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Abstract We show that in the free group of rank 3, given an arbitrary
number of automorphisms, the intersection of their �xed subgroups is equal
to the �xed subgroup of some other single automorphism.
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1 Introduction

Let Fn be a free group of rank n.

De�nition 1.1 The �xed subgroup of an automorphism � of Fn , denoted
Fix �, is the subgroup of elements in Fn �xed by �:

Fix � = fx 2 Fn : �x = xg:

Following the terminology introduced in [14], a subgroup H of Fn is called
1-auto-�xed when there exists and automorphism � of Fn such that H =
Fix �. An auto-�xed subgroup of Fn is an arbitrary intersection of 1-auto-
�xed subgroups. If S � Aut (Fn) then

Fix S = fx 2 Fn : �x = x; 8� 2 Sg =
\
�2S

Fix �

is an auto-�xed subgroup. Moreover if S is a subgroup of Aut (Fn) generated
by S0 then Fix S = Fix S0 .

The celebrated result of Bestvina-Handel [4] showed that a 1-auto-�xed sub-
group of Fn has rank at most n. This was extended by Dicks-Ventura [6]. The
following Theorem is a special case of the main result in [6].
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178 A. Martino

Theorem 1.2 Let H be a 1-auto-�xed subgroup of Fn and K a �nitely
generated subgroup of Fn . Then rank(H \ K) � rank(K). In particular,
putting K = Fn we get that rank(H) � n.

In [14] it was conjectured that the families of auto-�xed and 1-auto-�xed sub-
groups of Fn coincide. The authors proved some partial results in this direction
but, in general, the conjecture was only known to be true for n � 2.

In this paper we show, in Corollary 5.3, that any auto-�xed subgroup of F3 is
a 1-auto-�xed subgroup of F3 . The work in this paper also shows, in Corol-
lary 3.17, that auto-�xed subgroups are 1-auto-�xed for an important class of
automorphisms called Unipotent Polynomially Growing (UPG) automorphisms,
introduced in [3].

The author gratefully acknowledges the postdoctoral grant SB2001-0128 funded
by the Spanish government, and thanks the CRM for its hospitality during the
period of this research.

2 Preliminaries

It was shown in [4] that any outer automorphism of a �nitely generated free
group has either polynomial or exponential growth. We review those notions
here.

The growth rate of an automorphism, �, of a free group F is the function of k
given by the quantity

sup
w2F

j�kwj
jwj

where j:j denotes word length, with respect to a given basis. An automorphism
has polynomial growth if its growth function is bounded above by a polynomial
function of k and exponential growth if it is bounded below by an exponential
function of k . Note that the growth function is always bounded above by an
exponential function of k . Clearly, the division into polynomial and exponential
growth automorphisms is independent from the generating set in question.

One could also replace word length with cyclic word length - the word length
of a shortest conjugate - and the notions of polynomial growth and exponential
growth are preserved. Thus the notion of growth rate applies to outer automor-
phisms, via cyclic lengths. An outer automorphism, � has polynomial growth
if and only if any automorphism � 2 � has polynomial growth. (Having said
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that, the degrees of the polynomials in question may di�er by at most one.)
Similarly � has exponential growth if and only if � 2 � has exponential growth.

Of particular interest here is the following class, de�ned in [3], De�nitions 3.1
and 3.10.

De�nition 2.1 An outer automorphism, �, of the free group of rank n, Fn is
said to be Unipotent Polynomially Growing (UPG) if it is of polynomial growth
and its induced action on Fn=F

0
n = Zn , also denoted by �, satis�es one of the

following two equivalent conditions.

(i) Zn has a basis with respect to which � is upper triangular with 1’s on the
diagonal,

(ii) (Id− �)k = 0 for some k > 0.

Since we are interested in actual automorphisms and subgroups, we extend the
above notion to these.

De�nition 2.2 Let � 2 Out(Fn) and let � 2 �. Then � is called UPG if and
only if � is UPG. A subgroup of Out(Fn) or Aut(Fn) is called UPG if every
element of the subgroup is UPG.

A marked graph is a graph, G, in the sense of Serre, with a homotopy equiv-
alence � from Rn , the rose with n petals (n edges and a single vertex, �) to
G. We identify the free group of rank n, Fn , with the fundamental group of
Rn . The marking thus gives a speci�ed way to identify the fundamental group
of G with Fn .

Suppose that � sends � to the vertex v of G and that f : G ! G is a
homotopy equivalence which sends vertices to vertices and edges to edge paths,
such that f(v) = u. If p is any path from u to v , then the isomorphism
γp : �1(G;u) ! �1(G; v) is de�ned by γp([�]) = [�p�p]. The map γpf� is then
an automorphism of �1(G; v) and the automorphism, ��;f;p is then de�ned so
as to make the following diagram commute.

Fn
��

//

��;f;p

��

�1(G; v)

f�
��

�1(G;u)

γp

��

Fn
��

// �1(G; v)
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As the path p varies amongst all paths between u and v , the collection of
automorphisms ��;f;p form an outer automorphism ��;f .

As in [3], we shall mostly be interested in the case where G is �ltered, which
is to say that there are subgraphs ; = G0 � G1 � : : : � Gk = G, where the Gi
(not necessarily connected) of G. Moreover, each Gi is obtained from Gi−1 be
the addition of a single edge Ei . A map, f : G ! G, is upper triangular with
respect to the �ltration, or simply upper triangular, if for each i, f(Ei) = Eiui ,
where ui is a loop in Gi−1 . Note that this means each edge, and hence the
entire graph G, has a preferred orientation. It is easy to check that any upper
triangular map is a homotopy equivalence on G.

We shall sometimes say that a �ltered graph G consists of the edges E1; : : : ; Em .
By this we mean that we have taken one oriented edge from each edge pair of
G, that the �ltration of subgraphs is given by setting Gi to be the subgraph
generated by E1; : : : ; Ei and that the given edges are the preferred orientation
for G.

We note that this di�ers from [3] in that we have trivial pre�xes, which is to
say that the image of Ei starts with Ei rather than another loop in Gi−1 . The
more general situation may be reduced to ours by a sequence of subdivisions.

For a �ltered graph, G, one can de�ne Q to be the set of upper triangular
homotopy equivalences, as above. This turns out to be a group, under compo-
sition, which lifts via the marking to a UPG subgroup of Out(Fn). Conversely,
a subgroup of Out(Fn) is said to be �ltered if it is the lift of a subgroup of such
a Q for some G. We rely crucially on the following result from [3].

Theorem 2.3 Every �nitely generated UPG subgroup of Out(Fn) is �ltered.

We shall also need some further results.

Proposition 2.4 ([3], Proposition 4.16) Let � be a UPG automorphism of
F and H � F a primitive subgroup of F . (That is, xk 2 H implies x 2 H ,
for all group elements x and all positive integers k .) If �m(H) = H then, in
fact, �(H) = H and moreover, � restricts to a UPG automorphism of H .

The following shows that periodic points are �xed by UPG automorphisms.

Proposition 2.5 Let � 2 Aut (Fn) be a UPG automorphism and suppose
that �k(x) = x for some x 2 Fn . Then �(x) = x.

Proof Without loss we may assume that x is not a proper power and thus
H = hxi is a primitive subgroup. By Proposition 2.4, �(H) = H and � restricts
to a UPG outer automorphism of H . This implies that �(x) = x.

Algebraic & Geometric Topology, Volume 4 (2004)



Intersections of automorphism �xed subgroups 181

3 Upper triangular maps

Throughout this section, G will be a �ltered graph with upper triangular maps
f and g . Note that f and g induce UPG outer automorphisms on the fun-
damental group of G. The edges (and a preferred orientation) of G will be
E1; : : : ; Em so that the subgraph Gr containing edges E1; : : : ; Er is invariant
under both f and g . Recall that E denotes the edge with reversed orientation
to E and for a path �, � denotes the inverse path. By de�nition we have that,
f(Ei) = Eiui , g(Ei) = Eivi where ui; vi are loops in Gi−1 . Paths in G will
always be edge paths, that is sequences of oriented edges, except for the trivial
paths which will consist of a single vertex. Note that all vertices of G are �xed
by both f and g .

We write � = � if the paths � and � are the same sequence. We will write
� ’ � to denote homotopy equivalence of the paths with respect the endpoints,
and write [�] for the homotopy class of the path �.

An edge path is reduced if the sequence of edges contain no adjacent inverse
edges and cyclically reduced if the additionally, the �st and last edges are not
inverse edges. In each homotopy class of paths, [�] there is a unique reduced
path which we denote �# . Write j�j for the number of edges in the path �# .

Following [2], section 4.1, the decomposition of a path � = �1�2 : : : �t is said
to be a splitting for f if for every positive integer k , the reduced path fk(�)#

is obtained by concatenating the reduced paths fk(�i)# . Namely, we have
that fk(�)# = fk(�1)# : : : fk(�t)# . Now, given such a splitting, if we set
�0 = �i�i+1 then we get another splitting of �, � = �1 : : : �i−1�

0�i+2 : : : �t
which we call a coarsening of the splitting.

Each path � has a height, denoted ht(�), which is an integer r such that Er
or Er occurs in � but no Es or Es occurs in � for s > r . A basic path of
height r is a path of the form Erγ , γEr or ErγEr where γ is a path of height
less than r . The following lemma is proved in [2] for a single map.

Lemma 3.1 ([2], Lemma 4.1.4) Let � be a reduced path of height r . Then
� has a splitting for f into paths which are either basic paths of height r or
paths of height less than r .

Note that any path � of height r has a unique decomposition into a minimal
number of paths which are either basic of height r or of height less than r .
Moreover, this unique decomposition is always a coarsening of the decomposi-
tion given by Lemma 3.1. Hence we get the following,
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Lemma 3.2 Let � be a reduced path of height r . Then � has a splitting
simultaneously for f and g into paths which are either basic paths of height r
or paths of height less than r .

An easy calculation provides the following.

Lemma 3.3 Let � be a basic path of height r . If � begins with Er then so
does f(�)# and if � ends with Er then so does f(�)# .

Proof The Lemma is clear if � = Erγ or γEr . Thus there is only some-
thing to show if � = ErγEr . In this case, γ is a loop and hence neither
f(γ) nor urf(γ)ur can be homotopic to the trivial path and hence f(�)# =
Er(urf(γ)ur)#Er .

Hence we get the following immediate consequence to Lemmas 3.2 and 3.3.

Corollary 3.4 Let � be a path in G which is not homotopic to a trivial path.
Then f(�) and g(�) are not homotopic to trivial paths.

De�nition 3.5 Let � be a path of height r which is cyclically reduced. If
either the �rst edge of � is Er or the last edge is Er then we call � G-reduced.

Lemma 3.6 Let � be a G-reduced path. Then f(�)# is also G-reduced.

Proof Suppose � begins with Er . We will show that f(�)# and g(�)# are
cyclically reduced and begin with Er .

First, by coarsening the splitting of Lemma 3.2, there is a splitting of � =
�1�2�3 where �1 is a basic path of height r and �3 is either a basic path of
height r or is a path of height less than r . Then �1 is either equal to Erγ or
ErγEr for some path γ of height less than r . Hence, by Lemma 3.3, f(�1)#

and hence f(�)# begins with Er .

So it remains to show that f(�)# is cyclically reduced, which is to say that it
does not end with Er . If the path �3 is of height less than r then f(�3) is not
homotopic to a trivial path, by Corollary 3.4, and we are done. Otherwise, �3

is a basic path of height r which cannot end in Er and hence is of the form
Eγ for some path γ of height less than r . Clearly, f(�3)# is not a trivial path
and cannot end in Er . This proves the Lemma when � begins with Er and
the same proof works for the case when � ends in Er by just repeating the
argument for � .
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Lemma 3.7 Let �; � be homotopically non-trivial loops of the same height
based at the same vertex such that h[�]; [�]i is a free group of rank 2 and �
is G-reduced. Then there exist positive integers p; q such that (�p��q)# is
G-reduced.

Proof Let p > j�j. Then, as � is G-reduced, j�pj = pj�j � p > j�j. Hence,
the �rst letter of (�p�)# is the same as the �rst letter of �. We note that this
implies,

j�p+1�j = j�p�j+ j�j:
Let q > j�p+1�j > j�p�j and consider (�p��q)# . The only way this can fail
to be G-reduced is if (�p�)# is a terminal subpath of �q . Thus � = �1�2

(reduced as written) and
�p� ’ �1�q1 ; (1)

for some positive integer, q1 . Note that we choose q1 maximally so that �1 6= �.

We repeat this argument for �p+1��q . Either this is G-reduced, and we are
done, or � = �01�

0
2 reduced as written and

�p+1� ’ �01�q2 ; (2)

for some positive integer q2 . As before, �01 6= �.

The di�erence in the lengths of the left hand sides of equations 1 and 2 is, as
noted above, equal to j�j. Hence the right hand sides must also di�er in length
by this amount. Thus,

j�j = j�01�q2j − j�1�q1 j
= (j�01j+ j�q2 j)− (j�1j+ j�q1 j) , since � is cyclically reduced
= (q2 − q1)j�j + j�01j − j�1j:

However, �1; �
0
1 are both initial subpaths of �, neither of which is equal to �

and so the quantity j�01j− j�1j must have modulus strictly less than j�j. Hence
�1 = �01 and q2 = q1 + 1. This implies that

� ’ �p+1�(�p�); by inspection
’ �1 �

q1+1 �q1�1; by equations 1 and 2
’ �1 � �:

This implies that [�] 6= 1 is conjugate to its inverse in a free group. As this
cannot happen we get a contradiction and thus prove the result.

Proposition 3.8 Let � be a G-reduced loop which is �xed up to free homo-
topy by f . Then f(�) ’ �.
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Proof Now � is a G-reduced loop and f(�) is both G-reduced by Lemma 3.6
and freely homotopic to � by hypothesis. However, there are only �nitely many
G-reduced paths freely homotopic to � (they are a subset of the cyclic permuta-
tions of �). Hence, fk(�)# = � for some k . The loop � has a basepoint at some
vertex which we denote by v . Now f induces a UPG automorphism at �1(G; v)
whose kth power �xes [�]. By Proposition 2.5 we get that f(�) ’ �.

The following result is perhaps the key result of the paper. It is an analogue of
the Fixed Point Lemma (Corollary 2.2 of [4]) for a pair of maps. It would be
of general interest to see if the following Theorem were true in general, rather
than for the UPG case which we restrict ourselves to.

Theorem 3.9 Let f; g be upper triangular maps on G. Suppose that �1; �2

are loops based at a vertex v in G, which generate a free group of rank 2 in
�1(G; v). Suppose that �; � are paths such that f(�i) ’ ��i� and g(�i) ’ ��i�
for i = 1; 2. Then there exists a path � such that f(�) ’ �� and g(�) ’ �� .
Moreover, ht(�) � maxfht(�1); ht(�2)g.

Proof Consider the set of loops corresponding to the elements of h[�1]; [�2]i.
To each such loop, �0 , we can �nd a G-reduced loop, �, freely homotopic to
it. By Proposition 3.8, � will be �xed by both f and g up to based homotopy.
Amongst all the possible choices, we choose an � which is of minimal height
and which is not a proper power. Note that there exists a path, which we call
�0 such that �0 ’ �0��0 . Moreover, ht(�0) � ht(�0) � maxfht(�1); ht(�2)g.
Let �0 ’ f(�0)��0 and �0 ’ g(�0)��0 and note that since � is �xed up to based
homotopy, �0; �0 are loops. Hence,

�0��0 ’ f(�0)��0��0�f(�0); by de�nition of �0

’ f(�0)��0�f(�0); by de�nition of �0

’ f(�0)f(�0)f(�0); by hypothesis, since [�0] 2 h[�1]; [�2]i
’ f(�0)f(�0��0)f(�0); by de�nition of �0

’ �; since f(�) ’ �:
As � is not a proper power, we must have that [�0] 2 h[�]i. The same calcu-
lation for g shows that [�0] 2 h[�]i, also.

Choose another loop �0 representing an element of h[�1]; [�2]i so that [�0] and
[�0] generate a free group of rank 2. Now let � = (�0�

0�0)# .

It is straightforward to verify that f(�) ’ �0��0 and g(�) ’ �0��0 . Now,
by minimality of ht(�), ht(�) � ht(�) = ht(�0) = ht(�0). The proof now
separates into two cases.
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Case 1 r = ht(�) > ht(�)

By Lemma 3.2, � has a splitting into paths which are basic paths of height r
or paths of height less than r . Let � = �1 : : : �k be such a splitting. Note that
if k = 1, then � is a basic path of height r and � either begins with Er or
ends with Er (or both). But then, by Lemma 3.3, f(�) will also either begin
with Er or end with Er and the fact that f(�) ’ �0��0 would mean that �0 is
homotopic to a trivial path and hence that f(�0) ’ �0�. Similarly, g(�0) ’ �0�
and we would be �nished. Hence, we may assume that k � 2.

After coarsening the splitting, we may assume that if �1 is a path of height less
than r , then �2 is a basic path of height r starting with Er . Similarly, if �k
is a path of height less than r , then �k−1 is a basic path of height r ending in
Er . Thus,

f(�)# = f(�1)# : : : f(�k)# ’ �0��0:

However, the fact that ht(�0) < r implies that

(�0��0)# = (�0�1)#�2 : : : �k−1(�k�0)#:

(Our coarsening of the splitting ensures that �0 cannot cause any cancellation
with �2 or �k−1 ).

Thus we conclude that f(�k) ’ �k�0 . Hence,

f(�k�0) ’ �k�0f(�0)
’ �k�0�; by de�nition of �0

Similarly, g(�k�0) ’ �k�0� and we would be done in this case.

Case 2 ht(�) = ht(�)

By Lemma 3.7 it is possible to �nd positive integers p; q , such that �p��q is
G-reduced. Then, by Proposition 3.8, �p��q will be �xed (up to homotopy rel
endpoints) by both f and g . However, by construction

f(�p��q) ’ �0�
p��q�0

g(�p��q) ’ �0�
p��q�0:

Thus,
[�0]; [�0] 2 h[�]i \ h[�p��q]i

By de�nition of � this last intersection is trivial, and hence �0; �0 ’ 1, f(�0) ’
��0 , g(�0) ’ ��0 . In other words, the theorem is proved with the requisite
� = �0 .

The next step is to analyse the �xed paths in G.
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De�nition 3.10 A path � in G is said to be a common Nielsen Path (NP)
for f and g if it is �xed up to homotopy by both f and g . � is said to be a
common Indivisible Nielsen Path (INP) for f and g if it is a common NP and
no subpath of � is an NP.

The following is immediate from Lemma 3.2.

Lemma 3.11 Let � be a common INP of height r . Then � is a basic path of
height r .

Proposition 3.12 Let f 0; g0 be upper triangular maps on a �ltered graph G0 .
Then there is another �ltered graph G = fE1; : : : ; Emg, with upper triangular
maps f; g and a homotopy equivalence � : G0 ! G such that the following
diagrams commute up to free homotopy.

G0
�

//

f 0

��

G

f

��

G0
�

// G

G0
�

//

g0

��

G

g

��

G0
�

// G

Moreover, the maps f and g satisfy the following properties:

(i) If there is a common Nielsen path of height r then there exist integers
rf ; rg (possibly zero) and a common Nielsen path �r of height at most r − 1
such that

f(Er) = Er�r
rf ; g(Er) = Er�r

rg :

(ii) Up to taking powers, there is a unique common INP of height r . It is
Er�rEr unless rf = rg = 0 in which case it is Er .

Proof We will �nd G from G0 by performing a sequence of sliding moves
(as in [2], section 5.4). Now G0 has (oriented) edges E01; : : : ; E

0
m so that the

subgraph generated by E01; : : : ; E
0
r is the rth term in the �ltration of G, and

f(E0r) = E0ru
0
r , g(E0r) = E0rv

0
r . Given any path � of height less than r which

starts at the terminal vertex of E0r we can slide E0r along � . Namely, we de�ne
a new graph G, with the same vertex set as G0 and where all the edges E0i are
also edges of G (with the same incidence relations) except for E0r . We have an
edge, called Er , of G which starts at the same vertex as E0r and ends at the
same vertex as � . Informally, we will have that Er = E0r� . The �ltration for G
will be the same as that for G0 , just replacing E0r with Er .

De�ne the homotopy equivalence, � to be identical on the vertices, and send
each E0i to E0i for i 6= r . Then let �(E0r) = Er� . (Note that � is of height less
than r , so can be considered as a path in both G and G0 .)
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Now, let f agree with f 0 on G0 − fErg. If the f 0 image of an edge includes
some E0r we replace each occurrence with Er� and then reduce the path. This
de�nes f on all edges except Er where we let f(Er) = Er(�u0rf

0(�))# . Again,
note that both � and f 0(�) are paths of height less than r . (In fact f 0(�) is the
same path as f(�)). By construction, f� ’ �f 0 . Observe that this is more than
an equivalence up to free homotopy, it is also a homotopy equivalence relative
to the vertex sets of G and G0 . The inverse map to � is one which sends E0i
to E0i for i 6= r and sends Er to E0r� . Similarly, we can de�ne g and note that
g(Er) = Er(�v0rg0(�))# .

Now the fact that � is a homotopy equivalence relative to the vertex sets means
that if f 0(E0i) = E0iu

0
i for i 6= r where u0i is a NP then �(u0i) is also a NP path

for f and f(E0i) = E0i�(u0i)# . Also it is clear that both � and its homotopy
inverse preserve the height of paths and send basic paths to basic paths of the
same type. The strategy is to perform sliding moves so as to make properties
(i) and (ii) hold for as many edges as possible. The above comments show that
if we slide E0r along some path, we do not disturb properties (i) and (ii) for
other edges.

Thus it is su�cient to show that we may perform sliding homotopies for the
edge E0r so that properties (i) and (ii) hold for the resulting maps f and g with
respect to Er .

Suppose there is a common Nielsen path for f 0 and g0 of height r . Hence there
must be a common indivisible Nielsen path of height r which, by Lemma 3.11
and up to orientation, must be of the form E0rγ or E0rγE0r where γ is a path of
height at most r − 1. In the former case we slide E0r along γ and then both f
and g �x Er , to satisfy (i) and (ii).

So we shall assume that there is no common INP of the form E0rγ . Thus we
are in the latter case, and there is a common INP of the form E0rγE

0
r , where γ

is not a proper power.

Now we can �nd a path, � , of height less than r such that (�γ�)# is G0 reduced.
Let �r = (�γ�)# . Then by, Proposition 3.8, �r is �xed by f 0 and g0 . Moreover,

�r ’ f 0(�r); as �r is �xed
’ f 0(�γ�)
’ f 0(�)f 0(γ)f 0(�)
’ f 0(�)u0rγu0rf 0(�); as E0rγE0r is �xed
’ f 0(�)u0r��r�u0rf 0(�)

Hence, (�u0rf
0(�))# = �

rf
r for some integer, rf . Hence, if we slide E0r along � ,

we get that f(Er) = Er�
rf
r , where �r is a NP of both f and g of height less

than r . Similarly, g(Er) = Er�
rg
r for some integer, rg .
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Now if for our new maps, f , g , the NP Er�rEr is the only NP which is a
basic path of height r , then it must be an INP and we would be done. By
assumption, there is no common NP of the form Erγ (strictly speaking, we
have assumed there is no such in G0 , but the existence of such a common NP
for f and g in G implies that there is also one in G0 for f 0 and g0 ).

So let us assume that there is a common NP of the form Er�Er for f and g ,
where � is not a power of �r , and arrive at a contradiction.

Then, [�]; [�] are loops based at the same vertex and must generate a free group
of rank 2. Moreover, f(�) ’ �

rf
r ��

rf
r and g(�) ’ �

rg
r ��

rg
r and recall that �r

is a NP for both f and g . Hence, by Proposition 3.9, there exists a path �0 of
height less than r such that f(�0) ’ �0�

rf
r and g(�0) ’ �0�

rg
r . This means that

Er�0 is a common NP for f and g . This contradiction completes the proof.

Proposition 3.13 Let f; g be Upper triangular maps satisfying the conclusion
of Proposition 3.12. If there is no common INP of height r then no common
Nielsen path can cross Er .

Proof We argue by contradiction. Let � be a common Nielsen path of height
k � r which crosses Er and choose k to be the smallest integer with this
property. The point is that Er is an edge in � but, a priori, we do not know if
there is an INP of height r as a subpath of �.

We decompose � into common INP’s. If Ek is a common INP itself then this
decomposition is into paths each of which is equal to Ek or is a common INP
of height � k − 1. Thus either r = k or Er is an edge in a in a common INP
of height at most k − 1. The former contradicts the hypotheses and the latter
the minimality of k .

If Ek is not a common INP then by Proposition 3.12, every common INP of
height k is equal to Ek�

m
k Ek for some integer m, where �k is a common INP

of height at most k− 1. Thus � can be written as a product of common INP’s
each of which is equal to (a power of) Ek�kEk or is an INP of height at most
k − 1. Thus either Er = Ek , contradicting the hypotheses or Er is an edge in
a Nielsen path of height at most k − 1, contradicting the minimality of k .

Theorem 3.14 Let �; 2 Aut(Fn) such that h�; i is a UPG subgroup and
Fix �\Fix  is a free group of rank at least two which is contained in no proper
free factor of Fn . Then there exists a �ltered graph G = fE1; :::; Emg, upper
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triangular maps f; g : G! G and an isomorphism � : Fn ! �1(G; v) such that
the following diagrams commute:

Fn
�

//

�

��

�1(G; v)

f�
��

Fn
�

// �1(G; v)

Fn
�

//

 

��

�1(G; v)

g�
��

Fn
�

// �1(G; v):

Moreover, f(Er) = Er�r
rf and g(Er) = Er�r

rg where �r is a common NP of
height at most r − 1 and rf ; rg are integers. The only common INP of height
r is (a power of) Er�rEr , unless rf = rg = 0, in which case it is Er .

Proof By Theorem 2.3 we can �nd a upper triangular maps f; g : G ! G,
which represent the outer automorphisms corresponding to � and  . Thus we
have that the following diagrams commute up to free homotopy.

Rn
�

//

�
��

G

f

��

Rn
�

// G

Rn
�

//

 
��

G

g

��

Rn
�

// G

Here � is a homotopy equivalence and Rn is the rose with n edges. By Propo-
sition 3.12, we can assume that f and g satisfy the conclusions of that result.
Next, we know that we can �nd paths �; � such that the following diagrams
commute

Fn
��

//

�

��

�1(G; v)

f�
��

�1(G; v)

γ�

��

Fn
��

// �1(G; v)

Fn
��

//

 

��

�1(G; v)

g�
��

�1(G; v)

γ�

��

Fn
��

// �1(G; v)

Here, for a loop p, γp is the inner automorphism induced by p, γp(�) ’ p�p.

As Fix �\Fix  has rank at least two, we may apply Theorem 3.9 to �nd a path
� such that f(�) ’ �� and g(�) ’ �� . Hence we get the following commuting
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diagrams.

�1(G; v)
γ−1
�

//

f�
��

�1(G; v)

f�

��

�1(G; v)

γ�

��

�1(G; v)
γ−1
�

// �1(G; v)

�1(G; v)
γ−1
�

//

g�
��

�1(G; v)

g�

��

�1(G; v)

γ�

��

�1(G; v)
γ−1
�

// �1(G; v)

Thus we get a commuting diagram as required by the statement of this Theorem
and, without loss of generality, we may also assume that there are no valence
one vertices in G. If, for some r , there is no common INP of height r then
we may apply Proposition 3.13 to deduce that the image of Fix � \ Fix  in
�1(G; v) is a subgroup generated by loops, none of which cross Er . This would
imply that Fix �\Fix  is contained in a proper free factor, as G has no valence
one vertices, and hence would be a contradiction. Thus there must be an INP
at every height and we are done since we already know that f and g satisfy
the conclusion of Proposition 3.12.

In order to prove that the �xed subgroup of any UPG subgroup is 1-auto-�xed,
we need to invoke the following result.

Theorem 3.15 ([13], Corollary 4.2) For any set S � Aut(Fn), there exists a
�nite subset S0 � S such that Fix (S) = Fix (S0).

Corollary 3.16 Let A � Aut Fn be a UPG subgroup such that Fix A is
contained in no proper free factor. Then there exists a � 2 Aut (Fn) such that
Fix A = Fix �. If the rank of Fix A is at least 2, then we may choose � 2 A.

Proof If Fix A is cyclic, generated by w , then w cannot be a proper power
and we can take � to be the inner automorphism by w .

Otherwise, by Theorem 3.15, we note that it is su�cient to prove this Corollary
for the case where A is generated by two elements, �; . Apply Theorem 3.14
and, using the notation from that Theorem, consider the Upper triangular map
fgk for some integer k . Clearly, fgk(Er) = Er�

rf+k:rg
r . If k is su�ciently

large then rf + k:rg is only equal to 0 if rf = rg = 0. For this value of
k , a path is �xed by fgk if and only if it is �xed by both f and g . Hence
Fix � k = Fix (h�; i).
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Corollary 3.17 Let A � Aut Fn be a UPG subgroup. Then there exists a
� 2 Aut Fn such that Fix � = Fix A

Proof Let H be a free factor of Fn of smallest rank containing Fix A. Let � 2
A, then �(H) is another free factor of Fn containing Fix A. Hence H \ �(H)
is a free factor of Fn and hence also a free factor of both H and �(H). By
minimality of the rank of H , H \ �(H) must be equal to H and hence H is a
free factor of �(H). As the rank of H is equal to that of �(H), H = �(H) for
all � 2 A.

Thus, we may look at the restriction of A to Aut(H). By [3] Proposition 4.16,
this is a UPG subgroup. Clearly, Fix A is contained is no proper free factor of
H and hence by Corollary 3.16, there exists a b� 2 Aut(H) such that Fix b� =
Fix A.

As H is a free factor of Fn , we may �nd a basis x1; : : : ; xn of Fn such that
H = hx1; : : : ; xri for some r . De�ne � 2 Aut(Fn) by letting the � agree withb� on H and letting �(xj) = xj

−1 for j > r . Clearly, Fix � = Fix b�, and we
are done.

4 The rank n− 1 case

In this section we describe the structure of �xed subgroups of exponential au-
tomorphisms where the �xed subgroup has rank one less than the ambient free
group. In order to do this, we invoke the main Theorem of [12], but �rst a
de�nition.

De�nition 4.1 Let � be an automorphism of F and H a subgroup of F . H
is called �-invariant if �(H) = H setwise.

Lemma 4.2 Let Fn be a free group with basis x1; : : : ; xn and let H be the free
factor hx1; : : : ; xn−1i. Suppose that for some � 2 Aut(Fn), H is �-invariant.
Then �(xn) = uxn

�1v for some u; v 2 H . Moreover, if �jH has polynomial
growth, then so does �.

Proof As � is an automorphism, �(x1); : : : ; �(xn) is a basis for Fn . By ap-
plying Nielsen moves only on H we may deduce that x1; : : : ; xn−1; �(xn) is also
a basis for Fn . (Alternatively, one can extend �jH to an automorphism, �0 of
Fn by letting �0(xn) = xn . The image of x1; : : : ; xn under the automorphism
��0−1 shows that x1; : : : ; xn−1; �(xn) is a basis.)
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Now we write �(xn) = uwv where this product is reduced as written, u; v 2
H and w is a word whose �rst and last letters are xn

�1 . Clearly, the set
x1; : : : ; xn−1; w is a basis. Moreover it is a Nielsen reduced basis (see [10]) and
hence w = xn

�1 . This proves the �rst claim.

To prove the second claim we note that if �jH has polynomial growth then
j�k(g)j � jgjAkd for all g 2 H and some constants A; d. Hence,

j�k(xn)j �
Pk−1

i=0 j�i(u)j+
Pk−1

i=0 j�i(v)j+ 1
� (juj+ jvj+ 1)

Pk−1
i=0 Ai

d

� (juj+ jvj+ 1)Akd+1;

from which it follows easily that � also has polynomial growth (where the degree
of the polynomial is at most one higher).

The following result gives a description of 1-auto-�xed subgroups which will be
particularly useful in our situation.

Theorem 4.3 [12] Let F be a non-trivial �nitely generated free group
and let � 2 Aut(Fn) with Fix � 6= 1. Then, there exist integers r � 1,
s � 0, �-invariant non-trivial subgroups K1; : : : ;Kr � Fn , primitive ele-
ments y1; : : : ; ys 2 Fn , a subgroup L � Fn , and elements 1 6= h0j 2 Hj =
K1 � � � � �Kr � hy1; : : : ; yji, j = 0; : : : ; s− 1, such that

Fn = K1 � � � � �Kr � hy1; : : : ; ysi � L

and  yj = yjh
0
j−1 for j = 1; : : : ; s; moreover,

Fix � = hw1; : : : ; wr; y1h0y
−1
1 ; : : : ; yshs−1y

−1
s i

for some non-proper powers 1 6= wi 2 Ki and 1 6= hj 2 Hj such that �hj =
h0jhjh

0−1
j , i = 1; : : : ; r , j = 0; : : : ; s− 1.

Proposition 4.4 [5] Let � 2 Aut(Fn) and suppose that rank(Fix �) = n.
Then � is UPG.

Proof This follows directly from [5], although it is not stated in these terms.
It can also be proven using Theorem 4.3, since the hypothesis guarantees that L
is trivial and each Ki is cyclic. Since it is clear that Hj is �-invariant, repeated
applications of Lemma 4.2 show that � has polynomial growth. We can then
deduce that � is UPG by inspection of the basis given in Theorem 4.3.
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Proposition 4.5 Let � 2 Aut Fn be an automorphism of exponential growth
and suppose that rank(Fix �) = n−1. Then there exists a basis x; y; a1; :::; an−2

of Fn such that

(1) Each free factor, Ai = hx; y; a1; : : : ; aii, is �-invariant. In particular, hx; yi
is �-invariant and �jhx;yi has exponential growth.

(2) �ai = aiwi where wi 2 hx; y; a1; :::; ai−1i.

(3) Fix � = hxyx−1y−1; y1; :::; yn−2i where each yi is equal to either ai or
aigia

−1
i for some gi 2 hx; y; a1; :::; ai−1i.

Proof We apply Theorem 4.3. First note that

Fn = K1 � � � � �Kr � hy1; : : : ; ysi � L = Hs � L

and that Hs is � invariant. Moreover, n− 1 = r(Fix �) = r + s � r(Hs).

Hence if L is not trivial, then n − 1 = rank(Fix �) � rank(Hs) � n − 1.
Thus rank(Fix �) = Hs and rank(L) = 1. Thus, by Lemma 4.4, �jHs has
polynomial growth and we deduce that � has polynomial growth by Lemma 4.2.
This is a contradiction as we are assuming that � has exponential growth, by
hypothesis. Hence L = 1.

Since r + s = n − 1 and n = rank(Hs) = s +
Pr

i=1 rank(Ki) it is easy to
see that all but one of the Ki is cyclic and that this exception must have rank
2. Without loss of generality, rank(K1) = 2 and every other Ki is cyclic.
Let x; y be a basis for K1 and extend this to a basis x; y; a1; : : : ; an−2 where
a1; : : : ; ar−1 are the generators of K2; : : : ;Kr respectively and ar; : : : ; an−2 are
equal to y1; : : : ; ys respectively.

By construction, �ai = aiwi where wi 2 hx; y; a1; :::; ai−1i. Moreover,

Fix � = Fix �jhx;yi � hy1; :::; yn−2i

where each yi is equal to ai if i < r or aigia−1
i for some gi 2 hx; y; a1; :::; ai−1i

otherwise. It is clear from the construction that the free factors Ai are �-
invariant, since we know that Ki and Hi are �-invariant.

Now if �jhx;yi is of polynomial growth, then repeated applications of Lemma 4.2
would show that � has polynomial growth. Therefore, �jhx;yi is of exponential
growth and has �xed subgroup of rank 1. Since automorphisms of the free group
of rank 2 are geometric, �jhx;yi is realised as a pseudo-Anasov automorphism
of a once punctured torus. Thus we see that, up to a choice of basis, the �xed
subgroup of �jhx;yi is h[x; y]i.
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The following shows how information about the �xed subgroup, when it is large,
puts restrictions on the automorphism.

Lemma 4.6 Let � be an automorphism with �xed subgroup as in Proposi-
tion 4.5. Then there exists a relative train track representative of � whose
only exponential stratum is the bottom stratum corresponding to (the conju-
gacy class of) hx; yi. Moreover, this representative is aperiodic (see [2] De�ni-
tions 3.1.7).

Proof First as the smallest free factor containing xyx−1y−1 is hx; yi, this
must be �-invariant, as � sends free factors to free factors. Now let Ai =
hx; y; a1:::; aii for 0 � i � n− 2.

We claim that Ai is �-invariant for all i. We have just shown that this is true for
A0 and we argue by induction. Suppose the claim holds for Ai . If yi+1 = ai+1 ,
then there is nothing to prove. So assume that ai+1gi+1a

−1
i+1 which is �xed by

�. Note that gi+1 2 Ai and by induction so is �(gi+1 . Thus, a−1
i+1�(ai+1) is in

the normaliser of Ai , which is equal to Ai as free factors are malnormal. Hence
�(ai+1) = ai+1ui+1 for some ui+1 2 Ai . This proves the claim.

Now, by [2] Lemma 2.6.7, there is a relative train track representative of �, f
on G, such that G has f -invariant subgraphs G1 � G2 � � � �Gn−1 = G so that
each Gi is a connected subgraph whose fundamental group is equal to Ai , via
the marking.

Note that the di�erence in ranks between Ai+1 and Ai is exactly one, so that
each Gi+1 −Gi is a level stratum, for i > 1. Note also that as G1 has a rank
2 fundamental group, fG1 must be of exponential growth, since otherwise �
would have polynomial growth. In particular, fG1 must be irreducible and also
aperiodic. Hence the subgraphs Gi give a complete strati�cation, where only
the bottom stratum is exponential and corresponds to the conjugacy class of
hx; yi. Since this is aperiodic, the whole relative train track is aperiodic.

Proposition 4.7 Let �; � 2 Aut Fn such that � satis�es the hypotheses of
Proposition 4.5. If Fix ���−1 = Fix � then �(hx; yi) is a conjugate of hx; yi.

Proof By Lemma 4.6, � has an aperiodic relative train track representative
with a unique exponential stratum at the bottom. Thus � has a unique at-
tracting lamination, �, (see [2], section 3), and since the bottom stratum of
our relative train track corresponds to hx; yi, the attracting lamination of � is
carried by the conjugacy class of hx; yi. (We shall abuse notation slightly and
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call � an attracting lamination for � when it is strictly speaking an attracting
lamination for the outer automorphism determined by �.)

Since we have only used Lemma 4.6 and the �xed subgroup, we also deduce
that the conjugacy class of hx; yi also carries the unique attracting lamination,
L, of ���−1 .

However, by inspection, the conjugacy class of �(hx; yi) must also carry the lam-
ination �(�), where � is the outer automorphism determined by �. However,
�(�) is an attracting lamination for ���−1 , since � induces a homeomorphism
on B and sends bi-recurrent lines to bi-recurrent lines (see [2], De�nition 2.2.2
and Lemma 3.1.4).

In other words �(�) = L and �(hx; yi) is conjugate to hx; yi.

5 Auto-�xed subgroups of rank n− 1

We shall need to quote one more result before we prove that the intersection of
1-auto-�xed subgroups is 1-auto-�xed if the rank of the intersection is at least
n− 1.

Theorem 5.1 ([14], Lemma 3.1) Let �; 2 Aut(Fn). Then there exists a
positive integer k such that Fix � \ Fix  is a free factor of Fix � k .

Theorem 5.2 Let �; 2 Aut Fn and suppose that the rank of Fix � \ Fix  
is n− 1. Then there exists a � 2 Aut Fn such that Fix � = Fix � \ Fix  .

Proof By Theorem 5.1 there exists an integer k such that H = Fix �\Fix  
is a free factor of Fix � k . Either H = Fix � k or rank(Fix � k) = n. In the
former case, we are done so we shall assume that Fix � k has rank n and so by
Proposition 4.4 is UPG. Applying Theorem 5.1 again, there exists an integer m
such that H = Fix � k \Fix  is a free factor of Fix  (� k)m . Thus, without
loss of generality, we may assume that rank(Fix �) = rank(Fix  ) = n. Note
that by [7], as � restricts to a �nite order automorphism on Fix �k , Fix � is a
free factor of Fix �k . But in our case, rank(Fix �) = n and by Theorem 1.2,
rank(Fix �k) � n. Hence Fix �k = Fix � for all k 6= 0. By the same argument,
Fix  k = Fix  for all k 6= 0.

If h�; i is a UPG subgroup then we are done by Theorem 3.17. If every
automorphism in h�; i has polynomial growth then, by [3] Proposition 3.5,
h�; i has a �nite index UPG subgroup. However, we would be done in that
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case since the �xed subgroups of �; are unchanged by taking proper powers.
Thus we may assume that there exists a � 2 h�; i of exponential growth. If
Fix � = H then we are done.

Now we can write Fix � = K �L, where K is an algebraic extension of H (see
[9] or [17]). But, as H is inert, rank(H) � rank(K) � rank(Fix �) and since
� has exponential growth, we know by Proposition 4.4, that rank(Fix �) < n.
Thus Fix � = K is an algebraic extension of H . However, there are only �nitely
many of these, again by [17], and since H is �xed by both � and  , these two
automorphisms must permute the algebraic extensions of H . Thus Fix � is
stabilised by some powers of � and  , which without loss we may assume to
be 1. (Note, in fact by [3], �; must always stabilise Fix �.)

Hence, Fix ���−1 = Fix � = Fix  � −1 .

By Proposition 4.5, there is a rank 2 free factor L of Fn which is invariant
under � and such that the restriction of � to L is of exponential growth. By
Proposition 4.7, � sends L to a conjugate of itself. By the same argument,  
also sends L to a conjugate. Let �0;  0 be automorphisms in the same outer
automorphism class as �; respectively which each leave L invariant.

By Theorem 2.4, �0;  0 each restrict to a UPG automorphism of L. Thus, up
to a choice of basis, �0 induces an action of the abelianisation of L correspond-

ing to the matrix
�

1 n
0 1

�
for some integer n. With respect to this basis

the induced action of  0 will correspond to some matrix
�
a b
c d

�
; for some

integers, a; b; c; d. As  0 is also UPG, the trace of this last matrix must equal
2.

By Theorem 5.1, there exists a positive integer k such that H is a free factor
of Fix  �k . Either this automorphism has �xed subgroup exactly equal to H
and we are done, or it has �xed subgroup of rank n. In the latter case, it will
be UPG, by Proposition 4.4. We shall show that this leads to a contradiction.

Note, again by [3] Proposition 4.6,  0�
k
0 induces a UPG automorphism on L.

Hence the matrix
�
a b
c d

�
:

�
1 n
0 1

�k
has trace 2.

Evaluating this matrix we see that
�
a akn+ b
c ckn+ d

�
can only have trace 2 if

either n = 0 or c = 0. Note that the latter case forces a = d = 1. Hence the
image of h�0;  0i in GL(2;Z), under the natural map, is a subgroup consisting
of upper uni-triangular matrices. Thus, after choosing a basis x; y for L, �jL is
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the automorphism which sends x to g−1xg and y to g−1yxtg for some integer, t,
and some g 2 hx; yi. This contradicts the fact that �jL has exponential growth.
(Here we are using the well known fact that the kernel of the map from Aut(F2)
to GL(2;Z) consists of precisely the inner automorphisms.) This contradiction
completes the proof.

Corollary 5.3 Any auto-�xed subgroup of F3 is 1-auto-�xed.

Proof By Thereom 3.15, it is enough to show that the intersection of two
1-auto-�xed subgroups of F3 is also 1-auto-�xed.

Let �; 2 Aut(F3) and let H = Fix �\Fix  . We need to show that H = Fix �
for some � 2 Aut(F3). By Theorem 1.2, rank(H) � 3. If rank(H) = 3 then
the result follows by [14], Corollary 4.1. If rank(H) = 2 then the result follows
by 5.2. If rank(H) = 1 then H = hgi and the inner automorphism that is
conjugation by g will have �xed subgroup equal to H . Finally, if H is trivial
then one can �nd automorphisms which have no �xed points. An automorphism
which cyclically permutes a basis would be an example.
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