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An indecomposable PDj3;-complex : II

JONATHAN A. HILLMAN

Abstract We show that there are two homotopy types of PD3s-complexes
with fundamental group S3 *z/27 S3, and give explicit constructions for
each, which differ only in the attachment of the top cell.
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In [3] we showed that 7™ = S3 *;/2, S3 satisfies the criterion of [5] and thus is
the fundamental group of a PDs-complex. As 7 has infinitely many ends but
is indecomposable, this illustrates a divergence from the known properties of
3-manifolds, and provides a counter-example to an old question of Wall [6]. In
particular, the Sphere Theorem does not extend to all PDs-complexes.

Here we shall give an explicit description of a finite PD3-complex Y realizing
this group. The construction is modelled on a similar construction for a PDs-
complex X with fundamental group S3. In each case the cellular chain complex
of the universal cover has the striking property that it is self-dual. In §2 we
show a PDs-complex with fundamental group 7 must be orientable, and we use
Turaev’s work to show there are two homotopy types of such PDs-complexes.
The 2-fold cover of Y is homotopy equivalent to L(3,1)$L(3,1), while a simple
modification of our construction (suggested by the referee) gives a P D3-complex
with 2-fold cover homotopy equivalent to L(3,1)—L(3,1). (This group was first
suggested as a test case in [2].)

1 A finite complex with group 53 *z/57 53

Let G be a group and let I' = Z[G], ¢ : C; =T — Z and I(G) = Ker(e) be the
integral group ring, the augmentation homomorphism and the augmentation
ideal, respectively. If M is a left I'-module M shall denote the conjugate right
module, with G-action given by m.g = g~ 'm for all g € G and m € M,
and similarly N shall denote the conjugate left module structure on a right I'-
module N. If C, is a chain complex over I' with an augmentation ¢ : Cy — Z
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a diagonal approzimation is a chain homomorphism A : C, — C, ®z C, (with
diagonal G-action) such that (e ® 1)A =idc, = (1 ®¢)A.

The cellular chain complex C,.(K) for the universal covering space of a finite
2-complex K determined by a presentation for a group is isomorphic to the Fox-
Lyndon complex of the presentation, via an isomorphism carrying generators
corresponding to based lifts of cells of K to the standard generators.

The symmetric group S3 has a presentation (a,b | a? abab=2). Let m =
S3 %727 S3, with presentation (a,b,c | r,s,t), where r = a’, s = abab™? and
t = acac™?. The two obvious embeddings of S3 into 7 admit retractions, as
w/{(b)) = 7/{{c)) = S3. Let A, B and C be the cyclic subgroups generated by
the images of a, b and c, respectively. The inclusions of A into S5 and 7 induce
isomorphisms on abelianization, while the commutator subgroups are S5 = B
and 7' = B * C. Thus these groups are semidirect products: S3 = B x (Z/22)
and m = (BxC) x Z/2Z. In particular, 7 is virtually free, and so has infinitely
many ends. However it follows easily from the Grushko-Neumann Theorem

that 7 is indecomposable. (See [3]).

The above presentations determine finite 2-complexes K and L, with funda-
mental groups S3 and m, respectively. There are two obvious embeddings of K
as a retract in L, with retractions 7p,7. : L — K given by collapsing the pair
of cells {c,t} and {b, s}, respectively.

The chain complex C,(K) has the form

Z[S3)? 2o z[53)2 2 7[Sy),
where 01(1,0) = a—1, 01(0,1) = b—1, 92(1,0) = (a + 1,0) and 05(0,1) =
(b®’a+1,a—b—1). The 2-chain @) = (a— 1, —ba+a+b> —b) is a 2-cycle, and so
determines an element of mo(K) = Ho(K;Z), by the Hurewicz Theorem. Let
X =K Uy 63, and let C, be the cellular chain complex for the universal cover
X. (Thus C; = C4(K) for i <2 and Cs = Z[Ss]). The dual cochain complex
C* = Homp(Cy,Z[Ss)) is a complex of right Z[Ss]-modules.

We shall define new bases which display the structure of C, to better advantage,
as follows. Let e; = (1,0) and ez = (—ba — b*,1) in C; and f; = (1,0) and
fa = (0,—a) in C9, and let g be the generator of C3 corresponding to the
top cell. Then Oie; = a — 1, d1ea = —b%a+ba +b*> -1, Oof1 = (a + ey,
Oofs = (bPa+a—1)ea, and 939 = ¥ = (a — 1)f1 + (=b%a+ba+b—1)fs.
The matrix for dy with respect to the bases {&} and {f;} is diagonal, and is
hermitian with respect to the canonical involution of Z[S3], while the matrix
for 95 is the conjugate transpose for that of d;. Hence the chain complex C3—*
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obtained by conjugating and reindexing the cochain complex C* is isomorphic
to Ck.

Let B3=02+b+1 and v = Yycg,5 = B(a+ 1).

Lemma 1 The complex X is a PDj3-complex with X ~ 83,

Proof Since C, is the cellular chain complex of a 1-connected cell complex
Hy(Cy) = Z and Hi(Cy) = 0. If Oa(rf1 + sfz) = 0 then r(a+1) = 0 and
s(b?a+a—1) = 0. Now the left annihilator ideals of a + 1 and b%a +a — 1 in
Z[S3)] are principal left ideals, generated by a—1 and (b—1)(ba—1), respectively.
Hence » = p(a — 1) and s = ¢(b — 1)(ba — 1) for some p,q € Z[B]. A simple
calculation gives 05((p(ba+b+1)+q(ba+0b))g) = rfi1+sfo and so Ha(Cy) = 0.

If O3hg = 0 then h(a — 1) = 0, so h = hi(a + 1) for some hy € Z[B], and
h(b*a —ba —b+1) = 0. Now h(b?a —ba —b+ 1) = hy(1 —b)(a + b+ 1),
so hi(1 —b) = 0. Therefore hy = mf for some m € Z, so h = mv and
H3(C,) = Z[Ss]lvg = Z. Hence X ~ S*. Now H3(X;Z) = H3(Z ®zg, Cs) =
Z]1® g] and tr([1 ® g]) = vg, where tr : H3(X;Z) — H3(X;Z) is the transfer
homomorphism. The homomorphisms from H?(C*) to Hz—,(Cs) determined
by cap product with [X] = [1 ® g] may be identified with the Poincaré duality
isomorphisms for X, and so X is a PD3-complex. m]

The verification that X ~ S3 is essentially due to [4] and the fact that X is a
PDs-complex is due to [6]. The only novelty here is the diagonalization of 05,
which was a guiding feature in the study of m = S3%7/57 S3.

Let II = Z[n]. The cellular chain complex for the universal covering space L
has the form

02 01

3 3 1L
The differentials are given by 0;(1,0,0) = a — 1, 0:(0,1,0) = b —1 and
81(070)1) =C— 17 82(1>070) = (a+ 17070)7 62(0>170) = (QQG—F 1>a —b- 170)
and 02(0,0,1) = (c?a+1,0,a — ¢ — 1). In particular, Hy(L;Z) = Ker(ds).

Let 6 = (a—1,—ba +a+b* —b,—ca+a+c* —c). Then 35(9) = 0, and so
0 determines an element of mo(L) = Ha(L;Z), by the Hurewicz Theorem. Let
Y = Lyg e3 and let D, be the cellular chain complex for the universal covering
space Y.
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Let Then

(1,0,0) 81é1 =a-—1

= (- ba—bQ,l,O) 016y = ba — b?a+b* — 1
ég—( ca —c,0,1) D163 =ca—cta+c—1
f;l = (1, 0,0) 82{1 (a + 1)51
fo=(0,—a,0) O fo = (b%a 4 a — 1)és
f3=1(0,0,—a). dofz = (Ca+a—1)é3.

Moreover 0 = (a — 1)f1 + (=b%a 4+ ba + b —1)fo + (—c%a + ca + ¢ — 1) f3. Let
D* = Homp(Dy,II) be the cochain complex dual to D,. Then it is easily seen
that D* 2 Ds_,.

Theorem 2 The complex Y is a PDj3-complex.

Proof Clearly Hyo(D.) = Z and H;i(D,) = 0. The argument of the first part
of Lemma 1 extends immediately to show that the kernel of d» is generated
by (a—1)f1, (b—1)(ba —1)f; and (¢ — 1)(ca — 1) f3. Hence these elements
represent generators for Ho(D,). Let g be the generator for D3 corresponding
to the top cell, so that 03¢ = 6. Note that the image of ¢ in Z ®. D3 is a
cycle, and represents a generator for H3(Y;7Z) = H3(Z ®. D,). If hf = 0 then
(as in Lemma 1) h = hi(a + 1) for some h; € Z[B % C] such that hi(b—1) =
hi(c—1) = 0. It follows that h;y = 0. Hence 03 is injective and so Hs(D,) = 0.

Let 1, é*, f* and g denote the bases of D* dual to the above bases for
D,.. Let A be a diagonal approximation for D, and suppose that A(g) =
Yo<q<3Bicr(q)Ti ® i, where z; € Dy and y; € D3, for all i € I(g) and
0 <q<3. Then ¥jcryw; = g. Let r; = g(z;) for i € I(3) and let ¢ denote
the image of § in H3(Y;Z) = Z ®. D3. Then e(§N¢§) = e(Xiere)Tivi) =
e(Bierz)Ti) = £(3(3)) = 1, and so § N € generates Hy(D,). Since Hy(D,) =
H3(D,) = H'(D*) = H*(D*) = 0, — N ¢ induces isomorphisms H?(D*) =
Hs3_4(D,) for all ¢ # 1. The remaining case follows as in [5] from the facts that
D* = D3_, and A is chain homotopic to 7A, where 7: D, ® D, — D, ® D,
is the transposition defined by 7(a ® w) = (-1)"w ® a for all a € D, and
w € Dy. Thus Y is a PD3-complex. O

Can the last step of this argument be made more explicit? The work of Handel
[1] on diagonal approximations for dihedral groups may be adapted to give the
following formulae for a diagonal approximation for the truncation to degrees
< 2 of D, which is compatible with the above two embeddings of K as a retract
in L:
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Al =1®1

AlE) =61 ®a+1®é,

AlE) =631 —bac; @ (b—1) — b%é @ (b*a — 1) — (ba — b) @ baey
— (b —b) @b%€1 +b® é3,

™

A(E3) =631 —cac1 @ (c—1) — %6, ® (c2a— 1) — (ca — ¢) @ caey
—(? —c)® €1+ c® é3,

A(f))=fiol+é ®@aé +1® fi,

A(fa) = fa@a+ (B> +b)f1 @ (a — ba) + (b*a + b?) f» @ (a — ba)
+ ((ba + b* — 1)é1 + &) ® ((b*a)éy + baés)

— ((b?a +1)é; + baés) @ ((ba + a + b + b)é; + (b%a + a)és)

— ((a+b)éy + b*aés) @ ((ba + b?)ér + aéy) — (a+ 1)é1 ® &
ta-b@ B +b)fi+(a—b)®@*a+b)fo+a® fy and

A(fs) = fs@a+ (+e)fi®(a—ca)+ (Ca+A)f3s@ (a—ca)
+ ((ca+ ¢® = 1)é; + é3) @ ((c*a)éy + caés)

—((Pa+1)é; + caés) @ ((ca + a+ 2 + c)é1 + (2a + a)é3)

— ((a+c)é1 + aé3) @ ((ca+ c®)ér + aés) — (a+1)é ® &

+a—)@ (@ +e)fi+t(a—c)@(Ea+A)fz+ad f3

These formulae were derived from the work of Handel by using the canonical
involution of Z[Ss] to switch right and left module structures and showing that
C, is a direct summand of a truncation of the Wall-Hamada resolution for Ss.
(In Handel’s notation a=y,b=x,e1=¢, eg=—ci —cA(x+ay), f1 =c3,
fo=—cly+c2x? — 3y and g = —(c} + 3)(z + y) — c3y). Handel’s work also
leads to a formula for A(g), but it is not clear what A(g) should be.

2 Other PDs;-complexes with this group

Having constructed one PDs3-complex with group m one may ask how many
there are. Any such PDs-complex must be orientable. For let w; : m — {£1}
be a homomorphism and define an involution on T' by § = wi(g)g~!, for all
gem. Let w=wi(a) and R = Z[r/x'] = Z[a]/(a® — 1). Let J = Coker(d3""),
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where 0y : ITI? — II® is the presentation matrix for I(7) given in §1. Then
RerI(r) 2 R/(a+1)® (R/(a+1,3))?, while RorJ = R/(a+w) ® (R/(a+
w,3))2. If the pair (m,wi) is realized by a PDs-complex then I(m) and .J
are projective homotopy equivalent [5]. But then R ®r I(w) and R ®rp J are
projective homotopy equivalent R-modules, and so we must have w = 1.

If W is an oriented PDj3-complex with fundamental group G and cyy : W —
K(G,1) is a classifying map let u(W) = cw.[W] € H3(W;Z). Two such PDs3-
complexes Wy and Wy are homotopy equivalent if and only pu(W7) and pu(Ws)
agree up to sign and the action of Out(G). Turaev constructed an isomorphism
vo from H3(G;7Z) to a group [F?(C), 1(G)] of projective homotopy classes of
module homomorphisms and showed that p € H3(G;Z) is the image of the
orientation class of a PDs-complex if and only if vo(u) is the class of a self-
homotopy equivalence [5].

When G =7 = S3#y/5, 53 we have F?(C) = I(r), and Hs(m; Z) = Hs('; Z)®
H3(Z)2Z;7) = (Z/32)? ® (Z/2Z). Let W' be the double cover of W, with
fundamental group 7’ = (Z/3Z) x (Z/3Z). Then W’ is a connected sum, by
Theorem 1 of [5], and so it is homotopy equivalent to one of the 3-manifolds
L(3,1)8L(3,1) and L(3,1)f — L(3,1). (These may be distinguished by the tor-
sion linking forms on their first homology groups). In particular, pu(W’) has
nonzero entries in each summand. Since p(W’) is the image of (W) under the
transfer to Hz(n';7Z) = (Z/3Z)? the image of u(W) in each Z/3Z-summand
must be nonzero. Let u € H'(W;Fy) correspond to the abelianization homo-
morphism. Since B2(W;Fy) = 1 (W;Fs) =1 = fBo(m;F3) we have u? # 0, and
so u? # 0, by Poincaré duality. It follows easily that the image of (W) in
the Z/2Z-summand must be nonzero also. (Note that W' is Z)-homology
equivalent to S3 and so W is Z9)|Z/2Z]-homology equivalent to RP3). Since
reversing the orientation of W reverses that of W’ we may conclude that there
are at most two distinct homotopy types of PDj3-complexes with fundamental
group 7, and that they may be detected by their double covers.

The retractions r, and 7. of L onto K extend to maps rp,7.: Y — X. These
maps induce the same isomorphism Hs(Y;7Z) = H3(X;Z), and so their lifts to
the double covers induce the same isomorphism H3(Y';Z) — H3(X';7Z). Hence
Y’ ~ L(3,1)§L(3,1), rather than L(3,1)f—L(3,1). The referee has pointed out
that if we use £ = (a — 1)fi + (—b*a+ba+b—1)fy — (—c*a+ca+c—1)f3
instead of @ (changing only the sign of the final term) then Z = L Ug €3 is
another PDs-complex with m1(Z) = 7, and a similar argument shows that the
double cover is now Z' ~ L(3,1)—L(3,1).

The question of whether every aspherical PDs-complex is homotopy equivalent
to a 3-manifold remains open. The recent article [7] gives a comprehensive
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survey of Poincaré duality in dimension 3, emphasizing the role of the JSJ
decomposition in relation to this question.
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ments to the exposition.
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