ISSN 1472-2739 (on-line) 1472-2747 (printed) 1225

Algebraic & Geometric Topology
Volume 3 (2003) 1225{1256 AI G

Published: 13 December 2003

Existence of foliations
on 4{manifolds

Alexandru Scorpan

Abstract We present existence results for certain singular 2{dimensional
foliations on 4{manifolds. The singularities can be chosen to be simple,
for example the same as those that appear in Lefschetz pencils. There is a
wealth of such creatures on most 4{manifolds, and they are rather flexible:
in many cases, one can prescribe surfaces to be transverse or be leaves of
these foliations.

The purpose of this paper is to o er objects, hoping for a future theory to
be developed on them. For example, foliations that are taut might o er
genus bounds for embedded surfaces (Kronheimer’s conjecture).

AMS Classi cation 57R30; 57N13, 32Q60
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1 Introduction

Foliations play a very important role in the study of 3{manifolds, but almost
none so far in the study of 4{manifolds. There are hints, though, that they
should play an important role here as well. For example, for M* = N® S,
Kronheimer obtained genus bounds for embedded surfaces from certain taut
foliations [11], which are sharper than the ones coming from Seiberg{Witten
basic classes. He conjectured that such bounds might hold in general.

1.1 Summary

(In this paper, all foliations will be 2{dimensional and oriented, all mani-
folds will be 4{dimensional, closed and oriented; unless otherwise speci ed,
of course.)

For a foliation F to exist on a manifold M, the tangent bundle must split
Tm = Te  Ng. Since in general that does not happen, one must allow for
singularities of F. An important example is [6]:
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cp?

Figure 1: A Lefschetz pencil

Example 1.1 S.K. Donaldson 1999 Let J be an almost-complex structure
on M that admits a compatible symplectic structure (i.e. J admits a closed
2{form 1 such that 1(x;Jx) > 0 and !'(Jx;Jy) = '(x;y)). Then J can be
deformed to an almost-complex structure J' such that M admits a Lefschetz
pencil with J°{holomorphic bers.

A Lefschetz pencil is a singular bration M ¥ CP! with singularities modeled
locally by
(z1;22) ¥ 2172, or  (21;22) #Y¥ 2125

for suitable local complex coordinates (compatible with the orientation of M).
Note that all bers pass through all singularities of type z1=z,, see Figure 1.
The existence of a Lefschetz pencil is equivalent to the existence of a symplectic
structure. See [9, ch. 8] for a survey.

A main result of this paper (Theorem 2.1) is that, under mild homological
conditions on M, any almost-complex structure J on M can be deformed to
a J" that admits a singular foliation with J’{holomorphic leaves, and with
singularities of the same type as those appearing in a Lefschetz pencil. In fact,
the singularities can be chosen to be all of z;=z, {type (\pencil” singularities),
and thus could be eliminated by blow-ups. Other singularities can also be
chosen (or even just a single complicated singularity), see Section 4.6.

By allowing singularities with reversed orientations, this existence result can
be generalized to spin®-structures (Theorem 4.15). (Spin©-structures are more
general than almost-complex structures and always exist on any 4{manifold.)
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Also, under certain natural conditions, given embedded surfaces can be ar-
ranged to be transversal to the foliations (Theorem 2.7), or even to be leaves
of the foliations (Theorem 2.8).

The main tools used in proving our results are: Thurston’s h{principle for
foliations with codimension 2 (see 4.1 below), which takes care of integrating
plane- elds and reduces the existence problem to bundle theory; and the Dold{
Whitney Theorem characterizing bundles by their characteristic classes (see 4.6
below). In a nutshell, we build a bundle with the same characteristic classes as
Tm, We conclude it is Ty, we let Thurston integrate to a foliation.

This paper presents existence results for singular 2{dimensional foliations on
4{manifolds. We o er a wealth of objects to be used in a future theory, and
try to stimulate interest in this area.

The paper is organized as follows: Section 2 contains the statements of most
results of this paper, Section 3 0 ers a quick survey of the context in foliation
theory, Section 4 presents the proofs of our results, while Section 5 contains
left-overs.

1.2 Why bother?

One hint that foliations on 4{manifolds are worth studying (especially taut
foliations, see Section 3.2 for a discussion) are Kronheimer’s results (see Theo-
rem 3.8 and Conjecture 3.9 below). Taut foliations might o er minimal genus
bounds for embedded surfaces, see Section 3.3.

In a slightly larger context, the relationship (if any) between foliations on 4{
manifolds and Seiberg{Witten theory is worth elucidating.

Another question worth asking is: For what foliations is the induced almost-
complex structure \nice" (i.e. close to symplectic). One such problem asks
for which foliations does the induced almost-complex structure have Gromov
compactness (i.e. whether the space of J{holomorphic curves of a xed genus
and homology class is compact; see Question 3.3).

In general, one can hope that foliations will help better visualize, manipulate
and understand almost-complex structures, maybe in a manner similar to the
one in which open-book decompositions help understand contact structures on
3{manifolds (see also Corollary 3.2).
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2 Statements

(In this paper, Poincare duality will be used blindly, submanifolds and the ho-

mology classes they represent will frequently be denoted with the same symbol,

and top (co)homology classes will be paired with fundamental cycles with-

out comment. For example, (M) — could be written more elegantly as
(M) —( L[ )IM], while c1(L) = is ca(L) =PD( 1).)

First of all, notice that any (non-singular) foliation F on M induces almost-
complex structures: Pick a Riemannian metric g, embed the normal bundle
Ng in Ty, then de ne an almost-complex structure Je to be the rotation by

=2 (respecting orientations) in both T and Ng. It has the property that the
leaves of F are Jg{holomorphic. (In general, we will call an almost-complex
structure J compatible with a foliation F if J makes the leaves of F be J{
holomorphic.) The rst Chern class c¢1(Jg) is well-de ned independent of the
choices made. We have:

c1(Jr) = e(Te) +e(Ng)
(M) =e(Tr) e(Ng)
If the foliation F has singularities, then the second equality above fails, and

the defect (M) —e(Tg) e(Ng) measures the number of singularities (or, for
more general singularities, their complexity, see Theorem 2.5).

2.1 Main existence results

Call a class ¢ 2 H?(M; Z) a complex class of the 4{manifold M if
c wy(M) (mod2) and pi(M)=c*—2 (M)

An element ¢ 2 H?(M;Z) is a complex class if and only if there is an al-
most-complex structure J on M such that ¢;(Tpm;J) = c¢. One direction is
elementary: If J is such a structure, then (Ty;J) is a complex-plane bundle,
and thus has ¢1(Tp) wa(Tm) (mod 2) and p1(Tm) = ¢1(Tm) — 2¢2(Tm).
The converse was proved in [19, 10] (and will appear here re-proved as part of
Corollary 4.9).
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Theorem 2.1 (Existence Theorem) Let ¢ 2 H?(M;Z) be a complex class,
and let c = + be any splitting such that (M) — 0. Choose any
combinationof n= (M)—  singularities modeled on the levels of the complex
functions (z1;z2) #¥ z1=z, or (z1;22) #¥ z32,. Then there is a singular
foliation F with e(Tg) = , e(Ng) = , and with n singularities as prescribed.

Remark 2.2 Due to the singularities, the bundles T and Ng are only de-

ned on M n fsingularitiesg. Their Euler classes a priori belong to H?(M n
fsingularitiesg; Z), but can be pulled-back to H?(M; Z), since the isolated sin-
gularities can be chosen to a ect only the 4-skeleton of M, and thus to not
influence H?2.

Remark 2.3 Unlike a Lefschetz pencil, in general not all leaves of the foliation
pass through the z;=z,{singularities. See Example 3.1 for creating a leaf that
touches no singularity.

2.2 Restrictions

Finding a splitting ¢ = + with (M) — 0 is possible for most 4{
manifolds that admit almost-complex structures. For example, if
(M) 0

(e.g. for all simply-connected M ’s), then one can choose either one of or
to be 0, and conclude that such foliations exist. Or:

Lemma 2.4 If b; (M) > 0, then there are in nitely many splittings c = +

with (M) — 0 (and thus in nitely many homotopy types of foliations).
Proof If b; (M) > 0, there is a class  with > 0. Choose =c—k
and =k (k2Z). Then (M)— = (M)—kc +k? 2, and for k big
enough it will be positive. ]

The main restriction to the existence of such foliations remains, of course, the
existence of a complex class. But Theorem 2.1 can be generalized for the
case when c¢ is merely an integral lift of wo(M), see Theorem 4.15. In that
case, singularities are also modeled using local complex coordinates, but are
allowed to be compatible either with the orientation of M or with the opposite
orientation.
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This is similar to the generalization of Lefschetz pencils to achiral Lefschetz
pencils, see [9, x8.4] and Section 4.7. As it happens, the only known obstruc-
tion to the existence of an achiral Lefschetz pencil ([9, 8.4.12{13]) is the only
obstruction to the existence of such an \achiral™ singular foliation (see Section
4.7 and Proposition 4.18).

2.3 Singularities

The singularities of F are exactly the singularities that appear in a Lefschetz
pencil. They can be chosen in either combination of types as long as their
numberis n= (M) — . For example, there are always foliations with only
z1=z>{singularities, that can thus be eliminated by blowing-up. In fact, other
choices of singularities are possible.

Namely, for any isolated singularity p of a foliation that is compatible with an
almost-complex structure we will de ne its Hopf degree degp 0 (essentially
a Hopf invariant of the tangent plane eld above a small 3{sphere around p;
see Section 4.6). Then:

Theorem 2.5 Let ¢ 2 H2(M;Z) be a complex class, and let c = + be

any splitting such that (M) — 0. Then, for any choice of (positive)
singularities fpy;:::;pxg S0 I'Er;at

degpi = (M) —
there is a singular foliation F with e(Tg) = , e(Ng) = , and with the chosen
singularities.

In analogy to the Poincare{Hopf theorem on indexes of vector elds, a converse
to the above is true:

Proposition 2.6 For any singular foliation F on M with isolated singularities
(M) = degpi +e(Te) e(Ng)

2.4 Prescribing leaves and closed transversals

Let F be a foliation. If S is a closed transversal of F, then we must have
e(TF) S=¢e(Trjs)=e(Ns)=S S
e(Nr) S=e(Ngjs) =¢e(Ts) = (S)

These conditions are, in fact, su cient:
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Theorem 2.7 (Closed transversal) Let S be a closed connected surface. Let

¢ be a complex class with a splitting c= + such that (M) — 0. If
S)= S S S= S
then there is a singular foliation F with e(Te) = , e(Ng) = , and having S

as a closed transversal.

If, on the other hand, S is a closed leaf of F, then we have
e(Tr) S=e(Trjs) =e(Ts) = (S)
e(Nr) S=e(Ngrjs)=e(Ns) =S S
Conversely:

Theorem 2.8 (Closed leaf) Let S be a closed connected surface with S S
0. Let ¢ be a complex class with a splitting c= + such that (M) —
S S.If

S)= S SS= S
then there is a singular foliation F with e(Tg) = , e(Ng) = , and having S
as a closed leaf. (The number of singularities along S is S S.)

(Surfaces with S S < 0 could be made leaves of achiral singular foliations,
using singularities with reversed orientations, see 4.25.)

An immediate consequence of the above is:

Corollary 2.9 (Trivial tori) A homologically-trivial torus can always be
made a leaf or a transversal of a foliation.

Such flexibility is a strong suggestion that more rigidity is needed in order to
actually catch any of the topology of M with the aid of foliations. Requiring
foliations to be taut seems a natural suggestion. (Compare with Example 3.1.)

The conditions (S)= SandS S= S from28addto (S)+S S =
c S. The conditions (S) = Sand S S = S from 2.7 also add to
(S)+S S =c S. Forgood choices of and , thatissu cient:

Corollary 2.10 (Adjunct surfaces) Let c be a complex class, and let S be a
closed connected surface such that
(8)+S S=c¢ S

If (M)— (S) O, then there is a singular foliation F; with e(Tg,) = S that
has S as a closed transversal. If further (M)— (S) S S 0, then there
is also a singular foliation F, with e(Ng,) = S that has S as a leaf (with S S
singularities on it).
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Proof For Fi, pick =S and =c¢—S. For Fp,pick =c—Sand =S.
(In both cases = (S),andso (M) — 0.) Apply 2.8 or 2.7. O

As a consequence of (the proof of) 2.10, we can also re-prove the following [2]:

Proposition 2.11 (C. Bohr 2000) Let S be an embedded closed connected
surface and ¢ a complex class. Then there is an almost-complex structure J
with ¢1(J) = ¢ such that S is J{holomorphic if and only if (S)+S S =c S.

Proof The positivity condition (M)— (S) 0 isonly needed for integrating
the singularities of the foliations, and thus it can be ignored here. We have a
(singular) plane eld Tg that is transverse to S, and a (singular) plane eld
Ng that can be arranged to be tangent to S. These plane elds induce an
almost-complex structure Jg that leaves Ts invariant. O

3 Context

3.1 Foliations and Gromov compactness
First, an example that shows the flexibility of foliations:

Example 3.1 Y. Eliashberg Creating a torus leaf. Let F be any foliation on
a 4{manifold M. Let c: S ¥ M be any embedding. The curve ¢ can always
be slightly perturbed to be transverse to F. Choose another local coordinate
near c, transverse both to F and to c, and think of it as time (with ¢ appearing
at time t = 0). Start at time t = —1. As time goes on, begin pushing more and
more the leaves of F parallel with the direction of ¢, wrapping them around
more and more as time approaches t = 0 (see Figures 2 and 3). At t =0, we can

t in a torus leaf, with the interior of the torus foliated by leaves di eomorphic
to R? | a Reeb component. As time goes on from t = 0, we play the movie
backward. Notice that the new foliation is homotopic with the one we started
with(i.e. the tangent plane elds are homotopic through integrable plane elds).
(In particular, we have a geometric proof for part of Corollary 2.9.)

Corollary 3.2 Any almost-complex structure is homotopic to one for which
Gromov compactness fails.
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t= 03 t=0

Figure 2: Creating a torus leaf (3D movie)

\Gromov compactness™ here means the compactness of the space of all J{
holomorphic curves (curve = real surface). In other words, any sequence of
holomorphic curves fn: ( ;jn) ¥ (M;J) has a subsequence converging to a
limit f: ( ;j) ¥ (M;J) that is holomorphic (and may have nodal singular-
ities; the limit domain is obtained by collapsing circles in ). Gromov
compactness always holds for almost-complex structures that admit symplectic
structures. (In fact, the essential property needed is that the areas of f,( ) be
bounded; for a thorough discussion, see [1].)

Proof By Theorem 2.1, an almost-complex structure can be deformed till there
is a singular foliation F with all leaves holomorphic. As in Example 3.1 above,
create a torus leaf. Actually, by \freezing" the movie at t = 0 (expanding the
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1

torus leaf

t= 03 t=0

Figure 3: Create torus leaf (2D movie)

frame at t=0 to all t2[—";"]), create a lot of tori. Now pick a second curve,
orthogonal to these tori, and apply that example again. What appears in the
end is a torus that explodes to make room for a new Reeb component. Thinking
in terms of an almost-complex structure J induced by the nal foliation, we
have a sequence of J{holomorphic tori that has no decent limit. O

Question 3.3 (R. Kirby 2002) Let F be a foliation on M, and J an al-
most-complex structure making the leaves J{holomorphic. What conditions
imposed on F insure that Gromov compactness holds for J?

In the extreme, if F is a Lefschetz pencil, then Gromov compactness holds (the
manifold is symplectic). Compare also with Proposition 3.11.

The flexibility from our examples, at least, is done away with if we require the
foliations to be taut (since Reeb components kill tautness).
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3.2 Taut foliations

A foliation F on a Riemannian manifold (M; g) is called minimal if all its leaves
are minimal surfaces in (M; g) (i.e. they locally minimize area; for any compact
piece K of a leaf, any small perturbation of K rel @K will have bigger area;
that is equivalent to each leaf having zero mean curvature).

A foliation F on M is called taut if there is a Riemannian metric g such that
F is minimal in (M;g). (See [3, ch. 10] for a general discussion.)

Remark 3.4 In the special case of a codimension-1 foliation, tautness is equiv-
alent to the existence of a 1{manifold transverse to F and crossing all the leaves.
A similar condition is too strong for higher codimensions.

Tautness can be expressed in terms of 2{forms [14]:

Theorem 3.5 (H. Rummler 1979) Let F be a foliation on M. Then F is
taut if and only if there is a 2{form  such that j eas = 0 and d jiear = 0.

We write \ jileat = 0 and d jiear = 0" as shorthand for \ ( 1; 2) > 0 and
d (1; 2;2) =0, for any orienting pair 1; 2 Tg andany z2 T "

The strong link between 2{forms and minimality of foliations is also suggested
(via almost-complex structures) by the following formula:

Lemma 3.6 Let g(x;y) = hx;yi be a Riemannian metric on M* and r its
Levi-Civita connection. Let J be any g{orthogonal almost-complex structure,

and let T(x;y) = hJx; yi be its fundamental 2{form. Let x, z be any vector
elds on M. Then:

1] 1
d'(x;Jx;2) = [x;Ix]; Iz — rx+r;Jx z
The term [x; Jx] measures the integrability of the J{holomorphic plane eld
Rhx; Ixi, while the normal component of the term r, X + r; Jx is the mean

curvature of the plane eld Rhx;Jxi, and thus measures its g{minimality.
(Lemma 3.6 will be proved at the end of the paper, in Section 5.)
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3.3 Minimal genus of embedded surfaces

Given any class a 2 Hy(M; Z), there are always embedded surfaces in M that
represent it. An open problem is to determine how simple such surfaces can
be, or, in other words, what is the minimal genus that a surface representing a
can have. (Remember that (S) =2 —2g(S), so minimum genus is maximum
Euler characteristic.)

Notice that, if S is a J{holomorphic surface for some almost-complex structure
J, then
(S)+S S=c1J) S

(simply because ¢1(J) S =c¢1(Tmjs) =c1(Ts) +c1(Ns) = (S)+S S). This
equality is known as the \adjunction formula™ for S.

In general, the main and most powerful tool for obtaining genus bounds comes
from Seiberg{Witten theory [12, 13]:

Proposition 3.7 (Adjunction Inequality) Let S be any embedded surface
in M. Assume that either M is of Seiberg{Witten simple type and S has no
sphere components, orthat S S 0. Then, for any Seiberg{Witten basic class
", we have:

(S)+s s 'S

In particular, if J is an almost-complex structure admitting a symplectic struc-
ture, then
(S)+S S @) S

Nonetheless, the bounds o ered by Seiberg{Witten basic classes are not always
sharp. For example, in the case of manifolds M = N2 S!, P. Kronheimer has
proved in [11] that foliations give better bounds:

Theorem 3.8 (P. Kronheimer 1999) Consider M = N3 S!, with N a
closed irreducible 3{manifold. Let F be a taut foliation in N, with Euler class
" =e(Tg). Let " be the image of " in H2(N  S!). Then, for any embedded
surface S in M, without sphere components, we have

(S)+s s 'S
In general, " is not a Seiberg{Witten basic class. (Nonetheless, the proof of
Theorem 3.8 does use Seiberg{Witten theory: the taut foliation F is perturbed

to a tight contact structure, which is then symplectically lled in a suitable way,
and a version of the Seiberg{Witten invariants is used: ** is a \monopole class".)
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Taut foliations F on 3{manifolds are well-understood, and are strongly related
to minimal genus surfaces there: If N2 is a closed irreducible 3{manifold, then
an embedded surface S has minimal genus if and only if it is the leaf of a taut
foliation of N [18, 8]. (A similar statement on 4{manifolds is not known.)

A taut foliation F on N2 induces an obvious product foliation F =F S! on
M =N S! (with leaves Leaf fptg). Then F is also taut (pick a product
metric), " = e(Tg) is the pull-back of " = e(T), and the almost-complex
structure that F determines has c1(Jg) = " = e(Tg). One can then try to
generalize Theorem 3.8 as

Conjecture 3.9 (P. Kronheimer 1999) Let F be a taut foliation on M*#, and
Je be an almost-complex structure induced by F. Then, for any embedded
surface S without sphere components, we have

$)+S S ca(@F) S

A few extra requirements are needed, e.g. to exclude manifolds like S  S2.
Kronheimer also proposes that the foliations be allowed singularities.

Remark 3.10 The situation in Theorem 3.8 has another peculiarity: F ad-
mits transverse foliations. Indeed, since F has codimension 1, any nowhere-zero
vector- eld in N3 normal to F integrates to a 1{dimensional foliation of N
that is transverse to F. By multiplying its leaves by S!, this 1{dimensional
foliation induces a 2{dimensional foliation in M that is transverse to F.

One could thus think of strengthening the hypothesis of Conjecture 3.9 by
requiring F not only to be taut, but also to admit a transverse foliation. One
might push things even further and ask that the second foliation be taut as
well. But then one almost runs into:

Proposition 3.11 (Two taut makes one symplectic) Let F and G be trans-
verse foliations on M*. If there is a metric g that makes both F and G be
minimal and orthogonal, then M must admit a symplectic structure. Therefore,
for any embedded surface S we have

S)+S S (k) S
(This is an immediate consequence of Lemma 3.6.)

Remark 3.12 No taut, no symplectic. At the other extreme, if M admits
a non-taut foliation F, then no almost-complex structure compatible with F
admits symplectic structures (or, more directly, M admits no symplectic struc-
tures making the leaves of F symplectic submanifolds).
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4 Proofs

4.1 Thurston’s theorem

The tool that we use for obtaining foliations is the h{principle discovered by
W. Thurston [17] for such objects:

Theorem 4.1 (W. Thurston 1974) Let T be a 2{plane eld on a manifold
M of dimension at least 4. Let K be a compact subset of M such that T is
completely integrable in a neighborhood of K (K can be empty). Then T is
homotopic rel K to a completely integrable plane eld.

This theorem is also true on 3{manifolds (see [16]), but not in a relative ver-
sion. The theorem above is proved by rst lifting the plane eld to a Haefliger
structure, and then deforming the latter to become a foliation using the main
theorem of [17]. The latter result has an alternative proof in [7].

Remark 4.2 A problem with using Thurston’s theorem is that, when following
its proof to build foliations, one only gets non-taut foliations. Indeed, certain
holes in the foliation being built have to be lled-in with Reeb components.

Thurston’s theorem reduces the problem of building foliations to the problem of

nding singular plane- elds on M, or, more exactly, singular splittings Ty =
T N. \Singular" because the di erence between Ty, and thesum T N will
be a surgery modi cation that we present next:

4.2 Surgery modi cations

If E ¥ M is an oriented 4{plane bundle and B is a 4{ball around a point X,
then we can cut out Ejg and glue it back in using an automorphism of Ejgg .
Choose a chart in M around B and use some quaternion coordinates R* H,
sothat @B  S3, the sphere of units in H. Since the ber of E is 4{dimensional
and Ejg is trivial, we can choose some quaternion bundle-coordinates on E,
sothat Ejg H B. Then Ejgg H S3.

Quaternions can be used to represent SO(4) acting on R* as S S 1
acting on H through [g+;q-]h = g+-hg=!. For any m;n 2 Z, we de ne a map
S3 ¥ SO(4) by

mn(@h =g™hg"
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where ¢ 2 S®* and h 2 H R4 Notice that the map m:n determines an
element of 3SO(4). In fact, we have the isomorphism Z 7Z 3S0(4)
given by (m;n) ¥ [ m;n] (see [15]). Homotopically we have [ m:n] + [ pql =
min pg = [ m+p;n+l-

The (m;n){surgery modi cation of E is then de ned as follows: Pick a point
x in M and a 4{ball B around it. Cut Ejg out from E and glue it back using

the automorphism _ _
Ejes —2 Ejes

(I
(x;h) #1 X; mn(X)h
Denote the resulting bundle by Em:.n.

Remark 4.3 It is equivalent to perform (m;n){surgery at one point X, or

To understand the result of such a modi cation, we study its characteristic
classes:

4.3 Characteristic classes
An oriented k{bundle over S" is uniquely determined by the homotopy class
of an equatorial gluing map S"~1 ¥ SO(k), and thus Vect, S" n—1S0O(k).

In particular, all oriented 4{bundles on S* correspond one-to-one with 3SO(4).
Therefore all of them can be obtained by (m; n){surgery modi cations. Denote
by Rf,, the bundle on S* obtained from the trivial bundle R* = R* §*
through a (m; n){modi cation.

Note that addition of gluing maps in  3SO(4) survives as addition of character-
istic classes of bundles in H (S*;Z). In particular, for any characteristic class
¢, we have

¢(Bhn) = Me(RY) + Ne(R51)

It is known that (1;1){surgery on R* S* will yield the tangent bundle Tg4 of
S* (see [15]). Since e(Tgs) = (S*) = 2, we deduce that
e(R1o) + e(Rg;) = 2
On the other hand, T« R =R®, s0 p1(Tes) = p1(T«  R) =0, and so
P1(R10) + P1(R5) =0
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The bundle K‘f;—l is obtained by surgery with 1._1(q)h = ghg™*. The latter
preserves the real line R H of the ber, and therefore the bundle K‘l‘;_l splits
0 a trivial real-line bundle. Therefore e(R‘l‘;_l) = 0. That means

e(R1o) — e(Rgy) =0
Combining with the above yields
e(Rto) =1 e(Rj1) =1

Remark 4.4 Complex structures on quaternions The complex plane C? can
be identi ed with the quaternions H in two ways:

(1) (z1;z2) z1 + z2j (and then complex scalars are multiplying in H on
the left, and the natural orientations of C2 and H are preserved; quater-
nion multiplication on the right is C{linear, and S° acting on the right
identi es with SU(2))

(2) (z1;z2) z1 + jzp (with complex scalars multiplying on the right, but

with the orientations reversed; quaternions multiplying on the left act
C{linearly, S® on the left is SU(2)).

(We will make use of both of these identi cations: (1) will be used here, while
(2) in x4.7.)

We identify C? with H using (z1;22) z1+2Z»j. Since the bundle Kg;l is built
using the map o:1(q)h = hq, and the latter preserves multiplication by complex
scalars on the left, we deduce that K‘é;l can be seen as a complex-plane bundle
(the same is true for all Rg;n). Thus Rg;l has well-de ned Chern classes. Since
c2(Rg.1) = e(Rg.1) and c1(Rg) 2 H2(S*), we see that

c1(Rg) =0 c2(Rg;1) =1
Since for complex bundles we have p; = cf — 2¢, we deduce that
pl(Kg;l) =-2
and therefore, combining with the above,
pl(Klll;O) =2
Therefore:
e(Kﬁn;n) =m+n pl(K?n;n) =2m-—2n

In conclusion, for any oriented 4{plane bundle E ¥ S*, we have

e(Emn) = &(E) + m+n p1(Emn) = p1(E) + 2m — 2n
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This change of characteristic classes for bundles over S* is also what hap-
pens over a general 4{manifold M. This can be seen, for example, using the
obstruction-theoretic de nition of characteristic classes (de ned locally cell-by-
cell): away from the modi cation, it does not matter if we are left with a small
neighborhood of the south pole, or with M n Ball. (Or, one could argue that
M nBall; BSO(4) is nite, while p; are e are rational, etc.)

Lemma 4.5 For any 4{plane bundle E ¥ M, a (m;n){modi cation of E
will change its characteristic classes as follows:

e(Emnn) =e(E)+m+n P1(Em:n) = p1(E) +2m —2n

4.4 Obtaining the tangent bundle

Assume ¢ 2 H2(M; Z) is an integral lift of the Stiefel{Whitney class wo(M) 2
H2(M; Z,). For any splitting c = + , build the complex-line bundles L and
L suchthatciy(L )= andc(L)= .LetE=L L . Thenci(E)=c
and c;(E) = . Thus, as a real 4{plane bundle, E has wz(E) = wy(M).

If we can modify E to an E’ so that we also have e(E") = (M) and p1(E") =
p1(M), then E* Ty . Thatis due the fact that characteristic classes determine
bundles up to isomorphism [4]:

Theorem 4.6 (A. Dold & H. Whitney 1959) Let E; ¥ M and E; ¥ M
be two oriented 4{plane bundles over an oriented 4{manifold M. If wo(E;) =
w2(E2), e(E1) = e(Ez), and p1(E1) = p1(E2), then E;  E».
Now, since
e(Emn)=e(E)+m+n= +m-+n
P1(Em:n) = p1(E) + 2m — 2n = ¢1(E)? — 2¢2(E) + 2m — 2n
=c¢?—2 +2m-—2n
we obtain that e(Em:n) = eglM) and p1(Em:n) = p1(Tm) if and only if
m = %ﬁl(M)+2 (M) —c?
n=3% —pi(M)+2 (M)+c?—4
Remark 4.7 These m and n are always integers. The quick argument is:
on the one hand, the formula for m above gives exactly the dimension of the
Seiberg{Witten moduli space associated to the spin®-structure given by c (it

is the index of a di erential operator), and thus is known to be integral; on the
other hand, n=—m+ (M) —

Algebraic & Geometric Topology, Volume 3 (2003)



1242 Alexandru Scorpan

In conclusion:

Proposition 4.8 (Splitting the Tangent Bundle) Let ; 2 H?(M;Z) be
such that c = + is an integral lift of wo(M) 2 H?(M;Z,). Let L ;L be
complex-line bundles with c3(L ) = and ci(L ) = . Then

L Ld)mwn Tm

where
U 2
m=z p(M)+2 (M)—c
n=%1—-—pM)+2 (M)+c*—4
In the case =0, this is a statement that we learned (together with its proof)

from R. Kirby’s lectures at U. C. Berkeley. (The advantage of using a more
complicated sum L L versus the simpler L, R? will become apparent
when we move toward foliations.)

In the special case when ¢ is a complex class (i.e. when ¢, besides being an
integral lift of wo(M), also satis es p1(M) =c2—2 (M)), we have

m=20 n= (M)—ab

Since m = 0, that means, in particular, that the surgery modi cation is made
with  o.n(q)h = hg", which is C{linear, and thus will preserve the complex
structure of L L . Therefore Ty inherits a complex-structure. We have
thus built an almost-complex structure J on M with ¢;(Tm;J) =c.

Corollary 4.9 Let ; 2 H?(M;Z) be such that + is a complex class.

Let L ;L be complex-line bundles with c;(L ) = and ci(L ) = . Then
M admits an almost-complex structure J with ¢;(J) = + , and, for n =
(M) — |, we have

(Tm:;Jd) (L L )oin

as complex bundles.

Remark 4.10 If (M) — 0, then the complex bundle (Ty;J) can be
obtained from L L by surgery modi cationsat n= (M)—  points using
0;1-

Through the isomorphism (L L )mn  Tm, the line-bundles L and L
survive as plane- elds E and E in Ty, de ned o the modi cation points.
If we nd a way to prolong E across its singularities by a singular foliation,
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then we could use Thurston’s Theorem 4.1 (in its relative version) to integrate
the whole E to a foliation F (while keeping it xed at the singularities). This
foliation would then, o the singularities, have Tg L and Ng L , and
thus have well-de ned Euler classes e(Te) = and e(Ng) = in H3(M;Z)
(since the isolated singular points cannot influence H?, see Remark 2.2).

Finding nice singularities is what we do next:

4.5 Singularities

We keep identifying H ~ C? using z; +22j  (z1;22). In particular Rh1;ii = C
inHis C 0in C?.

Consider the action of 1 on S® M. Since 01(q) 1 =g and o1 is C{linear,
we deduce that ¢.1(q) C = Cq. Ig other words, the trivial subbundle S® C
is taken by .1 to the subbundle ~ fqg Cg whose ber over a point g of S3
is the complex plane spanned by g.

Assume now that c = + is a complex class and that n = (M) — 0.
Then we can build Ty from L L as above, by modifying at n points using
0;1-

Choose coordinates on a small 4{ball B around a modi cation point x so that
the bersof L on S®=@B are C M. Then ¢ will glue the berof L over
q 2 S® to the plane Cq. The latter can be identi ed though with the tangent
planes to the submanifolds Cq of the unit ball in C? bounded by S2. Or, in
other words, g 7% .1(q) L is tangent to the levels of the complex function
(z1;22) #Y¥ z1=2, (from C?n0 to CP!).

These levels can be used to llI-in the singularity of the foliation F obtained
by deforming L (see Figure 4). We call such a ( lled-in) singularity a pencil
singularity .

Since we are dealing with bundles, though, what essentially matters when lling
a singularity is only the homotopy class of its boundary plane eld g #¥ 0.1(q)
L ,seenasamap S® ¥ CP!. That is completely determined by the homotopy
class of any spanning vector eld (for example g 7% .1(q) 1=q), seen as a
map S ¥ S3.

Remark 4.11 The two homotopy classes are related by the Hopf map § : S° ¥
CP! = S?, which establishes the isomorphism 3S®  3S2. Technically, a map
u: S* 1S3 has a degree, while a map v: S® ¥ CP! has a Hopf invariant.
When v = C u (that is: v = hu), the two coincide, and we will call them
\degree" in both instances.
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Figure 4: Filling with a pencil singularity.

Consider the levels of the complex function (z1;z;) #¥ z1z,. The tangent
space to the level through (z1;z,) is the complex span of (z1;—z2). The latter,
restricted to a map S ¥ S3, has degree 1. The plane eld E,jss also has
degree 1 (since it is spanned by q A q). Therefore E; can be homotoped to
become tangent to the levels of the function (z1;z2) #¥ z125.

Thus the levels of z;z, 0 er another possible way of lling-in the singularities
of F (see Figure 5). (Notice that these levels are isomorphic to the levels of
(z1;22) #Y z2 +2z3.) We will call such a ( lled-in) singularity a quadratic
singularity .

Proof of Existence Theorem 2.1 Let ¢ be a complex class of M, and ¢ =
+ asplitting such that n = (M) — is non-negative. Then, by 4.9, we

have (L L )o.n Tm, for complex-line bundles L and L with ci(L ) =

and ci(L ) = . We choose to perform the surgery by n modi cations by ¢:1

the singularities. Use Thurston’s Theorem 4.1 (p. 1238) to homotop E (away
from the singularities) so that it becomes integrable. The resulting singular
foliation F is what we needed to build. ]

Of course, many other singularities can be chosen, see Section 4.6 below. We
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.
(7

Figure 5: A quadratic singularity (fake image).

singled out z;=z, and z;z, now because they are exactly the singularities that
appear in a Lefschetz pencil. Unlike a Lefschetz pencil, though, not all leaves
must pass through a pencil singularity. (For example, use the method of Ex-
ample 3.1 to create a torus leaf that does not touch any singularity).

The choice being given, pencil singularities are the most manageable: A pencil
singularity can be removed by blowing M up: the blow-up simply separates the
leaves of F that were meeting there, and thus the foliation survives with one less
singularity. That is not the case for a quadratic singularity: blowing-up creates
one more singularity for the foliation (since the exceptional sphere must now
become a leaf), and instead of one there are now two quadratic singularities.
On the other hand, a quadratic singularity creates at most two singular leaves,
while a pencil singularity creates uncountably many. Also, in rare occasions, if
one of the leaves that passes through a quadratic singularity is a sphere with
self-intersection —1, one might attempt to blow it down while preserving the
rest of the foliation. (Notice that the existence of a sphere leaf with non-zero
self-intersections is not excluded by Reeb stability if the leaf passes through a

singularity.)

4.6 Other singularities

Other singularities may be used, as stated in Theorem 2.5. What matters is
their Hopf degree, de ned as follows:

If F is a foliation with an isolated singularity at p, then choose a small 4{ball
B around p. If the plane- eld Tgjgg is left invariant by some local almost-
complex structure on B that is compatible with the orientation of M, then we
call p a singularity of positive type.
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For a singularity of positive type, we de ne its Hopf degree as the degree (Hopf
invariant) of the plane eld Trjgg seen as maps @B ¥ CP! (i.e. S® ¥ §?).
(Technically, if one wants the Hopf degree to depend only on the singularity
and not on the chosen neighborhood B, one should de ne the Hopf degree as
a limit as B shrinks to p.)

The most obvious candidates for singularities of positive type are, of course,
singularities de ned by levels of complex functions. But since a complex func-
tion will always preserve orientations, any singularity coming from a complex
function will have non-negative Hopf degree. Thus, while we can easily nd
singularities for any positive Hopf degree (that can be used to ll-in the singu-
larities created by (0;n){modi cations when n  0), singularities of negative
Hopf degree seem harder to nd. Thus, the author does not know how to Il-in
the singularity created by o.—1, which is why many statements have a positivity
condition like (M) — 0.

Example 4.12 Cusp singularity. The singularity de ned by the levels F ()
of the function

f(z1,22) =23 - 73

It has Dfj, = 3z%; =2z, , and thus Tg(g)j, = kerDfj, = C(2z; 3z%). A
generic equation (2z,; 3z2) = (w$;wJ) has two solutions, orientations are pre-
served, and thus

degF(f) =2

Example 4.13 Normal crossing. The singularity de ned by

0(21;22) = 2773

has Dgj, = pzy™'23; qz0z3 ™" |, so Te(giz = C(qz1; —pz2), and thus
degF(g) =1

Example 4.14 The singularity de ned by

k(z1;22) = 20"

]
has Dkj, = (p+1)z}; (q+1)z3 , 50 Tegiz = C (@ + 1)z3; (p+ 1)z} , and
thus

g+1

+22

deg F (k) = pg
This last example shows that all positive degrees are realized by concrete singu-

larities. According to one’s taste, one can choose to use, say, a cusp singularity
instead of two pencil singularities. What matters is that the Hopf degrees of the
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singularitiesadd upto n= (M)— , asis stated in Theorem 2.5. One could
even use just a single singularity of Hopf degree n = (M) — , for example
(21;22) ¥ 2]+ + 23,

In particular, this concludes the proofs of Theorem 2.5 and Proposition 2.6.

4.7 Beyond almost-complex

Lefschetz pencils generalize to achiral Lefschetz pencils. Those are Lefschetz pen-
cils with singularities still modeled on (z1;2z2) #¥ z1=z, and (z1;2,) #¥ z12,,
but this time one can use local complex coordinates that are either compatible
with the orientation of M, or compatible with the opposite orientation (see [9,
x8.4]).

In the same spirit, the Existence Theorem 2.1 can be easily generalized to a
theorem that holds for more general 4{manifolds and splittings (for cases when
m from Proposition 4.8 is non-zero and (1;0){modi cations are needed), and
guarantees the existence of what we could call achiral singular foliations.

The surgical modi cation 1.0(q)h = gh can be thought of as C{linear for
the complex structure given on H by multiplication with complex scalars on
the right (see Remark 4.4(2)). The ensuing identi cation C?> H, (z1;2>)
z; + jzy, reverses orientations. Nonetheless, the singularities appearing from
surgical modi cations with 1.9 can be lled-in with the complex planes for this
complex structure, yielding a good local model (an \anti-complex™ or \negative"
pencil singularity). Note that any two of these complex planes will now intersect
negatively. Such a singularity can be eliminated by an anti-complex blow-up.

More generally, of course, we can call an isolated singularity p of F of negative
type if the plane- eld Tg on a small 3{sphere around p is preserved by a local
almost-complex structure compatible with the opposite orientation of M. Then
one can de ne the Hopf degree just as for singularities of positive type. The
formulas from the examples above have the same degrees if we choose local
complex coordinates that induce the opposite orientation.

In conclusion, we have:
Theorem 4.15 (Achiral Existence Theorem) Let ¢ 2 H%(M;Z) be any inte-
gral lift of wo,(M), and let c = + be any splitting. Let
1
m = %ﬁl(M)+2 (M) —c?
n=%1—-—pM)+2 (M)+c*—4

Algebraic & Geometric Topology, Volume 3 (2003)



1248 Alexandru Scorpan

Ifm O0andn O, then there is an achiral singular foliation F with e(Tg) =

, @(Ng) = , and m + n singularities. The singularities can be chosen to be
modeled on the levels of the complex functions (z1;z2) ¥ z1=2, or (z1;23) Y
212, with n of them for complex-coordinates respecting the orientation, and
m of them for complex-coordinates reversing the orientation of M.

any i.goice of singularities fqi;:::;q0 of negative type so that degp;i = n
and  degqgj = m, there is an achiral singular foliation F having exactly these
singularities, and with e(Tg) = and e(Ng) =

Remark 4.16 An integral lift ¢ of wy(M) is essentially a spin©-structure. It
always exists (modulo 2{torsion in H?). One can think of spin®-structures as
generalizations of almost-complex structures.

Example 4.17 The 4{sphere S* admits an achiral Lefschetz pencil with 2{
spheres meeting in a positive and a negative pencil singularity. (Fibrate CP?
by all the projective lines passing through a point, then do an anti-complex
blow-down on any transverse line.)

The condition m 0 was the only known obstruction to the existence of achiral
Lefschetz pencils (compare Lemma 8.4.12 in [9]). Since achiral Lefschetz pencils
are special cases of singular foliations, the theorem above adds the condition
n 0. Also, since these are the only conditions needed for the existence of
a foliation, and foliations should be expected to be much more flexible than
Lefschetz pencils, this result suggests that more obstructions to the existence
of achiral Lefschetz pencils probably exist and need to be uncovered.

The following obstruction to the existence of achiral singular foliations is The-
orem 8.4.13 from [9] (substituting foliations for Lefschetz pencils).

Proposition 4.18 Let M be a 4{manifold with positive-de nite intersection
form. Assume that M admits an achiral singul?g,foliation F with only singular
points of negative type fq1;:::;0«g. Let m=  degqg;. Then

1—=bi(M)+b2(M) m

Proof The class ¢ = e(Tg) +e(Ng) in H>(M;Z) has ¢ wo(M) (mod 2).
Thus it is a characteristic element for the intersection form: ¢ (mod 2).
By Donaldson’s celebrated result [5], a smooth 4{manjfold with positive-de nite
intersection form must have the intersection form b2("")(1). Let £ ;g be
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any basis for the intersection form written as above. Then ¢ = Plgj i+

torsion part, where and all a; must be odd integers. Then c? = aj2

b (M) = (M). By the achiral analogue of Proposition 2.6, m must satisfy

m=1 pi(M)+2 (M)—c? . Since p(M) =3 (M), we deduce that (M) +
(M) 2m, which is the same as 1 — by (M) +hb,(M) m. O

Example 4.19 The manifold #XS® S! admits no achiral singular foliations
if k>1. Indeed, 1 —by +b, =1—-k <0. (For k=1, we have a bration by
tori, products with S* of the circle- bers of the Hopf bration of S°.)

4.8 Closed leaves and transversals

The strategy for proving Theorems 2.8 and 2.7 (on prescribing closed leaves
and closed transversals) is the same as for the Existence Theorem 2.1: Before
using Thurston’s Theorem 4.1 to homotop the plane- eld E to a foliation, we
arrange it so that it is already integrable in a certain region where either it is
transversal to a certain surface or tangent to a certain surface. By keeping that
region xed, we end up with a foliation that is either transversal to the surface
or has it as a leaf.

A few small steps are necessary:

4.20 For any embedded closed surface S in M, denote by s: Ns ¥ S the
projection of the normal bundle of S. Embed Ng as a tubular neighborhood
of SinM: S Ng M. Onecan pull back the bundle Ns ¥ S over Ng
using s: Ns ¥ S. The resulting bundle gNs ¥ Ns can then be identi ed
with the tangent bundle to the bers of Ns (the vertical distribution), and thus
sNs  Tng = Tming - Onecanalso pull Ts ¥ S back over Ns using s. The
resulting bundle Ts ¥ Ns can be identi ed with a complement to gNs in
Tns (a horizontal distribution), and thus is also a subbundle of Tymjng. We
thus have:

Tmins = sTs  sNs

4.21 For any surface , one can built a complex-line bundle L with Chern
class ci(L ) = asfollows: Take N and pull-it back over itself using . The
resultingbundle N ¥ N istrivial o , since thesections: N I N ,
s(v) = (v;v) (think N N N ), is non-zero o and hence trivializes
(see Figure 6). Therefore one can extend the bundle N from over N M
to over the whole M, gluing it to some trivial bundle over M n . The result
is a complex-line bundle (= oriented real 2{plane bundle) L with a section
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s ' TS
| :

Figure 6: Building a complex-line bundle with ¢; =S

(an extension of s) that is zero only over ,so ¢c;(L ) = . Notice that, while
N can be considered as a subbundle of Ty, in general the same is no longer
true of L .

4.22 Consider now an embedded connected surface S and a homology 2{class
such that
(S)= S

Represent by an embedded surface A transverse to S, and build a complex-
line bundle La with c1(La) = A as above, in 4.21: extend ,Na ¥ Na over
the whole M. Near A, the bundle La is a subbundle of Ty and has a section
s(v) = (v;v) as above. On the other hand, build the bundle Ts ¥ Ns asa
subbundle of Ty near S. Arrange that over the intersection Ns\Na the bers
of Ts and ,Na (i.e. La) coincide (see Figure 7, left). (Do that such that

s Ts isstill complementary to  gNs in Tpmjng.) Then the section s of 4 Na is
also a section of STs de ned near A. Viewed there, it looks like a vector eld
tangent to S, de ned only near A and with zeros along A. But (S) =A S,
and so the zeros of S along A are the only obstructions to a non-zero extension
of s to the whole ¢Ts. We end up with a subbundle (Ts [ sNa of Ty over
Ns [ Na, with a section s that is zero only along A. If we glue it to a trivial
bundle over the rest of M, the result will be Lo. The di erence is that now
LA is a subbundle of Ty near S, and is complementary there to ¢Ns. With
a bit of care, we can actually get

Lains = sTs

4.23 Consider an embedded connected surface S and a class  such that

S S= S
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ANA——F—— sTs sNg—= sNs
p— — > >
———— [&) I II II.

—fF— TTHNNT
A = — S B S

Figure 7: Identifying bers, for 4.22 and 4.23

Then represent by an embedded surface B transverse to S and build Lg as
before, in 4.21. Build also sNs ¥ Ns, and arrange so that the bersof gNg
coincide to the bers of ¢Ns over Ns \ N (see Figure 7, right). (Do that so
that ¢Ns stays complementary to ¢Ts in Tmjng.) The section s of gNg
is now also a section of sNs de ned near B. It looks like a normal vector

eld to S, de ned near B and with zeroson B. But S S =B S, and thus s
can be extended to a global section of ¢Ns with zeros only along B. We end
up with  ¢Ns [ gNg, subbundle of Tyy over Ns [ Ng, that is trivialized o
B. It can be extended trivially to the whole M, yielding Lg. But now Lpg is
a subbundle of Ty near S, and is complementary there to Ts. With a bit
of care, we even get

Lejns = sNs
4.24 Combine 4.22 and 4.23: Let S be a connected surface, and let and
be such that
()= S and S S= S

Represent and by transverse surfaces A and B, then simultaneously re-
build the bundles La and Lg in such a manner that they are complementary
subbundles of Tpmjnear s- Namely,

Lains = sTs  and  Lgjng = sNs

Notice that gNs is arranged to be tangent to the bers of Ns. Also, if S
has trivial normal bundle, then ¢Ts can be arranged to be tangent to parallel
copies of S (and to S itself) in Ns.

Notice that, if (La Lg)mn Twm, then the resulting singular plane elds Ea
and Eg can be kept xed near S, so that Eajng = gTs and Egjng = gNs.
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In general, though, they cannot be kept xed near A or B. Indeed, there they
must pass through an isomorphism of the type N T i R? (since
T R =R®), where ® isan isomorphic copy of N , but a copy that is not
normal to  when embedded in Ty,. This moved copy B becomes part of
B , while R? becomes part of the complementary bundle.

Finally, we are ready to assemble the above steps into the proofs of 2.7 and 2.8:

Proof of Transversal Theorem 2.7 The statement we need to prove is:

Let S be a closed connected surface. Let ¢ be a complex class with a splitting
c= + suchthat (M)-— 0.If (8)= SandS S= S then
there is a singular foliation F with e(Tg) = , e(Ng) = , and having S as a
closed transversal.

Build the line bundles L and L following the recipe from 4.24. Do the surgical
modi cations on L L far from S. The resulting singular plane elds E
and E now have E jng = Ns, and thus B can be arranged to be tangent
to the bers of Ns in M (in other words, E is integrable near S). Keeping
the plane eld E  xed near the lled-in singularities and near S, we end up,
after applying Thurston’s Theorem 4.1, with a singular foliation F having the

bers of Ns as pieces of leaves. Thus S is everywhere transverse to the F. DO

Proof of Leaf Theorem 2.8 The statement we need to prove is:

Let S be a closed connected surface with S S 0. Let ¢ be a complex class
with a splitting c = + such that (M) — S S.If (8= S and
S S = S then there is a singular foliation F with e(Tg) = , e(Ng) = ,
and having S as a closed leaf. (The number of singularities along S is S S.)

A. Assume rst that the normal bundle Ng of S is trivial. Build the line
bundles L and L following the recipe from 4.24. Do the surgical modi cations
on L L far from S. The resulting singular plane elds E and E now
have E Jngs = sTs, and, since Ns is trivial, E can be arranged to be tangent
to parallel copies of S. Keeping the plane eld E  xed near the lled-in
singularities and near S, we end up, after applying Thurston’s Theorem 4.1,
with a singular foliation with S (and its parallel copies) as leaves.

B. In general, if Ns is not trivial, then we will place pencil singularities along
S, as suggested in Figure 8. Having foliated a neighborhood of S, we can
essentially apply the same recipe as above.
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N
EiS

Figure 8: Foliating around S when Ng is non-trivial

Notice that the condition (M) — S S is there merely to ensure that we
have enough singularities available. We leave the remaining details of the proof
of the Leaf Theorem 2.8 to the elusive interested reader. O

If one starts with a surface with S S < 0, then one could try to use negative
singularities to foliate a neighborhood. Thus, one needs achiral foliations:

Proposition 4.25 Let S be a closed connected surface with S S < 0. Let
c; ; ;m;nbeasin4ls Ifm =S S and n 0, then there is an achiral
singular foliation having S as a leaf.

5 Appendix

Proof of Lemma 3.6 We prove that, if g is a Riemannian metric, r its
Levi-Civita connection, J be any g{orthogonal almost-complex structure, and
1(x;y) = hdx; yi its fundamental 2{form, then, for any vector elds x;z on
M, we have:

. . I:|. . I:| .
@dNxIx;z) = [xIx]; Iz — rx+r; JXx z

For any 2{form  we have:

1 1 1

d)H)xy;2)=r, (;2)+ r, X+ r, (Xy)
=x ity @) Hz (5y)

- |:||"Xy;2 - I:I’P,Z;X - I:ll'ZX;y

- Rz - z ryx - Xrny

Applying this to I (a;b) =hJa; bi, we have:
] ] ]
dh(x;Ix;z) = —x )ﬁ + (IX) JH +z Jx;Jé]
— IA_llrx\]x; z Iil Jr,,z; X IEI Jr,x; JX
+ X,z — Jz; X — JX; rZJx
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Using that ha; Jbi = —hJa;bi we get:

1 1 1
dD)(x;Ix;2) = —X )ﬁ + (IX) er;__f< +2z X;X

]
+|:|’P(JX;JZ IEI r;z;, JX Iil r,X; X
+ X;r,z — Jz; r, X — JX; r,JXx
) i) JX 1 Z
R = =) . .
Since r,x;x = 5Z XX and Jx; r,Jx = 5Z IX;Ix = 52 X)X, we

cancel the last terms of each line, and get:
] ]
dD)(x;Ix;2) = —X )ﬁ + (IX) er;__f<
+ |£’<JX; Jz ﬁ r,,Z; JX

+ X,z — Jz; ry X
1 1 1 1
Byt x X;z = X,z + X, I,z , so (Ix) Jz; x = —(X) z;Ix =
— r;,z;Jx — z; ry,Jx , and therefore:
a1 ] 1 1 1 ]
Nx;JIx;z2)=—rx;z — X,z — r,z.Jx — z; r;,JX
(@N0GIX2) == K2 = Xz = D 2pdx = 70,
+I:I’I'XJX,JZ fl rJXz,Jx ﬁ X; N,z _Iillz’ X
@neIxz)=—rx z — z; r,Jx + rJdx;Jz — Jz; r; X
Since r is torsion-free, we have r,Jx — r; X =[x;JX], so:
1]
@dNx;Ix;z) = [x;Ix]; Iz — rx+r; JXx z
which concludes the proof. O

In particular, if 1 is symplectic (i.e. d! = 0), then any integrable J{holomor-
phic plane eld is g{minimal, and, vice-versa, any g{minimal J{holomorphic
plane eld must be integrable. The converse is also true: If there are enough
J {holomorphic integrable minimal plane elds, then ' must be symplectic.
Thus:

Corollary 5.1 Assume that M admits two transversal 2{dimensional foli-
ations F and G such that: there is a metric g such that both F and G are
g{minimal, and there is a g{orthogonal almost-complex structure J that makes
both F and G be J{holomorphic. Then M admits the symplectic structure

(X y) =9(3xy).

In particular, if the rst condition is satis ed, and further F and G are g{
orthogonal, then the second condition is automatically satis ed, and Proposi-
tion 3.11 follows:

If a Riemannian manifold M admits two g{orthogonal and g{minimal folia-
tions, then M admits a symplectic structure.
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