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Abstract We compare the domain of the assembly map in algebraic K {
theory with respect to the family of �nite subgroups with the domain of
the assembly map with respect to the family of virtually cyclic subgroups
and prove that the former is a direct summand of the later.
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1 Introduction

In algebraic K{theory assembly maps relate the algebraic K{theory of a group
ring RΓ to the algebraic K{theory of R and the group homology of Γ. In the
formulation of Davis and Lück [DL98] there is for every family of subgroups F
of Γ an assembly map

HOrΓ
� (EΓ(F); KR−1)! K�(RΓ) (1.1)

and these maps are natural with respect to inclusions of families of subgroups.
The notation is reviewed in more detail in Section 2. The Isomorphism Con-
jecture of Farrell{Jones [FJ93] for algebraic K{theory (and R = Z) states that
(1.1) is an isomorphism, provided that F = VC is the family of virtually cyclic
subgroups. This conjecture has been proven for di�erent classes of groups, cf.
[FJ93] [FJ98]. Arbitrary coe�cient rings are considered in [BFJR]. The as-
sembly map is also studied with F = FIN the family of �nite subgroups or
F the family consisting of the trivial subgroup. For the trivial family there
are injectivity results for di�erent classes of groups, cf. [BHM93], [CP95]. Both
results have been extended to injectivity results for F = FIN , see [Ros03] and
recent work of Lück{Reich{Rognes{Varisco.

In this paper we study the map

HOrΓ
� (EΓ(FIN ); KR−1)! HOrΓ

� (EΓ(VC); KR−1): (1.2)
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It has been conjectured in [FJ93, p.260] (for R = Z) that this map is split
injective. In various cases this follows from the above mentioned results. The
purpose of this paper is to verify this conjecture in general.

Theorem 1.3 The map (1.2) is split injective for arbitrary groups and rings.

In general the left hand side of (1.2) is much better understood than the right
hand side, cf. [Lü02]. Thus modulo the isomorphism conjecture Theorem 1.3
may be viewed as splitting a well understood factor from the K{theory of the
group ring.

For virtually cyclic groups Theorem 1.3 asserts that the assembly map for the
family FIN is split injective. This is a special case of [Ros03]. The language of
OrΓ{spectra from [DL98] allows us to extend this splitting to the more general
setting in (1.2).

There is a corresponding splitting result for L{theory: If we use L−1{theory
and R and Γ are such that K−i(RV ) = 0 for all virtually cyclic subgroups V of
Γ and su�ciently large i, then (1.2) remains split injective. This assumption is
satis�ed if R = Z by [FJ95]. We will not give the details of the proof of this L{
theory statement. The proof is however completely analogous to the K{theory
case. The extra assumption is needed to obtain a suitable compatibility with
in�nite products, see 4.4. The L{theory statements needed for this transition
are provided in [CP95, Section 4].

I want to thank Tom Farrell, Wolfgang Lück and Erik Pedersen for helpful
comments.

2 Equivariant homology theories

First let us briefly �x conventions on spectra. A spectrum E is given by a
sequence (En)n2N of pointed spaces and structure maps �En ! En+1 . A map
of spectra is a sequence of maps En ! Fn (for n 2 N) that commutes with the
structure maps. A map of spectra is said to be a weak equivalence if it induces
an isomorphism of (stable) homotopy groups. Two spectra E and F are said
to be weakly equivalent if there is a zig-zag of weak equivalence

E ’
// A : : :’

oo
’

// F

connecting E to F.
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On the domain of the assembly map in algebraic K {theory 1039

Let Γ be a group. The Orbit Category OrΓ has as objects the homogeneous
spaces Γ=H and as morphisms Γ{equivariant maps Γ=H ! Γ=K [Bre67]. An
OrΓ{spectrum is a functor from OrΓ to the category of spectra. A map of
OrΓ{spectra is a natural transformation. A map of OrΓ{spectra is called a
weak equivalence if it is a weak equivalence evaluated at every Γ=H . Two
OrΓ{spectra are said to be weakly equivalent if they are connected by a zig-
zag of weak equivalences. Our main example of an OrΓ{spectrum is given by
algebraic K{theory: for a ring R there is an OrΓ{spectrum KR−1 whose
value on Γ=H is the K{theory spectrum of the group ring RH . This functor
has been constructed in [DL98, Section 2]. In this paper we will denote spectra
by blackboard bold letters (like E) and OrΓ{spectra by boldface letters (like
E).

Associated to an OrΓ{spectrum E is a functor from Γ{CW{complexes to spec-
tra. Its value on a Γ{space X is given by the balanced smash product

HOrΓ(X; E) = XH
+ ^OrΓ E(Γ=H)

=
a
Γ=H

XH
+ ^E(Γ=H)= �; (2.1)

where � is the equivalence relation generated by (x�; y) � (x; �y) for x 2
XK

+ ; y 2 E(Γ=H) and � : Γ=H ! Γ=K (cf. [DL98, Section 5]). The homotopy
groups of HOrΓ(X; E) will be denoted by HOrΓ

� (X; E) and give an equivariant
homology theory [DL98, 4.2].

A family of subgroups of Γ is a collection of subgroups of Γ that is closed un-
der conjugation and taking subgroups. For such a family F there is a classify-
ing space EΓ(F), namely a Γ{CW{complex characterized (up to Γ{homotopy
equivalence) by the property that EΓ(F)H is contractible if H 2 F and empty
otherwise. Given an OrΓ{spectrum E there is for any such family of subgroups
F the assembly map HOrΓ(EΓ(F); E) ! HOrΓ(pt ; E) = E(Γ=Γ), cf. [DL98,
Section 5]. This construction is natural in the family F and in this paper we
will compare di�erent families.

We will need the following recognition principle, cf. [DL98, 6.3 2.]. A Γ{F {
CW{complex, is a Γ{CW{complex with isotropy groups contained in F .

Lemma 2.2 Let E ! F be a map of OrΓ{spectra. Let F be a family of
subgroups of Γ such that E(Γ=F ) ! F(Γ=F ) is a weak equivalence for all
F 2 F . Then

HOrΓ(X; E)! HOrΓ(X; F)

is a weak equivalence for any Γ{F {CW{complex.
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It will be useful for us to iterate the construction of OrΓ{spectra, i.e. de�ne an
OrΓ{spectrum using the homology with respect to a di�erent OrΓ{spectrum.

Lemma 2.3 Let X;Y be Γ{CW{complexes and K be an OrΓ{spectrum.
De�ne an OrΓ{spectrum E by

E(Γ=H) = HOrΓ(Γ=H � Y ; K):

Then
HOrΓ(X; E) �= HOrΓ(X � Y ; K):

Proof In the following formula Γ=H will always correspond to the �rst ^OrΓ

and Γ=K to the second.

HOrΓ(X; E) = XH
+ ^OrΓ

(
(Γ=H � Y )K+ ^OrΓ K(Γ=K)

�
=

(
XH

+ ^OrΓ (Γ=H � Y )K+
�
^OrΓ K(Γ=K)

=
((
XH

+ ^OrΓ (Γ=H)K+
�
^ Y K

+

�
^OrΓ K(Γ=K)

�= (XK
+ ^ Y K

+ ) ^OrΓ K(Γ=K)
= HOrΓ(X � Y ; K):

In the second, third and fourth line the �rst ^OrΓ is a balanced smash product
with a space, that is similarly de�ned as (2.1). The homeomorphism from the
third to the fourth line comes about as follows. There is a natural G{action on
XH

+ ^OrΓ (Γ=H)+ (where G acts by multiplication on Γ=H , see [DL98, 7.1])
and by [DL98, 7.4.1] a natural G{homeomorphism

XH
+ ^OrΓ (Γ=H)+

�= X+:

Moreover, it is not hard to check that,

XH
+ ^OrΓ (Γ=H)K+ = (XH

+ ^OrΓ (Γ=H)+)K :

Therefore,
XH

+ ^OrΓ (Γ=H)K+ �= XK
+ :

We �nish this section with a formal splitting criterion.

Proposition 2.4 Let E ! F ! G be maps of OrΓ{spectra. Let F � G be
families of subgroups of Γ. Assume that E is weakly equivalent to Γ=H 7!
HOrΓ(Γ=H � EΓ(F); K) for some OrΓ{spectrum K. Assume moreover that
E(Γ=F ) ! F(Γ=F ) and E(Γ=G) ! G(Γ=G) are weak equivalences for all
F 2 F and G 2 G . Then

HOrΓ
� (EΓ(F); F) ! HOrΓ

� (EΓ(G); F)

is split injective.
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On the domain of the assembly map in algebraic K{theory 1041

Proof Consider the following commutative diagram.

HOrΓ(EΓ(F); E) �
//

�0

��

HOrΓ(EΓ(G); E)

��

�1

vv

HOrΓ(EΓ(F); F) //

��

HOrΓ(EΓ(G); F)

��

HOrΓ(EΓ(F); G) // HOrΓ(EΓ(G); G)

By the �rst assumption and 2.3 we have

HOrΓ(EΓ(F); E) ’ HOrΓ(EΓ(F) � EΓ(F); K);
HOrΓ(EΓ(G); E) ’ HOrΓ(EΓ(G) � EΓ(F); K):

Now F � G implies that both EΓ(F) � EΓ(F) and EΓ(G) � EΓ(F) are Γ{
homotopy equivalent to EΓ(F). Thus � is a weak equivalence. The second
assumption and 2.2 imply that the maps labeled �i are also weak equivalences.

3 Homotopy �xed points

A useful tool in proving injectivity results for assembly maps are homotopy �xed
points, cf. [CP95]. Given an action of a group Γ on a space X the homotopy
�xed points with respect to F are by de�nition,

XhFΓ = MapΓ(EΓ(F);X):

We will also need actions of Γ on spectra. By de�nition Γ acts on a spectrum
E, by acting (pointed) on each En compatible with the structure maps. This
allows to take (homotopy) �xed points level wise. We will call a map X ! Y
a weak OrΓ{equivalence, if it is Γ{equivariant and induces a weak equivalence
on all �xed point sets.

Proposition 3.1 Let A;B be OrΓ{spectra with a Γ{action (i.e. functors
from OrΓ to spectra with Γ{action) and F � G two families of subgroups of
Γ. Assume that there is a Γ{equivariant map of OrΓ{spectra A ! B such
that the following holds.

(1) There is an OrΓ{spectrum K such that the OrΓ{spectra AΓ and Γ=H 7!
HOrΓ(Γ=H �EΓ(F); K) are weakly equivalent.
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1042 Arthur C. Bartels

(2) For all G 2 G there are weak OrΓ{equivalences

A(Γ=G) ’ MapG(Γ;A0(G))
B(Γ=G) ’ MapG(Γ;B0(G))

for spectra A0(G);B0(G) with a G{action. Moreover, there is a G{map
A0(G)! B0(G) compatible with the Γ{map A(Γ=G)! B(Γ=G).

(3) For all G 2 G the induced map A0(G)G ! B0(G)hFG is a weak homotopy
equivalence. (Here F is viewed as the obvious family of subgroups of G
it induces.)

Then the map HOrΓ
� (EΓ(F); BΓ)! HOrΓ

� (EΓ(G); BΓ) is split injective.

In our application in Section 5 F will be the family of �nite subgroups and
G will be the family of virtual cyclic subgroups. In order to prove 3.1, we
need three lemmata. They will be used to relate �xed points of B (and A) to
homotopy �xed points of B. The proof of the �rst lemma is straightforward.

Lemma 3.2 Let H be a subgroup of Γ, X a Γ{space and Y an H {space.
Then there is a natural homeomorphism

MapΓ(X;MapH(Γ; Y )) �= MapH(X;Y ):

Lemma 3.3 Let H be a subgroup of Γ and Y be an H {space. Let S =
MapH(Γ; Y ). Then

Y H �= SΓ and Y hFH ’ ShFΓ:

If moreover H 2 F then
SΓ ’ ShFΓ:

Proof Using 3.2 we have

SΓ = MapΓ(pt ; S)
= MapΓ(pt ;MapH(Γ; Y ))
�= MapH(pt ; Y )
= Y H :

ShFΓ = MapΓ(EΓ(F); S)
= MapΓ(EΓ(F);MapH(Γ; Y ))
�= MapH(EΓ(F); Y )
’ MapH(EH(F); Y )
= Y hFH :
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To prove the last assertion, observe that if H 2 F , then EH(F) is a point and
Y hFH = Y H . Therefore ShFΓ ’ SΓ .

Lemma 3.4 For F 2 F and G 2 G the induced maps

B(Γ=F )Γ ! B(Γ=F )hFΓ;

A(Γ=G)Γ ! B(Γ=G)hFΓ

are homotopy equivalences.

Proof The �rst homotopy equivalence follows easily from 3.1 (2) and the sec-
ond part of 3.3. The second map is by 3.1 (2) and the �rst part of 3.3 equivalent
to A0(G)G ! B0(G)hFG and a homotopy equivalence by 3.1 (3).

Proof of Proposition 3.1 Set E = AΓ , F = BΓ and G = BhFΓ . In order
to apply 2.4, we need to check that A(Γ=G)Γ ! B(Γ=G)hFΓ and A(Γ=F )Γ !
B(Γ=F )Γ are weak equivalences for G 2 G and F 2 F . This a consequence of
3.4.

4 Controlled algebra

Let Z be a topological space and R be a ring. Controlled algebra is concerned
with categories of R{modules over Z (M =

L
z2ZMz ) and R{module maps

over Z (� = (�z;z0 : M 0z ! Mz)). We will need an equivariant version of this
theory that has been studied in [BFJR]. Let Γ be a group and X be a Γ{space.
The equivariant continuous control condition EΓcc(X) (consisting of subsets of
(X � [1;1))�2 ) is de�ned in [BFJR, 2.5]. Let p : Y ! X be a continuous Γ{
map. We de�ne a category C(Y ; p) of R{modules over Y�Γ�[1;1): Its objects
are locally �nite (see [BFJR, Section 2.2]) free R{modules M =

L
M(y;γ;t)

subject to the condition that there is a compact subset K � Y�Γ (depending on
M ) such that M(y;γ;t) = 0 unless (y; γ) 2 ΓK . Morphisms � = (�(y;γ;t);(y0;γ0;t0))
are required to satisfy the following condition: there is E 2 EΓcc(X) (depending
on �) such that �(y;γ;t);(y0;γ0;t0) = 0 unless ((p(y); t); (p(y0); t0)) 2 E . Note that
this de�nition depends on the group action we have in mind. The objects of the
full subcategory C0(Y ; p) � C(Y ; p) have by de�nition support in Y �Γ� [1; �],
i.e. for every module M there is � > 0 such that My;γ;t = 0 unless t � �. This
inclusion is a Karoubi �ltration ([CP95, 1.27]) and we denote the quotient by
D(Y ; p). The group Γ acts on all these categories. The �xed point category
DΓ(Y ; p) appeared in [BFJR]. We abbreviate

K(p) = K−1D(Y ; p):
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If p = idX we will write K(X) for K(idX). An important application of
controlled algebra has been the construction of homology theories [PW89]. The
following equivariant version of this result is proven in [BFJR, Section 5 and
6.2].

Theorem 4.1 The functor

X 7! ΩK(X)Γ

from Γ{CW{complexes to spectra is weakly equivalent to

X 7! HOrΓ(X; KR−1):

We will later on need the following simple observation.

Lemma 4.2 K(X � Y ! Y )! K(Y ) is a weak OrΓ{homotopy equivalence.

Proof It is not hard to check that DH(X � Y ;X � Y ! Y )) ! DH(Y ; idY )
is an equivalence of categories for any subgroup H .

The next lemma will later on be the key ingredient in checking condition 3.1
(2).

Lemma 4.3 Let p : X ! Y � Γ=H be a Γ{map. Let X0 = p−1(Y � feHg)
and denote by pH0 : X0 ! Y the H {map induced by p. Then there is a weak
OrΓ{equivalence

K(p) ’ MapH(Γ;K(pH0 )):

Proof For U � Γ=H let X[U ] = p−1(Y � U) and p[U ] = pjX[U ] . For a sub-
group F we abbreviate CF [U ] = DF (X[U ]; p[U ]). Clearly K(pH0 ) = K−1C[eH].
The continuous control condition EΓcc(Y �Γ=H) separates in particular di�er-
ent path components. Therefore we get

D(X; p) �=
Y

γH2Γ=H

C[γH]:

Projections induce a map

K−1D(X; p)!
Y

γH2Γ=H

K−1C[γH] �= MapH(Γ;K(pH0 )):

We have to show that this map is a weak OrΓ{equivalence. Let F be a subgroup
of Γ. Again, the continuous control condition implies

DF (X; p) �=
Y

FγH2FnΓ=H
CF [FγH]:
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Using the fact that K−1 commutes with �xed points and up to weak equiva-
lence with in�nite products [Car95] we obtain

(K−1D(X; p))F �= K−1DF (X; p)

’
Y

FγH2FnΓ=H
K−1CF [FγH]:

Moreover,

K−1CF [FγH] �= K−1CF\γHγ−1
[γH]

�= (K−1C[γH])F\γHγ
−1

�=
� Y
fγH2F (γH)

K−1C[fγH]
�F
:

(Here F (γH) denotes the F {orbit of γH in Γ=H .) We �nish the argument by
observing that� Y

γH2Γ=H

K−1C[γH]
�F �= Y

FγH2FnΓ=H

� Y
fγH2F (γH)

K−1C[fγH]
�F
:

Remark 4.4 In the proof above we used the compatibility of K{theory with
in�nite products from [Car95]. At this point the L{theory version of our split-
ting result needs the additional assumption stated in the introduction. It is
explained in [CP95, p. 756] that for additive categories with involutions An
there is a weak equivalence

L−1
�Y

An
�
�=
Y
L−1An;

provided there is i0 independent of n such that K−iAn = 0 for all i � i0 .
Thus, an L{theory version of 4.3 needs an additional assumption. A su�cient
assumption is that K−iRH = 0 for all su�ciently large i.

Under su�cient control conditions, there is no di�erence between �xed points
and homotopy �xed points. This is an important ingredient in the proof of
injectivity of assembly maps in [CP95] and [Ros03]. We will need the following
version of this result.

Lemma 4.5 Let X be a cocompact Γ{CW{complex with isotropy groups
contained in a family of subgroups F . Then the obvious map

K(X)Γ ! K(X)hFΓ

is a homotopy equivalence.
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Proof This is [Ros03, 6.2]. One proceeds by induction on the equivariant cells
of X . The induction step uses 4.3 and 3.3.

The following result is closely related to [Ros03, 7.1]. Using what is sometimes
called the descent principle it can be used to show split injectivity of (1.2) in the
base case, i.e. for virtually cyclic Γ. (The point of the descent principle is that
it requires only knowledge about �xed points of �nite subgroups.) The in�nite
cyclic and the in�nite dihedral group act properly on R. Virtually cyclic groups
map either onto the integers or the in�nite dihedral group ([FJ95, 2.5]), and act
therefore also properly on R. The restriction of this action to �nite subgroups
is either trivial or factors through the action of Z=2 by a reflection.

Proposition 4.6 Consider R with the aforementioned proper action of a vir-
tual cyclic group V . If H is a �nite subgroup of V , then

K(R)H ! K(R! pt)H

is a weak equivalence.

In order to prove this we will need a slightly di�erent construction of D(Y ; p)
for a continuous Γ{map p : Y ! X where X carries a Γ{equivariant met-
ric d. De�ne the subcategory ~C(Y ; p) � C(Y ; p) whose morphisms have to
satisfy the additional condition, that there is � > 0 (depending on �) such
that �(y;γ;t);(y0;γ0;t0) = 0 unless d(p(y); p(y0)) � �. The corresponding inclusion
~C0(Y ; p) � ~C(Y ; p) is again a Karoubi �ltration. It is not to hard to check, that
its quotient ~D(Y ; p) is equivalent to D(Y ; p) and that this is compatible with
the Γ{actions, cf. [BFJR, 8.8]. However, one has to be a little careful with the
de�nitions to get this even before taking �xed points. In particular, it is at this
point important that all E 2 EΓcc(X) are required to be Γ-invariant, [BFJR,
2.5(iii)].

Lemma 4.7 The K{theory of ~CH(R; idR) vanishes under the assumption of
4.6. (Here we consider the standard metric on R.)

Proof Let x0 2 R be a �xed point for the action of H . We will need various
full subcategories of ~CH(R; idR). Let ~S be the full subcategory whose objects
have support in [x0 − �; x0 + �] � V � [1;1) for some � > 0; ~S+ be the full
subcategory whose objects have support in [x0; x0 + �] � V � [1;1) for some
� > 0; ~S− be the full subcategory whose objects have support in [x0−�; x0]�
V � [1;1) for some � > 0; ~C+ be the full subcategory whose objects have
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support in [x0;1)�V � [1;1); ~C− be the full subcategory whose objects have
support in (−1; x0]�V �[1;1). Then ~S � ~CH(R; idR), ~S+ � ~C+ and ~S− � ~C−
are Karoubi �ltrations and we denote the quotient categories by ~Q, ~Q+ and
~Q− . It is not hard to check that the �rst of these quotients is equivalent to
the direct sum of the two later. The K{theory of ~Q is therefore the sum of
the K{theories of ~Q+ and ~Q− . Applying K−1 to Karoubi �ltrations gives a
homotopy �bration by [CP95, 1.28]. Putting all this together, we see that it
su�ces to show that the K{theory of each of our �ve full subcategories is trivial.
The map (x; v; t) 7! ((x− x0)=2 + x0; v; t+ 1) induces an Eilenberg swindle on
~S , ~S+ and ~S− ; the maps (x; v; t) 7! (x + 1; v; t) and (x; v; t) 7! (x − 1; v; t)
induce Eilenberg swindles on ~C+ and ~C− .

Note that it is important to use the category ~C rather than C for this argument.
For example, the corresponding subcategory S of CH(R; idR) is not a Karoubi
�ltration.

Proof of 4.6 Let p denote the projection R! pt . We will use the following
diagram.

~C0(R; idR)H //

F1

��

~C(R; idR)H //

F2

��

~D(R; idR)H

F3

��

~C0(R; p)H // ~C(R; p)H // ~D(R; p)H

It is not hard to check that F1 is an equivalence of categories. The K{theory of
~C(R; idR)H vanishes by 4.7. The map (x; v; t) 7! (x; v; t+ 1) gives an Eilenberg
swindle on ~C(R; p)H and its K{theory also vanishes. As used before, applying
K−1 to Karoubi �ltrations gives a homotopy �bration by [CP95, 1.28]. Thus
F3 induces an isomorphism in K{theory. The result follows, since ~D(R; q) =
D(R; q) for any q as noted before 4.7.

5 The coe�cient spectra

This section contains the proof of Theorem 1.3 from the introduction. As before,
we �x a ring R and a group Γ. For a subgroup H of Γ let

pΓ=H : Γ=H � EΓ(FIN )! Γ=H

be the obvious projections. We de�ne two OrΓ spectra A and B by

A(Γ=H) = K(Γ=H � EΓ(FIN ));
B(Γ=H) = K(pΓ=H):
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Both, A and B are naturally equipped with a Γ{action. There is an obvious
Γ{equivariant map of OrΓ{spectra A! B.

We will show that these spectra satisfy the hypothesis of 3.1 with respect to
the families FIN � VC . For 3.1 (1) this follows from 4.1, where K is the
algebraic K{theory OrΓ{spectrum KR−1 . In 5.1 we will prove that 3.1 (2)
is satis�ed. The �nal condition 3.1 (3) will follow from 5.2. Moreover, it is an
easy consequence of 4.1 and 4.2 that ΩBΓ is weakly equivalent to KR−1 and
therefore Theorem 1.3 will be a consequence of the splitting result 3.1.

For a subgroup H of Γ let

A0(H) = K(resHΓ EΓ(FIN ));
B0(H) = K(resHΓ (EΓ(FIN )! pt)):

Here resHΓ denotes the forgetful functor from Γ{spaces to H {spaces.

The next statement is an immediate consequence of 4.3 and veri�es 3.1 (2).

Lemma 5.1 There are natural weak OrΓ equivalences

A(Γ=H) = MapH(Γ;E0(H));
B(Γ=H) = MapH(Γ;B0(H)):

Finally, we verify 3.1 (3).

Proposition 5.2 For V 2 VC the obvious map

A0(V )V = K(resVΓEΓ(FIN ))V

��

B0(V )hFV = K(resHΓ (EΓ(FIN )! pt))hFINV

is a homotopy equivalence.

Proof We can choose EV (FIN ) = R with the proper action used towards
the end of the previous section. We will use the following commutative diagram.

K(R)V
�0

//

�1

��

A0(V )V

��

K(R)hFINV

�0

��

K(R! pt)hFINV
�1

// B0(V )hFINV
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The maps labeled �i and �i are all homotopy equivalences: �0 by the fact that
resVΓEΓ(FIN )) is also an EV (FIN ) and 4.1 and �1 by 4.5. To study the
maps labeled �i we need a fact about homotopy �xed points: if an equivariant
map induces a homotopy equivalence on �xed points for �nite subgroups, then
it induces a homotopy equivalence on homotopy �xed points with respect to
FIN , see [Ros03, 4.1]. Thus �1 is a homotopy equivalence by 4.2. The map
K(R) ! K(R ! pt) induces a homotopy equivalence on �xed points under all
�nite subgroups of V by 4.6 and therefore �0 is also a homotopy equivalence.
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