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Skein-theoretical derivation
of some formulas of Habiro

Gregor Masbaum

Abstract We use skein theory to compute the coe�cients of certain power
series considered by Habiro in his theory of sl2 invariants of integral homol-
ogy 3-spheres. Habiro originally derived these formulas using the quantum
group Uqsl2 . As an application, we give a formula for the colored Jones
polynomial of twist knots, generalizing formulas of Habiro and Le for the
trefoil and the �gure eight knot.
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Introduction

In a talk at the Mittag-Le�er Institute in May 1999, K. Habiro announced a
new approach to computing the colored Jones polynomial of knots and quantum
sl2 invariants of integral homology 3-spheres. For an exposition, see his paper
[H2] (some results are already announced in [H1]). His invariant for homology
spheres recovers both the sl2 Reshetikhin-Turaev invariants at roots of unity,
and Ohtsuki’s power series invariants. Later, Habiro and T.Q.T. Le generalized
this to all quantum invariants associated to simple Lie algebras.

In the sl2 case, quantum invariants can be expressed in terms of skein theory,
using the Jones polynomial or the Kau�man bracket. Habiro’s invariant for
homology spheres can be constructed using certain skein elements ! = !+ and
!−1 = !− such that circling an even number of strands with !+ (resp. !−)
induces a positive (resp. negative) full twist:

xeven

!+ =

xeven

(1)

More precisely, !+ and !− are not skein elements, but in�nite sums (i.e. power
series) of such. But as long as they encircle an even number of strands (cor-
responding to a strand colored by an integer-spin representation of sl2 ), the
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538 Gregor Masbaum

result is well-de�ned. Also, it makes sense to consider powers of ! = !+ , and
circling an even number of strands with !p induces p positive full twists, where
p 2 Z.

The main purpose of this paper is to give skein-theoretical proofs of Habiro’s
formulas for !+ and !− (they are stated already in [H1]) and for !p (this
formula will appear in [H3]). Habiro’s original proofs of these formulas use the
quantum group Uqsl2 .

This paper is organized as follows. After stating Habiro’s formula for !+ and
!− in Section 1, we give a proof using orthogonal polynomials along the lines
of [BHMV1] in Section 2. This proof is quite straightforward, although the
computations are a little bit more involved than in [BHMV1]. Unfortunately,
it seems di�cult to use this approach to compute the coe�cients of !p for
jpj � 2. Therefore, in Section 3 we start afresh using the Kau�man bracket
graphical calculus. A �rst expression for !p in Theorem 3.2 is easily obtained,
but it is not quite good enough, as an important divisibility property of the
coe�cients of !p is not clear from this formula. This property is then shown in
Section 4 by some more skein theory. The �nal expression for !p obtained in
Theorem 4.5 is equivalent to Habiro’s one from [H3]. (The results of Section 2
are not used here, so that this gives an independent proof in the p = �1 case
as well.)

To illustrate one use of !p , we conclude the paper in Section 5 by giving a for-
mula for the colored Jones polynomial of twist knots. This generalizes formulas
of Habiro [H1] (see also Le [L1, L2]) for the trefoil and the �gure eight knot.
(For those two knots, one only needs Habiro’s original !+ and !− .)

Habiro has proved (again using quantum groups) that formulas of this type exist
for all knots, but the computation of the coe�cients is not easy in general. For-
mulas of this kind are important for at least two reasons: computing quantities
related to the Kashaev-Murakami-Murakami volume conjecture [Ka, MM], and
computing Habiro’s invariant of the homology sphere obtained by �1 surgery
on the knot. For more about this, see Habiro’s survey article [H2].

Acknowledgements I got the idea for this work while talking to T.Q.T. Le
during his visit to the University of Paris 7 in July 2002. I would like to thank
both him and K. Habiro for helpful discussions, and for sending me parts of
their forthcoming papers [L2] and [H3].
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Skein-theoretical derivation of some formulas of Habiro 539

1 Habiro’s formula for !

We use the notations of [H1] and of [BHMV1]. In particular, we write

a = A2; fng = an − a−n; [n] =
an − a−n
a− a−1

and de�ne fng! and [n]! in the usual way.

Recall that the Kau�man bracket skein module, K(M), of an oriented 3-
manifold M is the free Z[A�]-module generated by isotopy classes of banded
links (= disjointly embedded annuli) in M modulo the submodule generated
by the Kau�man relations.

= A + A−1 ; = −a− a−1

Figure 1: The Kau�man bracket relations. (Recall a = A2 .)

The Kau�man bracket gives an isomorphism h i : K(S3) �−!Z[A�]. It is nor-
malized so that the bracket of the empty link is 1.

The skein module of the solid torus S1 �D2 is Z[A�][z]. We denote it by B .
Here z is given by the banded link S1�J; where J is a small arc in the interior
of D2; and zn means n parallel copies of z . We de�ne the even part Bev of B
to be the submodule generated by the even powers of z .

Let t : B ! B denote the twist map induced by a full right handed twist on the
solid torus. It is well known (see e.g. [BHMV1]) that there is a basis feigi�0

of eigenvectors for the twist map. It is de�ned recursively by

e0 = 1; e1 = z; ei = zei−1 − ei−2 : (2)

The eigenvalues are given by

t(ei) = �iei; where �i = (−1)iAi
2+2i : (3)

Let h ; i be the Z[A�]-valued bilinear form on B given by cabling the zero-
framed Hopf link and taking the bracket. For x 2 B , put hxi = hx; 1i. One has
heii = (−1)i[i+ 1].

Moreover, for every f(z) 2 B , one has

hf(z); eii = f(�i)heii; where �i = −ai+1 − a−i−1 : (4)
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Following Habiro [H1], de�ne

Rn =
n−1Y
i=0

(z − �2i); Sn =
n−1Y
i=0

(z2 − �2
i ) :

The Rn form a basis of B , and the Sn form a basis of the even part Bev of B .

By construction, one has hRn; e2ii = 0 for i < n, and therefore also hRn; z2ki =
0 for k < n. Similarly, one has hSn; eii = 0 for i < n, and hence also hSn; zki =
0 for k < n. It follows that hRn; Smi = 0 for n 6= m, and for n = m one
computes

hRn; Sni = hRn; e2ni = he2ni
n−1Y
i=0

(�2n − �2i) = (−1)n
f2n+ 1g!
f1g : (5)

We are looking for

!+ =
1X
n=0

cn;+Rn

satisfying (1) for every even x, which is equivalent to requiring that

h!+; xi = ht(x)i (6)

for every x 2 Bev . Note that the left hand side of (6) is a �nite sum for every
x 2 Bev .

Theorem 1.1 (Habiro[H1]) Eq. (6) holds for

cn;+ = (−1)n
an(n+3)=2

fng! : (7)

Let us de�ne !− to be the conjugate of !+ , where conjugation is de�ned, as
usual, by A = A−1 and z = z . Since conjugation corresponds to taking mirror
images, we have that

h!−; xi = ht−1(x)i (8)

for every even x.

Note that !− =
P1

n=0 cn;−Rn , where

cn;− =
a−n(n+3)=2

fng! : (9)

This follows from (7) since Rn = Rn and fng = −fng.

Algebraic & Geometric Topology, Volume 3 (2003)



Skein-theoretical derivation of some formulas of Habiro 541

Remark 1.2 The skein element ! = !+ is related to, but di�erent from, the
element often called ! appearing in the surgery axiom of Topological Quantum
Field Theory (see for example [BHMV2]). If we call the latter !TQFT , then
Equations (6) and (8) would be satis�ed by appropriate scalar multiples of
t−1(!TQFT ) and t(!TQFT ), respectively; moreover, they would now hold not
just for even x, but for all x. This applies in particular to the ! of [BHMV1],
which was constructed in a similar way as Habiro’s !− (but using polynomials
Qn =

Qn−1
i=0 (z − �i) in place of the polynomials Rn).

2 A proof using orthogonal polynomials

Habiro’s proof of Theorem 1.1 uses the relationship with the quantum group
Uqsl2 . Here is another proof, using the method of orthogonal polynomials as in
[BHMV1].

Testing with the Sn -basis, we see that (8) holds if and only if

cn;− =
ht−1Sni
hRn; Sni

:

Thus, it is clear that an !− satisfying (8) exists, and to compute its coe�cients,
we just need to compute ht−1Sni.
As in [BHMV1], de�ne another bilinear form h ; i1 by

hx; yi1 = ht(x); t(y)i :
De�ne polynomials Rn and Sn by

t(Rn) = �nRn; t(Sn) = �2nSn :

(The factors �n and �2n are included so that Rn and Sn are monic, i.e. have
leading coe�cient equal to one.)

Again, the Rn form a basis of B , and the Sn form a basis of the even part Bev
of B , since the twist map t preserves Bev . We have hRn;Smi1 = 0 for n 6= m,
and

hRn;Sni1 = �n�2nhRn; Sni : (10)

Note that ht−1Sni = �−1
2n hSni. Thus, we just need to compute hSni.

Proposition 2.1 The polynomials Sn satisfy a four-term recursion formula

Sn+1 = (z2 − �n)Sn − �n−1Sn−1 − γn−2Sn−2 (11)

for certain �n; �n−1; γn−2 2 Z[A�]:
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Proof Since Sn is monic of degree 2n, we have that z2Sn−Sn+1 is a linear
combination of the Sk with k � n. The coe�cients can be computed by taking
the scalar product with Rk . So we just need to show that hz2Sn;Rki1 = 0 if
k < n− 2.

The point is that multiplication by z is a self-adjoint operator with respect to
the bilinear form h ; i1 . In other words, one has

hzx; yi1 = hx; zyi1
for all x; y 2 B . (This is because hx; yi1 = ht(xy)i.) It follows that

hz2
Sn;Rki1 = hSn; z

2
Rki1 = 0 if k < n− 2;

since Rk has degree k , and Sn annihilates all polynomials of degree < n.

Note that the coe�cients in the recursion formula (11) are given by

�n =
hz2Sn;Rni1
hSn;Rni1

; �n−1 =
hz2Sn;Rn−1i1
hSn−1;Rn−1i1

; γn−2 =
hz2Sn;Rn−2i1
hSn−2;Rn−2i1

: (12)

By convention, if n < 0 then Rn;Sn; �n; �n; γn are all zero.

Proposition 2.2 One has

�n = 2 + a6n+4[3]− a2n (13)
�n−1 = (a4n+1 + a8n+1[3])f2ngf2n + 1g (14)
γn−2 = a10n−4f2n− 2gf2n − 1gf2ngf2n + 1g (15)

Proof The formula for γn−2 is the easiest. Let us use the notation o�n for
terms of degree � n. Since z2Rn−2 = Rn + o�n−1 , we have

hz2
Sn;Rn−2i1 = hSn; z

2
Rn−2i1 = hSn;Rni1 ;

and hence formula (15) follows from (12), (10), and (5).

For �n−1 , we need to compute

hz2
Sn;Rn−1i1 = hSn; z

2
Rn−1i1 = �2n�n−1hSn; tz2t−1Rn−1i : (16)

This amounts to computing the coe�cient of Rn in the expression of tz2t−1Rn−1

in the Rk -basis. This coe�cient can be computed as follows.

For n � 1, one has

zn = en + (n− 1)en−2 + o�n−4 :
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(This follows by induction from (2).) Thus, for " = �1, one has

t"zn = �"nz
n + (n− 1)(�"n−2 − �"n)zn−2 + o�n−4 :

It follows that

tz2t−1zn =
�n+2

�n
zn+2 + (2− (n+ 1)

�n+2

�n
+ (n− 1)

�n
�n−2

)zn + o�n−2 : (17)

Now write

Rn =
n−1Y
i=0

(z − �2i) = zn − xn−1z
n−1 + o�n−2 ;

where xn−1 =
Pn−1

i=0 �2i . Then (17) gives

tz2t−1Rn−1 =
�n+1

�n−1
Rn+1 + (xn

�n+1

�n−1
− xn−2

�n
�n−2

)Rn + o�n−1 (18)

and hence

hSn; tz2t−1Rn−1i = (xn
�n+1

�n−1
− xn−2

�n
�n−2

)hSn; Rni :

Plugging this into (16), we have

hz2
Sn;Rn−1i1 =�2n�n−1hSn; tz2t−1Rn−1i

=(xn
�n+1

�n
− xn−2

�n−1

�n−2
)hSn;Rni1

=(A6n+1[3] +A−2n+1)hSn;Rni1 :

Using (12), (10), and (5) as before, this implies formula (14) for �n−1 .

Finally, for �n , let us compute

hz2
Sn;Rni1 = �2n�nhtz2t−1Sn; Rni : (19)

This amounts to computing the coe�cient of Sn in the expression of tz2t−1Sn
in the Sk -basis.1

The computation is similar to the one above. We write

Sn =
n−1Y
i=0

(z2 − �2
i ) = z2n − yn−1z

2n−2 + o�2n−4 ;

1This is easier than computing hSn; tz2t−1Rni by expanding tz2t−1Rn in the Rk -
basis, because the latter would require computing the �rst three terms, and not just
the �rst two terms as in (18) above and also in (20) below.
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where yn−1 =
Pn−1

i=0 �
2
i . Then (17) gives

tz2t−1Sn = (20)
�2n+2

�2n
Sn+1+

�
2 + (yn − 2n− 1)

�2n+2

�2n
− (yn−1 − 2n + 1)

�2n

�2n−2

�
Sn + o�2n−2

and hence

htz2t−1Sn; Rni =
�

2 + (yn − 2n− 1)
�2n+2

�2n
− (yn−1 − 2n+ 1)

�2n

�2n−2

�
hSn; Rni

= (2 + a6n+4[3]− a2n)hSn; Rni :

Plugging this into (19), we get

hz2
Sn;Rni1 = (2 + a6n+4[3] − a2n)hSn;Rni1 ;

proving formula (13) for �n .

Proof of Habiro’s Theorem 1.1 As already observed, we have

cn;− =
ht−1Sni
hRn; Sni

= �−1
2n

hSni
hRn; Sni

:

But hSni satis�es the recursion relation

hSn+1i = (�2
0 − �n)hSni − �n−1hSn−1i − γn−2hSn−2i (21)

(since hzi = �0 ). It follows that

hSni = (−1)na(3n2+n)=2 fn+ 1gfn + 2g � � � f2n + 1g
f1g ; (22)

since one can check that (22) is true for n = 0; 1; 2 and that it solves the
recursion (21). This implies Habiro’s formula (9) for cn;− . Taking conjugates,
one then also obtains formula (7) for cn;+ .

Remark 2.3 Although it might be hard to guess formula (22), once one knows
it the recursion relation (21) is easily checked. Observe that �2

0 = a2 +a−2− 2.
Put q(n) = (3n2 + n)=2. Then (21) is equivalent to

(a2 + a−2 − a6n+4[3] + a2n)aq(n) + (a4n+1 + a8n+1[3])fngaq(n−1)

− a10n−4fn − 1gfngaq(n−2) = −f2n+ 2gf2n + 3g
fn+ 1g aq(n+1)

which is a straightforward computation.
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3 Graphical calculus and a formula for !p

Let us write ! = !+ and put

!p =
1X
n=0

cn;pRn : (23)

Note that the coe�cients cn;p are well-de�ned (because Rn divides Rn+1 and
therefore the coe�cients Ckn;m in the product expansion RnRm =

P
k C

k
n;mRk

are zero if n or m is bigger than k .) We have

h!p; xi = htp(x)i (24)

for every even x. (This follows from (6) since circling with !p is the same as
circling with p parallel copies of ! .) Of course, cn;1 = cn;+ and cn;−1 = cn;−
(it follows from the uniqueness of !− that !− = !−1 ). The aim of this section
is to give a formula for the coe�cients cn;p (see Theorem 3.2 below).

We use the extension of the Kau�man bracket to admissibly colored banded
trivalent graphs as in [MV]. (Such graphs are sometimes called spin networks;
for more background see e.g. [KL] and references therein.) A color is just an
integer � 0. A triple of colors (a; b; c) is admissible if a + b + c � 0 (mod 2)
and ja − bj � c � a + b. Let D be a planar diagram of a banded trivalent
graph. An admissible coloring of D is an assignment of colors to the edges
of D so that at each vertex, the three colors meeting there form an admissible
triple. The Kau�man bracket of D is de�ned to be the bracket of the expansion
of D obtained as follows. The expansion of an edge colored n consists of n
parallel strands with a copy of the Jones-Wenzl idempotent fn inserted. (The
idempotent fn is characterized by the fact that xfn = fnx = 0 for every element
x of the standard basis of the Temperley-Lieb algebra other than the identity
element; here, the standard basis consists of the (n; n)-tangle diagrams without
crossings and without closed loops.) The expansion of a vertex is de�ned as in
Fig. 2, where the internal colors i; j; k are de�ned by

i = (b+ c− a)=2; j = (c+ a− b)=2; k = (a+ b− c)=2 : (25)

We have the fusion equation

b

a
=
X
c

hci
ha; b; ci b

a

c
b

a
(26)
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n

=

� � �

� � �
,

a b

c
=

a b

c

k

ij

Figure 2: How to expand colored edges and vertices. The boxes stand for appropriate
Jones-Wenzl idempotents.

Here the sum is over those colors c so that the triple (a; b; c) is admissible, we
have hci = heci = (−1)c[c + 1], and the trihedron coe�cient ha; b; ci is (see
[MV, Thm. 1]):

ha; b; ci =
a

c

b = (−1)i+j+k
[i+ j + k + 1]! [i]! [j]! [k]!

[a]! [b]! [c]!
(27)

(here i; j; k are the internal colors as de�ned in (25)). Note that hn; n; 2ni =
h2ni so that

n

n
=

n

n

2n n

n
+ : : : (28)

We will need the following lemma.

Lemma 3.1 For 0 � k � n, one has

2n

2n

n

n

n

n
2k =

([k]!)2

[2k]!

2n

Proof This follows from the formula for the tetrahedron coe�cient given in
[MV, Thm. 2]. (The sum over � in that formula reduces to just one term.)

The key observation is that

2n

2n
n

n
Rk = 0 for k 6= n : (29)
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Indeed, if k < n, there are at most 2k vertical strands in the middle and so
the result is zero because of the Jones-Wenzl idempotents f2n at the top and
bottom. On the other hand, if k > n, the result is zero because Rk annihilates
all even polynomials in z of degree < 2k .

If k = n one �nds

2n

2n

n

n

Rn = (−1)n(fng!)2

2n

: (30)

Indeed, applying (28), one has

2n

2n

n

n

Rn =

2n

2n

n

n

Rn

2n =
hRn; e2ni
he2ni

2n

2n

n

n

n

n
2n

hence (30) follows from (5) and Lemma 3.1.

On the other hand, since circling with !p induces p full twists on even numbers
of strands (see (24)), we have, using (29), that

�−2p
n cn;p

2n

2n

n

n

Rn = �−2p
n

2n

2n

n

n
!p =

2n

2n

n

n

� � � (31)

where there are 2p crossings in the last diagram. (See (3) for the twist eigen-
values �i .) Applying the fusion equation (26), we have

2n

2n

n

n

� � � =
nX
k=0

�(2k;n; n)2p h2ki
hn; n; 2ki

2n

2n

n

n

n

n
2k (32)

where �(c; a; b) is the half-twist coe�cient de�ned by

a

b

c
= �(c; a; b)

a

b

c :
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This coe�cient is computed in [MV, Thm. 3]. For us, it is enough to know
that

�(c; a; b)2 =
�c
�a�b

which is easy to see. Using (30) and Lemma 3.1, it follows that

�−2p
n cn;p(−1)n(fng!)2 =

nX
k=0

�p2k
�2p
n

h2ki
hn; n; 2ki

([k]!)2

[2k]!
:

The factors of �−2p
n cancel out, and in view of (27), this gives the following

result:

Theorem 3.2 The coe�cients cn;p of !p in (23) are given by

cn;p =
1

(a− a−1)2n

nX
k=0

(−1)k�p2k[2k + 1]
[n+ k + 1]! [n − k]!

: (33)

4 Another formula for the coe�cients of !p

Following Habiro, we introduce the polynomials R0n = (fng!)−1Rn and write

!p =
1X
n=0

c0n;pR
0
n ; (34)

where
c0n;p = fng! cn;p :

The aim of this section is to show that c0n;p is a Laurent polynomial, i.e. that
c0n;p 2 Z[A�]. This fact was shown by Habiro [H3] using the quantum group
Uqsl2 . Observe that by (9) and (7), we already know this fact for p = �1:

c0n;1 = (−1)nan(n+3)=2 ; c0n;−1 = a−n(n+3)=2 :

(But Formula (33) tells us only that

c0n;p =
1

(a− a−1)n

nX
k=0

(−1)k�p2k[2k + 1]
[n]!

[n+ k + 1]! [n − k]!
; (35)

from which it is not clear that c0n;p 2 Z[A�].)

To do so, we will replace Formula (32) in the previous section by Formula (42)
below. For this, we need the following two Lemmas.
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Lemma 4.1 We have

n

n
=

nX
k=0

Cn;k k k

n− k

n− k
;

where

Cn;k = an(n−k)

�
n

k

� nY
j=n−k+1

(1− a−2j) : (36)

Here, as usual, �
n

k

�
=

[n][n− 1] � � � [n− k + 1]
[k]!

:

Proof For 0 � p � n, let us write, more generally,

n

p
=

nX
k=0

Cn;p;k k k

n− k

p− k
:

First, we consider the case p = 1. By induction on n, it is easy to prove that

n
= an

n

+ an−1(1− a−2n)
n− 1

(recall a = A2 ). Using this, we now �x n and do induction on p to obtain the
recursion formula

Cn;p+1;k = an−2kCn;p;k + an−2k+1(1− a−2(n−k+1))Cn;p;k−1 : (37)

Here we have used the following two facts which follow from the de�ning prop-
erties of the Jones-Wenzl idempotents.2

p+ q p

q
= p+ q p

q
(38)

p+ q p

q
= A−pq

p+ q p

q
(39)

2Equation (39) is a special case of the half-twist coe�cient.
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Note that the coe�cients Cn;p;k behave like the binomial coe�cients
(p
k

�
in that

Cn;0;0 = 1, and Cn;p;k = 0 for k < 0 or k > p. It follows that the recursion
formula (37) determines the Cn;p;k uniquely. One �nds

Cn;p;k = ap(n−k)

�
p

k

� nY
j=n−k+1

(1− a−2j) :

Specializing to the case p = n, this proves the Lemma.

Remark 4.2 The coe�cient Cn;n was computed by a di�erent method in
[A, Prop. 4.4]. Knowing this coe�cient would be enough to obtain Habiro’s
formula (7) for ! (see Remark 4.4 below). Unfortunately, the method of [A]
does not give the coe�cients Cn;k for k 6= n, which we will need to obtain a
formula for !p .

Lemma 4.3 We have

n

n
k k

n− k

n− k
=
�2
n−k
�2
n

k k

n− k

n− k
(40)

Proof The left hand side of (40) is equal to

k k

n− k

n− k

By an isotopy, this becomes

�−2
k k k

n− k

n− k

Applying the coe�cients �(n;n − k; k)−2 and �(n; k; n − k)−2 , which are both
equal to �k�n−k�

−1
n (see also (39)), we see that this is equal to the right hand

side of (40).
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Let C(p)
n;k be the coe�cient de�ned by the expansion

n

n
� � � =

nX
k=0

C
(p)
n;k k k

n− k

n− k
; (41)

(where the diagram on the left hand side of (41) has 2p crossings). Putting the
two preceding Lemmas together, we may obtain a formula for this coe�cient.
In particular, it follows by induction on p that C(p)

n;k is a Laurent polynomial
divisible by

Qn
j=n−k+1(1− a2j).

We are interested in the coe�cient C(p)
n;n , since we have

2n

2n

n

n

� � � = C(p)
n;n

2n

2n

nn

= C(p)
n;n

2n

(42)

(where there are 2p crossings in the diagram on the left). Using (30) and (31)
from Section 3, it follows that

�−2p
n cn;p(−1)n(fng!)2 = C(p)

n;n

and therefore
c0n;p = fng! cn;p = (−1)n�2p

n (fng!)−1C(p)
n;n : (43)

As already observed, C(p)
n;n is divisible by
nY
j=1

(1− a2j) = a−n(n+1)=2fng!

and hence c0n;p is indeed a Laurent polynomial.

Remark 4.4 In the case p = 1, we have

C(1)
n;n = Cn;n = a−n(n+1)=2fng! : (44)

Plugging this into (43), we get

c0n;1 = (−1)nan
2+2na−n(n+1)=2 = (−1)nan(n+3)=2 ;

giving another proof of Habiro’s formula (7) for cn;1 .
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Here is an explicit formula for C(p)
n;n which follows from (36) and (40). The sum is

over all multi-indices k = (k1; : : : ; kp) such that ki � 0 for all i, and
P
ki = n.

For convenience, put si = k1 + : : : + ki and ri = n− si = ki+1 + : : : + kp , and
de�ne

’(k) =
p−1X
i=1

ri(ri−1 + ri + 2) : (45)

C(p)
n;n =

X
k

Cn;k1

�2
n−k1

�2
n

Cn−k1;k2

�2
n−k1−k2

�2
n

� � �Cn−sp−2;kp−1

�2
n−sp−1

�2
n

Cn−sp−1;kp

= �2−2p
n

X
k

 
p−1Y
i=1

�2
ri

!
pY
i=1

Cri−1;ki

= �2−2p
n

0@ nY
j=1

(1− a−2j)

1AX
k

 
p−1Y
i=1

ari
2+2ri

!
p−1Y
i=1

�
ari−1ri

�
ri−1

ki

��

= �2−2p
n a−n(n+1)=2fng!

X
k

a’(k)

�
n

k

�
where we have put, as usual,�

n

k

�
=

[n]!
[k1]! � � � [kp]!

:

In view of (43), and using �2
n = an

2+2n , we obtain the following �nal result:

Theorem 4.5 (Habiro [H3]) For p � 1, the coe�cients c0n;p of !p in (34) are
given by

c0n;p = (−1)nan(n+3)=2
X

k=(k1;:::;kp)

ki�0;
∑
ki=n

a’(k)

�
n

k

�
: (46)

where ’(k) is de�ned in (45).

Remark 4.6 Since c0n;−p = (−1)nc0n;p , this also determines the coe�cients of
negative powers of ! .

Remark 4.7 In [H3], Habiro has obtained a similar formula using the quantum
group Uqsl2 .
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Example: Assume p = 2. We may write k = (k; n − k). Then

c0n;2 = (−1)nan(n+3)=2
nX
k=0

a(n−k)(n+n−k+2)

�
n

k

�

= (−1)na(5n2+7n)=2
nX
k=0

ak
2−2k−3nk

�
n

k

�

5 The colored Jones polynomial of twist knots

In this last section, we illustrate one use of !p , namely to give a formula for the
colored Jones polynomial of twist knots (see Figure 3) in terms of the coe�cients
c0n;p . The results of this section are known to K. Habiro and T.Q.T. Le.

��
�

p full
twists

Figure 3: The twist knot Kp . (Here p 2 Z.) For p = 1, Kp is a left-handed trefoil,
and for p = −1, Kp is the �gure eight knot.

The colored Jones polynomial of a knot K colored with the N -dimensional
irreducible representation of sl2 can be expressed as the Kau�man bracket of
K cabled by (−1)N−1eN−1 :

JK(N) = (−1)N−1hK(eN−1)i :

(The factor of (−1)N−1 is included so that JUnknot(N) = [N ].) We will use the
normalization

J 0K(N) =
JK(N)

JUnknot(N)
=
hK(eN−1)i
heN−1i

:

Here, we assume the knot K is equipped with the zero framing.

Let us compute hKp(eN−1)i. We use the surgery description given in Fig. 4.
Recall that !p =

P
c0k;pR

0
k . By induction, one can check that

eN−1 =
N−1X
n=0

(−1)N−1−n
�

N + n

N − 1− n

�
Rn : (47)
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The key observation (which I learned from T.Q.T. Le) is that

Rn

R0k = 0

for k 6= n. This is because each component of this link is a zero-framed unknot
having a spanning disk pierced twice by the other component, and circling with
Rm annihilates all even polynomials in z of degree < 2m.

Thus only terms with k = n survive, and so we have

hKp(eN−1)i =
N−1X
n=0

(−1)N−1−n
�

N + n

N − 1− n

�
c0n;p

Rn

R0n

(48)
Now, using that Rn − en has degree < n, we compute

Rn

R0n =

en

R0n

= �2
n

n

n

2n

R0n

= �2
nCn;nhR0n; e2ni

= (−1)nan(n+3)=2 f2n+ 1g!
f1g

where we have used (42) in the last but one equation, and Cn;n and hRn; e2ni
are given in (44) and (5), respectively (but notice we are using R0n = (fng!)−1Rn
here).

Plugging this into (48), we obtain the following result.
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!p

Figure 4: A surgery description of the twist knot Kp with zero framing.

Theorem 5.1 The colored Jones polynomial of the twist knot Kp is given by

J 0Kp(N) =
1X
n=0

fKp;n
fN − ngfN − n+ 1g � � � fN + ng

fNg ; (49)

where

fKp;n = an(n+3)=2c0n;p :

(The sum is actually �nite, the terms with n � N being all zero.)

Note that since c0n;p is a Laurent polynomial in a, so are the coe�cients fKp;n .
For example, for the �gure eight knot K−1 , we have fK−1;n = 1, and for the left-
handed trefoil K1 , we have fK1;n = (−1)nan(n+3) . (The right-handed trefoil is
the mirror image of K1 , so one just needs to take the conjugate of J 0K1

(N).)
These formulas can be found in [H2].

Remark 5.2 Here is another expression for J 0Kp(N). Put q = a2 = A4 and,
as is customary in q -calculus,

(x)n = (1− x)(1− xq) � � � (1− xqn−1) :

Then (49) gives

J 0Kp(N) =
1X
n=0

~fKp;n(q1−N )n(q1+N )n ;

where
~fKp;n = (−1)nq−n(n+1)=2fKp;n :

For example, for the �gure eight knot K−1 , we have ~fK−1;n = (−1)nq−n(n+1)=2 ,
and for the left-handed trefoil K1 , we have ~fK1;n = qn . These formulas can be
found in [L2] (see also [L1]).
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