohomological dimension of
G = F2p o�� Fp+1 is 2. Applying these observations to the long exact sequence
(13) reveals that the map H1(G;J) ! H1(G;Z[ZN ]) induces an isomorphism
on p-torsion. Therefore:

H1(Fp;Z) = Z3p+1 � Zp � T; (14)

where T is a �nite abelian group such that T ⊗ Zq = 0 if q - 2(2p + 1). This
�nishes the proof of Theorem 2 in the case p 6= 2.

Remark 7.2 The p-torsion in (14) appears in the (−1)-eigenspace of the
algebraic monodromy h� , see Lemma 3.4. Since an automorphism of H1(Fp;Z)
must preserve the p-torsion elements, h� acts on the Zp direct summand by
x 7! −x.

�
�
�
�
�
�

@
@

@
@

@
@

2

2

1

1

323

Figure 2: Decone of deleted B3 arrangement, with multiplicities

7.3 The case p = 2

Now consider the arrangement A2 in C3 de�ned by the polynomial Q(A2) =
x1x2(x2

1 − x2
2)(x2

1 − x2
3)(x2

2 − x2
3). This is a deletion of the B3 reflection ar-

rangement, and appears as Example 4.1 in [21] and Example 9.3 in [14]. The
polynomial f2 = x2

1x2(x2
1 − x2

2)3(x2
1 − x2

3)2(x2 − x3) corresponds to the choice
of multiplicities a = (2; 1; 3; 3; 2; 2; 1; 1), shown in Figure 2 (the hyperplane at
in�nity has multiplicity 1).

The variety �1
1(M(A2);C) contains a 1-dimensional component sT , where

T =
�

(u2; v2; 1; 1; v; v; u; u) j uv = 1
}

and s = (1; 1;−1;−1;−1;−1; 1; 1), see
Theorem 5.7. The subtorus T is not a component. For example, the point
t 2 T given by u = exp(2� i =3) and v = u2 is not in �1

1(M(A2);C).

Algebraic & Geometric Topology, Volume 3 (2003)



534 Cohen, Denham and Suciu

The Milnor �ber F2 = f−1
2 (1) is an N -fold cover of M(dA2), with N = 15.

Using Theorem 4.4 as before, we �nd that dimKH1(F2;K) = 7 if charK 6= 2; 3,
or 5, and dimKH1(F2;K) = 9 if charK = 2. Direct computation with the
Alexander matrix of G(dA2) (see [21, Ex. 4.1]) gives the precise answer:

H1(F2;Z) = Z7 � Z2 � Z2: (15)

This �nishes the proof of Theorem 2 in the remaining case p = 2.

Remark 7.4 Once again, the monodromy action preserves the torsion part in
(15), so Z15 acts on Z2 � Z2 . Since the torsion in H1(F2;Z) appears in the
eigenspaces of order 3, the monodromy acts via an automorphism of order 3,
which, in a suitable basis, has matrix

(
0 1
1 1

�
.
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