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Abstract

We study R{covered foliations of 3{manifolds from the point of view of their
transverse geometry. For an R{covered foliation in an atoroidal 3{manifold
M , we show that fM can be partially compacti�ed by a canonical cylinder
S1

univ�R on which �1(M) acts by elements of Homeo(S1)�Homeo(R), where
the S1 factor is canonically identi�ed with the circle at in�nity of each leaf
of eF . We construct a pair of very full genuine laminations �� transverse to
each other and to F , which bind every leaf of F . This pair of laminations
can be blown down to give a transverse regulating pseudo-Anosov flow for F ,
analogous to Thurston’s structure theorem for surface bundles over a circle with
pseudo-Anosov monodromy.

A corollary of the existence of this structure is that the underlying manifold
M is homotopy rigid in the sense that a self-homeomorphism homotopic to
the identity is isotopic to the identity. Furthermore, the product structures
at in�nity are rigid under deformations of the foliation F through R{covered
foliations, in the sense that the representations of �1(M) in Homeo((S1

univ)t)
are all conjugate for a family parameterized by t. Another corollary is that the
ambient manifold has word-hyperbolic fundamental group.

Finally we speculate on connections between these results and a program to
prove the geometrization conjecture for tautly foliated 3{manifolds.
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1 Introduction

The success of the work of Barbot and Fenley [13] in classifying R{covered
Anosov flows on 3{manifolds, and the development by Thurston of a strategy
to show that 3{manifolds admitting uniform R{covered foliations are geometric
suggests that the idea of studying foliations via their transverse geometry is a
fruitful one. The tangential geometry of foliations can be controlled by powerful
theorems of Cantwell and Conlon [1] and Candel [7] which establish that an
atoroidal irreducible 3{manifold with a codimension one taut foliation can be
given a metric in which the induced metrics on the leaves make every leaf locally
isometric to hyperbolic space.

A foliation of a 3{manifold is R{covered if the pullback foliation of the univer-
sal cover is the standard foliation of R3 by horizontal R2 ’s. This topological
condition has geometric consequences for leaves of F ; in particular, leaves are
uniformly properly embedded in the universal cover. This leads us to the notion
of a con�ned leaf. A leaf � in the pullback foliation of the universal cover fM
is con�ned when some �{neighborhood of � entirely contains other leaves.

The basic fact we prove about con�ned leaves is that the con�nement condition
is symmetric for R{covered foliations. Using this symmetry condition, we can
show that an R{covered foliation can be blown down to a foliation which either
slithers over S1 or has no con�ned leaves. This leads to the following corollary:

Corollary 2.4.3 If F is a nonuniform R{covered foliation then after blowing
down some regions we get an R{covered foliation F 0 such that for any two
intervals I; J � L, the leaf space of eF 0 , there is an � 2 �1(M) with �(I) � J .

A more re�ned notion for leaves which are not con�ned is that of a con�ned
direction, speci�cally a point at in�nity on a leaf such that the holonomy of
some transversal is bounded along every path limiting to that point.

A further re�nement is a weakly con�ned direction, which is a point at in�nity
on a leaf such that the holonomy of some transversal is bounded along a quasi-
geodesic path approaching that point. Thurston shows in [33] that the existence
of nontrivial harmonic transverse measures imply that with probability one, a
random walk on a leaf will have bounded holonomy for some transversal. For
general R{covered foliations, we show that these weakly con�ned directions al-
low one to construct a natural cylinder at in�nity C1 foliated by the circles at
in�nity of each leaf, and prove the following structure theorem for this cylinder.
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Theorem 4.6.4 For any R{covered foliation with hyperbolic leaves, not nec-
essarily containing con�ned points at in�nity, there are two natural maps

�v : C1 ! L; �h : C1 ! S1
univ

such that:

� �v is the projection to the leaf space.

� �h is a homeomorphism for every circle at in�nity.

� These functions give co-ordinates for C1 making it homeomorphic to a
cylinder with a pair of complementary foliations in such a way that �1(M)
acts by homeomorphisms on this cylinder preserving both foliations.

In the course of the proof of this theorem, we need to treat in detail the case that
there is an invariant spine in C1 | that is, a bi-in�nite curve intersecting every
circle at in�nity exactly once, which is invariant under the action of �1(M). In
this case, our results can be made to actually characterize the foliation F and
the ambient manifold M , at least up to isotopy:

Theorem 4.7.2 If C1 contains a spine Ψ and F is R{covered but not uni-
form, then M is a Solvmanifold and F is the suspension foliation of the stable
or unstable foliation of an Anosov automorphism of a torus.

In particular, we are able to give quite a detailed picture of the asymptotic
geometry of leaves:

Theorem 4.7.3 Let F be an R{covered taut foliation of a closed 3{manifold
M with hyperbolic leaves. Then after possibly blowing down con�ned regions,
F falls into exactly one of the following four possibilities:

� F is uniform.

� F is (isotopic to) the suspension foliation of the stable or unstable folia-
tion of an Anosov automorphism of T 2 , and M is a Solvmanifold.

� F contains no con�ned leaves, but contains strictly semi-con�ned direc-
tions.

� F contains no con�ned directions.

In the last two cases we say F is ru�ed.

Following an outline of Thurston in [35] we study the action of �1(M) on this
universal circle and for M atoroidal we construct a pair of genuine laminations
transverse to the foliation which describes its lack of uniform quasi-symmetry.

The Geometry of R-covered foliations

Geometry and Topology, Volume 4 (2000)

459



Say that a vector �eld transverse to an R{covered foliation is regulating if every
integral leaf of the lifted vector �eld in the universal cover intersects every leaf
of the lifted foliation. A torus transverse to F is regulating if it lifts to a plane
in the universal cover which intersects every leaf of the lifted foliation. With
this terminology, we show:

Theorem 5.3.13 Let F be an R{covered foliation of an atoroidal manifold
M . Then there are a pair �� of essential laminations in M with the following
properties:

� The complementary regions to �� are ideal polygon bundles over S1 .

� Each �� is transverse to F and intersects F in geodesics.

� �+ and �− are transverse to each other, and bind each leaf of F , in the
sense that in the universal cover, they decompose each leaf into a union
of compact �nite-sided polygons.

If M is not atoroidal but F has hyperbolic leaves, there is a regulating essential
torus transverse to F .

Finally we show that the construction of the pair of essential laminations ��

above is rigid in the sense that for a family of R{covered foliations parameter-
ized by t, the representations of �1(M) in Homeo((S1

univ)t) are all conjugate.
This follows from the general fact that for an R{covered foliation which is not
uniform, any embedded �1(M){invariant collection of transversals at in�nity is
contained in the �bers of the projection C1 ! S1

univ . It actually follows that
the laminations �� do not depend (up to isotopy) on the underlying R{covered
foliation by means of which they were constructed, but reflect somehow some
more meaningful underlying geometry of M .

Corollary 5.3.22 Let Ft be a family of R{covered foliations of an atoroidal
M . Then the action of �1(M) on (S1

univ)t is independent of t, up to conjugacy.
Moreover, the laminations ��t do not depend on the parameter t, up to isotopy.

This paper is foundational in nature, and can be seen as part of Thurston’s gen-
eral program to extend the geometrization theorem for Haken manifolds to all
3{manifolds admitting taut foliations, or more generally, essential laminations.
The structures de�ned in this paper allow one to set up a dynamical system,
analogous to the dynamical system used in Thurston’s proof of geometrization
for surface bundles over S1 , which we hope to use in a future paper to show that
3{manifolds admitting R{covered foliations are geometric. Some of this pic-
ture is speculative at the time of this writing and it remains to be seen whether
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key results from the theory of quasi-Fuchsian surface groups | eg, Thurston’s
double limit theorem | can be generalized to our context. However, the rigid-
ity result for actions on S1

univ is evidence for this general conjecture. For, one
expects by analogy with the geometrization theorem for surface bundles over a
circle, that the sphere at in�nity S2

1(fM ) of the universal cover fM is obtained
from the universal circle S1

univ as a quotient. Since the action on this sphere
at in�nity is independent of the foliation, we expect the action on S1

univ to be
rigid too, and this is indeed the case.

It is worth mentioning that we can obtain similar results for taut foliations with
one-sided branching in the universal cover in [4] and weaker but related results
for arbitrary taut foliations in [5] and [6]. The best result we obtain in [6] is
that for an arbitrary minimal taut foliation F of an atoroidal 3{manifold M ,
there are a pair �� of genuine laminations of M transverse to each other and
to F . Finally, the main results of this paper are summarized in [3].

Acknowledgements I would like to thank Andrew Casson, S�ergio Fenley
and Bill Thurston for their invaluable comments, criticisms and inspiration. A
cursory glance at the list of references will indicate my indebtedness to Bill for
both general and speci�c guidance throughout this project. I would also like to
thank John Stallings and Benson Farb for helping me out with some remedial
group theory. In addition, I am extremely grateful to the referee for provid-
ing numerous valuable comments and suggestions, which have tremendously
improved the clarity and the rigour of this paper.

I would also like to point out that I had some very useful conversations with
S�ergio after part of this work was completed. Working independently, he went
on to �nd proofs of many of the results in the last section of this paper, by
somewhat di�erent methods. In particular, he found a construction of the
laminations �� by using the theory of earthquakes as developed by Thurston.

1.1 Notation

Throughout this paper, M will always denote a closed orientable 3{manifold,fM its universal cover, F a codimension 1 co{orientable R{covered foliation
and eF its pullback foliation to the universal cover. M will be atoroidal unless
we explicitly say otherwise. L will always denote the leaf space of eF , which
is homeomorphic to R. We will frequently confuse �1(M) with its image in
Homeo(L) = Homeo(R) under the holonomy representation. We denote by
�v : fM ! L the canonical projection to the leaf space of eF .
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2 Con�ned leaves

2.1 Uniform foliations and slitherings

The basic objects of study throughout this paper will be taut R{covered folia-
tions of 3{manifolds.

De�nition 2.1.1 A taut foliation F of a 3{manifold is a foliation by surfaces
with the property that there is a circle in the 3{manifold, transverse to F , which
intersects every leaf of F . On an atoroidal 3{manifold, taut is equivalent to
the condition of having no torus leaves.

De�nition 2.1.2 Let F be a taut foliation of a 3{manifold M . Let eF denote
the foliation of the universal cover fM induced by pullback. F is R{covered i�eF is the standard foliation of R3 by horizontal R2 ’s.

In what follows, we assume that all foliations are oriented and co-oriented.
Note that this is not a signi�cant restriction, since we can always achieve this
condition by passing to a double cover. Moreover, the results that we prove
are all preserved under �nite covers. This co-orientation induces an invariant
orientation and hence a total ordering on L. For �; � leaves of L, we denote
this ordering by � > �.

The following theorem is found in [7]:

Theorem 2.1.3 (Candel) Let � be a lamination of a compact space M with
2{dimensional Riemann surface leaves. Suppose that every invariant transverse
measure supported on � has negative Euler characteristic. Then there is a
metric on M such that the inherited path metric makes the leaves of � into
Riemann surfaces of constant curvature −1.

Remark 2.1.4 The necessary smoothness assumption to apply Candel’s the-
orem is that our foliations be leafwise smooth | ie, that the individual leaves
have a smooth structure, and that this smooth structure vary continuously in
the transverse direction. One expects that any co-dimension one foliation of a
3{manifold can be made to satisfy this condition, and we will assume that our
foliations satisfy this condition without comment throughout the sequel.

By analogy with the usual Gauss{Bonnet formula, the Euler characteristic of
an invariant transverse measure can be de�ned as follows: for a foliation of

Danny Calegari

Geometry and Topology, Volume 4 (2000)

462



M by Riemann surfaces, there is a leafwise 2-form which is just the curvature
form. The product of this with a transverse measure can be integrated over M
to give a real number | the Euler characteristic (see [7] and [9] for details).

For M an aspherical and atoroidal 3{manifold, every invariant transverse mea-
sure on a taut foliation F has negative Euler characteristic.

Consequently we may assume in the sequel that we have chosen a metric on M
for which every leaf of F has constant curvature −1.

The following de�nitions are from [32].

De�nition 2.1.5 A taut foliation F of M is uniform if any two leaves �; �
of eF are contained in bounded neighborhoods of each other.

De�nition 2.1.6 A manifold M slithers over S1 if there is a �bration � : fM !
S1 such that �1(M) acts on this �bration by bundle maps.

A slithering induces a foliation of fM by the connected components of preimages
of points in S1 under the slithering map, and when fM = R3 and the leaves
of the components of these preimages are planes, this foliation descends to an
R{covered foliation of M .

By compactness of M and S1 , it is clear that the leaves of eF stay within
bounded neighborhoods of each other for a foliation obtained from a slithering.
That is, such a foliation is uniform. Thurston proves the following theorem in
[32]:

Theorem 2.1.7 Let F be a uniform foliation. Then after possibly blow-
ing down some pockets of leaves, F comes from a slithering of M over S1 ,
and the holonomy representation in Homeo(L) is conjugate to a subgroup of
˜Homeo(S1), the universal central extension of Homeo(S1).

In [32], Thurston actually conjectured that for atoroidal M , every R{covered
foliation should be uniform. However, this conjecture is false and in [2] we
construct many examples of R{covered foliations of hyperbolic 3{manifolds
which are not uniform.

2.2 Symmetry of the con�nement condition

We make the following de�nition:
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De�nition 2.2.1 Say that a leaf � of eF is con�ned if there exists an open
neighborhood U � L, where L denotes the leaf space of eF , such that[

�2U
� � N�(�)

for some � > 0, where N�(�) denotes the �{neighborhood of � in fM .

Say a leaf � is semi-con�ned if there is a half-open interval O � L with closed
endpoint � such that [

�2O
� � N�(�)

for some � > 0.

Clearly, this de�nition is independent of the choice of metric on M with respect
to which these neighborhoods are de�ned.

Observe that we can make the de�nition of a con�ned leaf for any taut foliation,
not just for R{covered foliations. However, in the presence of branching, the
neighborhood U of a leaf � 2 L will often not be homeomorphic to an interval.

Lemma 2.2.2 Leaves of eF are uniformly proper; that is, there is a function
f : (0;1)! (0;1) where f(t)!1 as t!1 such that for each leaf � of L,

any two points p; q which are a distance t apart in fM are at most a distance
f(t) apart in �.

Proof Suppose to the contrary that we have a sequence of points pi; qi at
distance t apart in fM which are contained in leaves �i where the leafwise
distances between pi and qi goes to 1. After translating by some elements �i
of �1(M), we can assume that some subsequence of pi; qi converge to p; q infM which are distance t apart. Since the leaf space L is R, and in particular is
Hausdor�, p and q must lie on the same leaf �, and their leafwise distance is
t < 1. It follows that the limit of the leafwise distances between pi and qi is
t, and therefore they are bounded, contrary to assumption.

Lemma 2.2.3 If F is R{covered then leaves of eF are quasi-isometrically
embedded in their �{neighborhoods in fM , for a constant depending on � ,
where N�(�) has the path metric inherits as a subspace of fM .

Proof Let r : N�(�) ! � be a (non-continuous) retraction which moves each
point to one of the points in � closest to it. Then if p; q 2 N�(�) are distance 1
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apart, r(p) and r(q) are distance at most 2�+ 1 apart in N�(�), and therefore
there is a t such that they are at most distance t apart in �, by lemma 2.2.2.
Since N�(�) is a path metric space, any two points p; q can be joined by a
sequence of arcs of length 1 whose union has length which di�ers from d(p; q)
by some uniformly bounded amount. It follows that the distance in � between
r(p) and r(q) is at most td(p; q) + constant.

Theorem 2.2.4 For �; � leaves in eF there exists a � such that � � N�(�) i�
there exists a �0 such that � � N�0(�).

Proof Let d(p; q) denote the distance in fM between points p; q .

For a point p 2 fM let �p denote the leaf in eF passing through p. We assume
that � as in the theorem has been already �xed. Let B(p) denote the ball of
radius � around p in �p . For each leaf �0 , let C�0(p) denote the convex hull in
�0 of the set of points at distance � � in fM from some q 2 B(p). Let

d(p) = sup
q2C�0(p)

d(q; p)

as �0 ranges over all leaves in L such that C�0(p) is nonempty. Let

s(p) = sup
C�0(p)

diam(C�0(p)):

Then d(p) and s(p) are well-de�ned and �nite for every p. For, if mi; ni are a
pair of points on a leaf �i at distance �i from p converging to m;n at distance
� from p, then the hypothesis that our foliation is R{covered implies that m;n
are on the same leaf, and the leafwise distances between mi and ni converge
to the leafwise distance between m and n.

More explicitly, we can take a homeomorphism from B � fM to some region of
R3 and consider for each leaf in the image, the convex hull of its intersection
with B . Since B is contained in a compact region of R3 , there is a continuous
family of isometries of the leaves in question to H2 such that the intersections
with B form a compact family of compact subsets of H2 . It follows that their
convex hulls form a compact family of compact subsets of H2 and hence their
diameters are uniformly bounded.

It is clear from the construction that d(p) and s(p) are upper semi-continuous.
Moreover, their values depend only on �(p) 2 M where � : fM ! M is the
covering projection. Hence they are uniformly bounded by two numbers which
we denote d and s.
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In particular, the set C � � de�ned by

C =
[
p2�

C�(p)

is contained in Nd(�). The hypothesis that � � N�(�) implies that C(p) is
nonempty for any p. In fact, for some collection pi of points in �,\

i

B(pi) 6= ; =)
\
i

C�(pi) 6= ;:

Moreover, the boundedness of s implies that for p; q su�ciently far apart in
�, C�(p) \ C�(q) = ;. For, the condition that C�(p) \ C�(q) 6= ; implies that
d(p; q) � 2s + 2d in fM . By lemma 2.2.2, there is a uniform bound on the
distance between p and q in �.

Hence there is a map from the nerve of a locally �nite covering by B(pi) of �
for some collection of points pi to the nerve of a locally �nite covering of some
subset of C by C�(pi). We claim that this subset, and hence C , is a net in �.

Observe that the map taking p to the center of C�(p) is a coarse quasi-isometry
from � to C with its path metric. For, since the diameter of C�(p) is uniformly
bounded independently of p, and since a connected chain of small disks in �
corresponds to a connected chain of small disks in C , the map cannot expand
distances too much. Conversely, since C is contained in the �{neighborhood of
�, paths in C can be approximated by paths in � of the same length, up to a
bounded factor.

It follows by a theorem of Farb and Schwartz in [11] that the map from � to �
sending p to the center of C�(p) is coarsely onto, as promised.

But now every point in � is within a uniformly bounded distance from C , and
therefore from �, so that there exists a �0 with � � N�0(�).

Remark 2.2.5 Notice that this theorem depends vitally upon lemma 2.2.2.
In particular, taut foliations which are not R{covered do not lift to foliations
with uniformly properly embedded leaves. For, one knows by a theorem of
Palmeira (see [28]) that a taut foliation fails to be R{covered exactly when the
space of leaves of eF is not Hausdor�. In this case there are a sequence of leaves
�i of eF limiting to a pair of distinct leaves �; �. One can thus �nd a pair of
points p 2 �; q 2 � and a sequence of pairs of points pi; qi 2 �i with pi ! p
and qi ! q so that the leafwise distance between pi and qi goes to in�nity,
whereas the distance between them in fM is uniformly bounded; ie, leaves are
not uniformly properly embedded.
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Theorem 2.2.6 If every leaf � of eF is con�ned, then F is uniform.

Proof Since any two points in the leaf space are joined by a �nite chain of
open intervals of con�nement, the previous lemma shows that the correspond-
ing leaves are both contained in bounded neighborhoods of each other. This
establishes the theorem.

2.3 Action on the leaf space

Lemma 2.3.1 For F an R{covered foliation of M , and L �= R the leaf space
of eF , for any leaf � 2 L the image of � under �1(M) goes o� to in�nity in
either direction.

Proof Recall that we assume that F is co-oriented, so that, every element of
�1(M) acts by an orientation-preserving homeomorphism of the leaf space L.

Suppose there is some � whose images under �1(M) are bounded in some
direction, say without loss of generality, the \positive" direction. Then the least
upper bound �0 of the leaves �(�) is �xed by every element of �1(M). Since
F is taut, �0 = R2 and therefore �0=�1(M) is a K(�1(M); 1) and is therefore
homotopy equivalent to M . This is absurd since M is 3{dimensional.

We remark that for foliations which are not taut, but for which the leaf space ofeF is homeomorphic to R, this lemma need not hold. For example, the foliation
of R3 − f0g by horizontal planes descends to a foliation on S2 � S1 by the
quotient q ! 2q . In fact, no leaf goes o� to in�nity in both directions under
the action of �1(M) = Z on the leaf space R, since the single annulus leaf ineF is invariant under the whole group.

Lemma 2.3.2 For all r > 0 there is an s > 0 such that every Ns(p) − �p
contains a ball of radius r on either side of the leaf, for �p the leaf in fM
through p.

Proof Suppose for some r that the side of fM above �p contains no ball of
radius r . Then every leaf above �p , and therefore every leaf, is con�ned. It
follows that F is uniform. But in a uniform foliation, there are pairs of leaves
in L which never come closer than t to each other, for any t. This gives a
contradiction.

Once we know that every leaf has some ball centered at any point, the com-
pactness of M implies that we can �nd an s which works for balls centered at
any point.
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Theorem 2.3.3 For any leaf � in eF and any side of � (which may as well be
the positive side), one of the following mutually exclusive conditions is true:

(1) � is semi-con�ned on the positive side.

(2) For any � > � and any leaf �0 > �, there is an � 2 �1(M) such that
�([�; �]) � (�; �0).

Remark 2.3.4 To see that the two conditions are mutually exclusive, observe
that if they both hold then every leaf on one side of � can be mapped into
the semi-con�ned interval in L, and therefore every leaf on that side of � is
con�ned. Since translates of � go o� to in�nity in either direction, every leaf is
con�ned and the foliation is uniform. Since such foliations slither over S1 (after
possibly being blown down), the leaf space cannot be arbitrarily compressed by
the action of �1(M). In particular, leaves in the same �ber of the slithering
over S1 and di�ering by n periods, say, cannot be translated by any � to lie
between leaves in the same �ber which di�er by m periods for m < n.

Proof If � is in the �{neighborhood of �, � is semi-con�ned and we are done.
So suppose � is not in the �{neighborhood of � for any � .

By hypothesis therefore, �0 is not in the �{neighborhood of �, and conversely
� is not in the �{neighborhood of �0 , for any � .

Let p 2 �; q 2 � be two points. Then d(p; q) = t. For r = t + diam(M) we
know that there is a s such that any ball of radius s about a point p contains
a ball of radius r on either side of �p . Pick a point p0 2 � which is distance at
least s from �0 . Then there is a ball B of radius r between � and �0 in the
ball of radius s about p. It follows that there is an � such that �(p) and �(q)
are both in B . This � has the properties we want.

2.4 Blowing down leaves

De�nition 2.4.1 For � a con�ned leaf, the umbra of �, denoted U(�), is
the subset of L consisting of leaves � such that � is contained in a bounded
neighborhood of �.

Notice that if � 2 U(�) then U(�) = U(�). Moreover, U(�) is closed for any
�. To see this, let � be a hypothetical leaf in U(�) − U(�). If � is semi-
con�ned on the side containing �, then U(�)\U(�) is nonempty, and therefore
U(�) = U(�) so that certainly � 2 U(�). Otherwise, � is not semi-con�ned on
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l
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m

n

�(D)

Figure 1: If l is not semi-con�ned, for any nearby leaf m and any other leaf n , there
is an element � 2 �1(M) such that �(l) and �(n) are between l and m .

that side and theorem 2.3.3 implies that there is an � taking [�; �] inside U(�).
But then U(�) = U(�(�)), so that U(�) = �−1(U(�)) and � 2 U(�) after all.

In fact, if �(U(�)) \ U(�) 6= ; for some � 2 �1(M) then �(U(�)) = U(�),
and in particular, � must �x every leaf in @U(�). Hence the set of elements in
�1(M) which do not translate U(�) o� itself is a group.

We show in the following theorem that for an R{covered foliation which is not
uniform, the con�ned leaves do not carry any of the essential topology of the
foliation.

Theorem 2.4.2 Suppose M has an R{covered but not uniform foliation F .
Then M admits another R{covered foliation F 0 with no con�ned leaves such
that F is obtained from F 0 by blowing up some leaves and then possibly per-
turbing the blown up regions.

Proof Fix some con�ned leaf �, and let G� denote the subgroup of �1(M)
which �xes U(�). The assumption that F is not uniform implies that some
leaves are not con�ned, and therefore U(�) is a compact interval. Then G�
acts properly discontinuously on the topological space R2 � I , and we claim
that this action is conjugate to an action which preserves each horizontal R2 .

This will be obvious if we can show that the action of G� on the top and bottom
leaves �u and �l are conjugate.
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Observe that �u and �l are contained in bounded neighborhoods of each other,
and therefore by lemma 2.2.3 any choice of nearest point map between �u and
�l is a coarse quasi-isometry. Moreover, such a map can be chosen to be G�{
equivariant. This map gives an exact conjugacy between the actions of G� on
their ideal boundaries S1

1(�u) and S1
1(�l). Since each of �u; �l is isometric

to H2 and the actions are by isometries, it follows that G� is a torsion-free
Fuchsian group.

Since every � 2 U(�) in isometric to H2 , and since every choice of closest-point
map from � to �u is a quasi-isometry, we can identify each S1

1(�) canonically
and G�{equivariantly with S1

1(�u).

Let F = �u=G� be the quotient surface. Then we can �nd an ideal triangulation
of the convex hull of F and for each boundary component of the convex hull,
triangulate the complementary cylinder with ideal triangles in some �xed way.
This triangulation lifts to an ideal triangulation of �u . Identifying S1

1(�u)
canonically with S1

1(�) for each �, we can transport this ideal triangulation
to an ideal triangulation of each �. The edges of the triangulation sweep
out in�nite strips I � R transverse to eF and decompose the slab of leaves
corresponding to U(�) into a union of ideal triangle � I . Since G� acts on
these blocks by permutation, we can replace the foliation eF of the slab with a
foliation on which G� acts trivially.

We can transport this action on the total space of U(�) to actions on the total
space of U(�(�)) wherever it is di�erent. Range over all equivalence classes
under �1(M) of all such U(�), modifying the action as described.

Now the construction implies that �1(M) acts on L= � where � � � if
� 2 U(�). It is straightforward to check that L= ��= R. Moreover, the total
space of each U(�) can be collapsed by collapsing each ideal triangle� I to an
ideal triangle. The quotient gives a new R3 foliated by horizontal R2 ’s on which
�1(M) still acts properly discontinuously. The quotient M̂ = (R3= �)=�1(M)
is actually homeomorphic to M by the following construction: consider a cover-
ing of M̂ by convex open balls, and lift this to an equivariant covering of R3= �.
This pulls back under the quotient map to an equivariant covering of R3 by
convex balls, which project to give a covering of M by convex balls. By con-
struction, the coverings are combinatorially equivalent, so M is homeomorphic
to M̂ .

By construction, every leaf is a limit under �1(M) of every other leaf, so by
theorem 2.3.3, no leaf is con�ned with respect to any metric on M . The induced
foliation on M is F 0 , and the construction shows that F can be obtained from
F 0 as required in the statement of the theorem.
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Corollary 2.4.3 If F is a nonuniform R{covered foliation then after blowing
down some regions we get an R{covered foliation F 0 such that for any two
intervals I; J � L, the leaf space of eF 0 , there is an � 2 �1(M) with �(I) � J .

In the sequel we will assume that all our R{covered foliations have no con�ned
leaves; ie, they satisfy the hypothesis of the preceding corollary.

3 The cylinder at in�nity

3.1 Constructing a topology at in�nity

Each leaf � of eF is isometric to H2 , and therefore has an ideal boundary
S1
1(�). We de�ne a natural topology on

S
�2L S

1
1(�) with respect to which it

is homeomorphic to a cylinder. Once we have de�ned this topology and veri�ed
that it makes this union into a cylinder, we will refer to this cylinder as the
cylinder at in�nity of eF and denote it by C1 .

Let UT eF denote the unit tangent bundle to eF . This is a circle bundle overfM which lifts the circle bundle UTF over M . Let � be a small transversal
to eF and consider the cylinder C which is the restriction UT eFj� . There is a
canonical map

�� : C !
[
�2L

S1
1(�)

de�ned as follows. For v 2 UTxF where x 2 �, there is a unique in�nite
geodesic ray γv in � starting at x and pointing in the direction v . This ray
determines a unique point �� (v) 2 S1

1(�). The restriction of �� to UTxF
for any x 2 � is obviously a homeomorphism. We de�ne the topology onS
�2L S

1
1(�) by requiring that �� be a homeomorphism, for each � .

Lemma 3.1.1 The topology on
S
�2L S

1
1 de�ned by the maps �� is well-

de�ned. With respect to this topology, this union of circles is homeomorphic
to a cylinder C1 .

Proof All that needs to be checked is that for two transversals �; � with
�v(�) = �v(�), the map �−1

� �� : UTFj� ! UTFj� is a homeomorphism. For
ease of notation, we refer to the two circle bundles as C� and C� and �−1

� ��
as f . Then each of C� and C� is foliated by circles, and furthermore f is
a homeomorphism when restricted to any of these circles. For a given leaf �
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intersecting � and � at t and s respectively, f takes a geodesic ray through t
to the unique geodesic ray through s asymptotic to it.

It su�ces to show that if vi; wi are two sequences in C� ; C� with vi ! v and
wi ! w with wi = f(vi) that w = f(v). The Riemannian metrics on leaves ofeF vary continuously as one moves from leaf to leaf, with respect to some local
product structure. It follows that the γvi converge geometrically on compact
subsets of fM to γv . Furthermore, the γwi are asymptotic to the γvi so that
they converge geometrically to a ray asymptotic to γv . This limiting ray is a
limit of geodesics and must therefore be geodesic and hence equal to γw .

The group �1(M) obviously acts on C1 by homeomorphisms. It carries a
canonical foliation by circles which we refer to as the horizontal foliation.

3.2 Weakly con�ned directions

De�nition 3.2.1 A point p 2 S1
1(�) for some � is weakly con�ned if there is

an interval [�−; �+] � L containing � in its interior and a map

H : [�−; �+]� R+ ! fM
such that:

� For each � 2 [�−; �+], H maps ��R+ to a parameterized quasigeodesic
in �.

� The quasigeodesic H(�� R+) limits to p 2 S1
1(�).

� The transverse arcs [�−; �+] � t have length bounded by some constant
C independent of t.

It follows from the de�nition that if p is weakly con�ned, the quasigeodesic rays
H(� � R+) limit to unique points p� 2 S1

1(�) which are themselves weakly
con�ned, and the map �! p� is a continuous map from [�−; �+] to C1 which
is transverse to the horizontal foliation. If p is a weakly con�ned direction,
let �p � C1 be a maximal transversal through p constructed by this method.
Then we call �p a weakly con�ned transversal, and we denote the collection
of all such weakly con�ned transversals by T . Such transversals need not be
either open or closed, and may project to an unbounded subset of L.

Lemma 3.2.2 There exists some weakly con�ned transversal running between
any two horizontal leaves in C1 . Moreover, the set T consists of a �1(M){
equivariant collection of embedded, mutually non-intersecting arcs.
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Proof If F is uniform, any two leaves of eF are a bounded distance apart, so
there are uniform quasi-isometries between any two leaves which move points
a bounded distance. In this case, every point at in�nity is weakly con�ned.

If F is not uniform and is minimal, for any �; �0 leaves of eF choose some
transversal � between � and �0 . Then there is an � 2 �1(M) such that
�v(�) is properly contained in �(�v(�)). It follows that we can �nd a square
S : I � I ! fM such that S(I; 0) = � , S(I; 1) � �(�) and each S(t; I) is
contained in some leaf. The union of squares S [ �(S) [ �2(S) [ : : : contains
the image of an in�nite strip I � R+ where the I � t factors have a uniformly
bounded diameter.

The square S descends to an immersed, foliated mapping torus in M which
is topologically a cylinder. Let γ be the core of the cylinder. Then γ is
homotopically essential, so it lifts to a quasigeodesic in fM . Since the strip
I � R+ stays near the lift of this core, it is quasigeodesically embedded in fM ,
and therefore its intersections with leaves of eF are quasigeodesically embedded
in those leaves. It limits therefore to a weakly con�ned transversal in C1 .

To see that weakly con�ned transversals do not intersect, suppose �; � are two
weakly con�ned transversals that intersect at p 2 S1

1(�). We restrict attention
to a small interval I in L which is in the intersection of their ranges. If this
intersection consists of a single point p, then actually � [ � is a subset of a
single weakly con�ned transversal.

Corresponding to I � L there are two in�nite quasigeodesic strips A : I�R+ !fM and B : I � R+ ! fM guaranteed by the de�nition of a weakly con�ned
transversal. Let � 2 I be such that A(� � R+) does not limit to the same
point in S1

1(�) as B(� � R+). By hypothesis, A(� � R+) is asymptotic to
B(� � R+). But the uniform thickness of the strips implies that A(� � R+)
is a bounded distance in fM from A(� � R+) and therefore from B(� � R+)
and consequently B(��R+). But then by lemma 2.2.2 the two rays in � limit
to the same point in S1

1(�), contrary to assumption. It follows that weakly
con�ned transversals do not intersect.

In [33] Thurston proves the following theorem:

Theorem 3.2.3 (Thurston) For a general taut foliation F , a random walk
γ on a leaf � of eF converging to some p 2 C1 stays a bounded distance
from some nearby leaves �� in eF , with probability 1, and moreover, also with
probability 1, there is an exhaustion of γ by compact sets such that outside
these sets, the distance between γ and �� converges to 0.
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It is possible but technically more di�cult to develop the theory of weakly
con�ned directions using random walks instead of quasigeodesics as suggested
in [31], and this was our inspiration.

3.3 Harmonic measures

Following [21] we de�ne a harmonic measure for a foliation.

De�nition 3.3.1 A probability measure m on a manifold M foliated by F is
harmonic if for every bounded measurable function f on M which is smooth
in the leaf direction, Z

M
�Ffdm = 0

where �F denotes the leafwise Laplacian.

Theorem 3.3.2 (Garnett) A compact foliated Riemannian manifold M;F
always has a nontrivial harmonic measure.

This theorem is conceptually easy to prove: observe that the probability mea-
sures on a compact space are a convex set. The leafwise di�usion operator
gives a map from this convex set to itself, which map must therefore have a
�xed point. There is some analysis involved in making this more rigorous.

Using the existence of harmonic measures for foliations, we can analyze the
�1(M){invariant subsets of C1 .

Theorem 3.3.3 Let U be an open �1(M){invariant subset of C1 . Then
either U is empty, or it is dense and omits at most one point at in�nity in a
set of leaves of measure 1.

Proof Let � be a leaf of eF such that S1
1(�) intersects U , and consequently

intersects it in some open set. Then all leaves � su�ciently close to � have
S1
1(�) intersect U , and therefore since leaves of F are dense, U intersects

every circle at in�nity in an open set.

For a point p 2 �, de�ne a function �(p) to be the maximum of the visual angles
at p of intervals in S1

1(�) \ U . This function is continuous as p varies in �,
and lower semi-continuous as p varies through fM . Moreover, it only depends
on the projection of p to M . It therefore attains a minimum �0 somewhere,
which must be > 0. This implies that U \ S1

1(�) has full measure in S1
1(�),
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since otherwise by taking a sequence of points pi 2 � approaching a point of
density in the complement, we could make �(pi)! 0.

Similarly, the supremum of � is 2� , since if we pick a sequence pi converging
to a point p in U \ S1

1 , the interval containing p will take up more and more
of the visual angle.

Let �i be the time i leafwise di�usion of � . Then each �i is C1 on each leaf,
and is measurable since � is, by a result in [21]. De�ne

�̂ =
1X
i=1

2−i�i

Then �̂ satis�es the following properties:

� �̂ is a bounded measurable function on M which is C1 in every leaf.

� �F �̂ � 0 for every point in every leaf, with equality holding at some
point in a leaf i� � = 2� identically in that leaf.

To see the second property, observe that �F� = 0 everywhere except at points
where there at least two subintervals of U of largest size. For, elsewhere �
agrees with the harmonic extension to H2 = � of a function whose value is 1
on a subinterval of the boundary and 0 elsewhere. In particular, elsewhere � is
harmonic. Moreover, at points where there are many largest subintervals of U ,
�F� is a positive distributional function | that is, the \subharmonicity" of �
is concentrated at these points. In particular, �F �̂ � 0 and it is = 0 i� there
are no points in � where there are more than one largest visual subinterval of
U . But this occurs only when U omits at most 1 point from S1

1(�).

Now theorem 3.3.2 implies that �F �̂ = 0 for the support of any harmonic mea-
sure m, and therefore that � = 2� for every point in any leaf which intersects
the support of m.

Garnett actually shows in [21] that any harmonic measure disintegrates locally
into the product of some harmonic multiple of leafwise Riemannian measure
with a transverse invariant measure on the local leaf space. When every leaf is
dense, as in our situation, the transverse measure is in the Lebesgue measure
class. Hence in fact we can conclude that � = 2� for a.e. leaf in the Lebesgue
sense.

Note that there was no assumption in this theorem that F contain no con�ned
leaves, and therefore it applies equally well to uniform foliations with every leaf
dense. In fact, for some uniform foliations, there are open invariant sets at
in�nity which omit exactly one point from each circle at in�nity.
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4 Con�ned directions

4.1 Suspension foliations

Let  : T 2 ! T 2 be an Anosov automorphism. ie, in terms of a basis for H1(T 2)
the map  is given by an element of SL(2;Z) with trace > 2. Then  leaves
invariant a pair of foliations of T 2 by those lines parallel to the eigenspaces of
the action of  on R2 . These foliations suspend to two transverse foliations of
the mapping torus

M = T 2 � I=(x; 0) � ( (x); 1)

which we call the stable and unstable foliation Fs and Fu of M . There is a
flow of M given by the vector �eld tangent to the I direction in the description
above, and with respect to the metric on M making it a Solv-manifold, this is
an Anosov flow, and Fs and Fu are the stable and unstable foliations of this
flow respectively. In particular, the leaves of the foliation Fu converge in the
direction of the flow, and the leaves of the foliation Fs diverge in the direction
of the flow.

Both foliations are R{covered, being the suspension of R{covered foliations of
T 2 . Moreover, no leaf of either foliation is con�ned. To see this, observe that in-
tegral curves of the stable and unstable directions are horocycles with respect to
the hyperbolic metric on each leaf. Since each leaf is quasigeodesically (in fact,
geodesically) embedded in M , it can be seen that the leaves themselves, and
not just the integral curves between them, diverge in the appropriate direction.

With respect to the Solv geometric structure on M , every leaf is intrinsically
isometric to H2 . One can see that every geodesic on a leaf of Fs which is not
an integral curve of the Anosov flow will eventually curve away from that flow
to point asymptotically in the direction exactly opposite to the flow. That is to
say, leaves of Fs converge at in�nity in every direction except for the direction
of the flow; similarly, leaves of Fu converge at in�nity in every direction except
for the direction opposite to the flow. These are the prototypical examples
of R{covered foliations which have no con�ned leaves, but which have many
con�ned directions (to be de�ned below).

4.2 Con�ned directions

Recapitulating notation: throughout this section we �x a 3{manifold M , an
R{covered foliation F with no con�ned leaves, and a metric on M with respect
to which each leaf of eF is isometric to H2 . We �x L �= R the leaf space of eF
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Figure 2: Each H2 is foliated by flow lines

and the projection �v : fM ! L. Each leaf of eF can be compacti�ed by the
usual circle at in�nity of hyperbolic space; we denote the circle at in�nity of a
leaf � by S1

1(�). We let UTF denote the unit tangent bundle to the foliation,
and UT� the unit tangent bundle of each leaf �.

De�nition 4.2.1 For � a leaf of eF , we say a p a point in S1
1(�) is a con�ned

point if for every sequence pi 2 � limiting only to p, there is an interval I � L
containing � in its interior and a sequence of transversals �i projecting homeo-
morphically to I under � whose lengths are uniformly bounded. That is, there
is some uniform t such that k�ik � t. Equivalently, there is a neighborhood I
of � in L with endpoints �� such that every sequence pi as above is contained
in a bounded neighborhood of both �+ and �− . If p is not con�ned, we say it
is uncon�ned.

Remark 4.2.2 A point may certainly be uncon�ned and yet weakly con�ned.
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De�nition 4.2.3 For a point p 2 S1
1(�) which is uncon�ned, a certi�cate

for p is a sequence of points pi 2 � limiting only to p such that for any
I � L containing � in its interior and a sequence of transversals �i projecting
homeomorphically to I under �, the lengths k�ik are unbounded. Equivalently,
there is a sequence of leaves �i ! � such that for any i, the sequence pj does
not stay within a bounded distance from �i . By de�nition, every uncon�ned
point has a certi�cate.

For a simply connected leaf, holonomy transport is independent of the path
between endpoints. The transversals �i de�ned above are obtained from �1 by
holonomy transport.

Theorem 4.2.4 The following conditions are equivalent:

� The point p 2 S1
1(�) is con�ned.

� There is a neighborhood of p in S1
1(�) consisting of con�ned points.

� There is a neighborhood U of p in � [ S1
1(�) such that there exists

t > 0 and an interval I � L containing � in its interior such that for
any properly embedded (topological) ray γ : R+ ! � whose image is

contained in U , there is a proper map H : R+ � I ! fM such that
� �H(x; s) = s for all s, HjR+�� = γ and kH(x; I)k � t for all x.

Proof It is clear that the third condition implies the �rst. Suppose there
were a sequence of uncon�ned points pi 2 S1

1 converging to p. Let pi;j be a
certi�cate for pi . Then we can �nd integers ni so that pi;ni is a certi�cate for
p. It follows that the �rst condition implies the second. In fact, this argument
shows that p is con�ned i� there is a neighborhood U of p in � [ S1

1(�) and
a neighborhood I of � in L with endpoint �� such that U is contained in a
bounded neighborhood of both �+ and �− .

Assume we have such a neighborhood U of p and I of �, and assume that
U � N�(�+)\N�(�−). Let γ : R+ ! U \� be a properly embedded ray and let
xi be a sequence of points so that γ(xi) is an � net for the image of γ . Then
there is a sequence of transversals �i of length bounded by d(�) with �(�i) = I
passing through γ(xi). Since �i\�+ and �i+1\�+ are at distance less than 3�
from each other in fM , they are distance less than c(�) from each other in �+ .
A similar statement holds for �i \ �− and �i+1 \ �− . Therefore we can �nd a
sequence of arcs ��i in �� between these pairs of points. The circles

�i [ �+
i [ �i+1 [ �−i
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bound disks of bounded diameter which are transverse to eF and whose intersec-
tion with � is contained in the image of γ . These disks can be glued together to
produce a proper map H : R+� I ! fM with the desired properties, such that
the vertical �bers H(x; I) have length uniformly bounded by some function of
�. That is, they are uniformly bounded independently of γ .

Theorem 4.2.5 Suppose every point p 2 S1
1(�) is con�ned. Then � is a

con�ned leaf.

Proof By compactness, we can cover �[S1
1 with a �nite number of open sets

Ui so that there are neighborhoods Ii in L of � with endpoints ��i with the
property that Ui � N�i(�

+
i ) \ N�i(�

−
i ). (Notice that any open set Ui whose

closure in �i is compact satis�es this property for some Ii and some �i ). But
this implies � is con�ned, by the symmetry of the con�nement condition.

Lemma 4.2.6 Suppose that eF has no con�ned leaves. Let p 2 S1
1(�) be

con�ned. Then with notation as in the proof of theorem 4.2.4, for any sequence
pi ! p there are transversals �i with �(�i) = I such that k�ik ! 0.

Proof Let �� be the endpoints of I . Then U � N�(�+) \ N�(�−), and
therefore, if Bti(pi) denotes the ball in � of radius ti about pi , we have that
Bti(pi) � N�(�+) \ N�(�−) for ti ! 1. Let �i 2 �1(M) be chosen so that
�i(pi) ! q 2 fM . Suppose no such shrinking transversals �i exist. Then
in�nitely many leaves �i(�+); �i(�−) are bounded away from q . It follows that
lim sup�i(I) = J has non-empty interior. But by construction, the entire leaf
through q is contained in a bounded neighborhood of the limit leaves of J . It
follows that the leaf through q is con�ned, contrary to assumption.

Theorem 4.2.7 The set of con�ned directions is open in C1 .

Proof For a uniform foliation, every direction is con�ned. Since every direc-
tion on a con�ned leaf is con�ned, we can assume without loss of generality
that eF has no con�ned leaves.

Theorem 4.2.4 shows that the set of con�ned directions is open in each leaf.
Moreover, it shows that if p is a con�ned point in S1

1(�), then for some open
neighborhood U of p in � [ S1

1(�) and some neighborhood I � L with limits
�� , the set U is contained in N�(�+) \N�(�−) for some �. It is clear that for
any open V 2 � whose closure in � is compact, we can replace U by U[V after
possibly increasing �. It follows from lemma 2.2.3 that for some � , N�(U)\�+

The Geometry of R-covered foliations

Geometry and Topology, Volume 4 (2000)

479



contains an entire half-space in �+ , and similarly for �− . Therefore if γ is
a semi-in�nite geodesic in � emanating from v and converging to a con�ned
point p, there is a geodesic γ+ 2 �+ which stays in a bounded neighborhood
of γ .

By lemma 4.2.6 we see that the leaves �; �+; �− all converge near U \ S1
1(�).

It follows that the geodesics γ and γ+ are actually asymptotic, considered as
properly embedded arcs in fM .

Remark 4.2.8 We see from this theorem that every con�ned direction is
weakly con�ned, as suggested by the terminology. The following theorem fol-
lows immediately from this observation and from theorem 3.2.2.

Theorem 4.2.9 Let C denote the set of con�ned directions in C1 . This
set carries a �1(M){invariant vertical foliation transverse to the horizontal fo-
liation, whose leaves are the maximal weakly con�ned transversals running
through every con�ned point.

Proof Immediate from theorem 3.2.2.

4.3 Transverse vector �elds

It is sometimes a technical advantage to choose a one-dimensional foliation
transverse to F in order to unambiguously de�ne holonomy transport of a
transversal along some path in a leaf. We therefore develop some language and
basic properties in this section.

Let X be a transverse vector �eld to F . Then X lifts to a transverse vector
�eld eX to eF . Following Thurston, we make the following de�nition.

De�nition 4.3.1 A vector �eld X transverse to an R{covered foliation F is
regulating if every integral curve of eX intersects every leaf of eF .

Put another way, the integral curves of a regulating vector �eld in the universal
cover map homeomorphically to L under �. In fact, we will show in the sequel
that every R{covered foliation admits a regulating transverse vector �eld.

De�nition 4.3.2 We say that a point p 2 S1
1(�) is con�ned with respect to

X if for every sequence pi ! p there is a t and a neighborhood I of � in L
such that the integral curves �i of eX passing through pi with the property
that �(�i) = I satisfy k�ik � t. If no integral curve of eX passing through pi
has the property that �(�i) = I , we say that k�ik =1.
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Theorem 4.3.3 Let X be a regulating transverse vector �eld. Then a point
p 2 S1

1(�) is con�ned i� it is con�ned with respect to X .

Proof Con�nement with respect to a vector �eld is a stronger property than
mere con�nement, so it su�ces to show that a con�ned point is con�ned with
respect to X .

Suppose we have neighborhoods U; I and a t as in Theorem 4.2.4. For a point
p 2 fM , let Ip be the set of leaves which intersect the ball of radius t about
p. Then the integral curve �p of eX passing through p with �(�p) = Ip has
length jj�pjj = f(p). This function is continuous in p, and depends only on
the projection of p to M . Since M is compact, this function is bounded. It
follows that if we have pi ! p and transversals �i through pi with jj�ijj < t
that the transversals �i through pi with endpoints on the same leaves as �i
have uniformly bounded length.

It is far from true that an arbitrary transverse vector �eld is regulating. How-
ever, the following is true.

Theorem 4.3.4 Suppose F has no con�ned leaves. Let X be an arbitrary
transverse vector �eld. Then a point p 2 S1

1(�) is con�ned i� it is con�ned
with respect to X .

Proof This theorem follows as above once we observe that any transverse
vector �eld regulates the �-neighborhood of every leaf for some �. For, by
lemma 4.2.6 we know that leaves converge at in�nity near con�ned points. It
follows that by choosing U; I suitably for a con�ned point p, that integral curves
of eX foliate N�(U)\�−1(I) as a product, and that the length of these integral
curves is uniformly bounded. Consequently, a sequence pi ! p determines a
sequence �i of integral curves of eX with uniformly bounded length, and p is
con�ned with respect to X , as required.

For uniform foliations F , every point at in�nity is con�ned. However, for any
vector �eld X which is not regulating, there are points at in�nity which are
uncon�ned with respect to X . For example, the skew R{covered foliations
described in [13] and [32] have naturally de�ned transverse vector �elds which
are not regulating. Every point at in�nity is con�ned, but there is a single
point at in�nity for each leaf in eF which is uncon�ned with respect to the
non-regulating vector �eld. We will come back to this example in the sequel.
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4.4 Fixed points in con�ned directions

Suppose in the remainder of this section that we have chosen some vector �eld
X transverse to F , which lifts to eX transverse to eF .

If K denotes the closure of the set of �xed points for the action of �1(M)
on the cylinder C1 , then it follows that the group �1(M) acts freely on the
contractible manifold fM [ (C1 − K). It would be pleasant to conclude that
C1−K is empty, since M is a K(�; 1). However the following example shows
that things are not so simple.

Example Let F be an R{covered foliation with some leaf � homeomorphic
to a cylinder. Let F̂ be obtained by blowing up the leaf � and perturbing
the blown up leaves to be planes. Then this con�ned \pocket" of leaves gives
rise to a disjoint union of cylinders at in�nity, consisting entirely of con�ned
directions, on which �1(M) acts without any �xed points.

�+ �−

Figure 3: A cylinder is blown up to a foliated cylinder �I . Then all but the boundary
leaves are perturbed to planes. This pocket of leaves lifts to the universal cover to give
an annulus of con�ned directions at in�nity without any con�ned �xed points.

Fortunately, when every leaf is dense, we can say more about the action of
�1(M) on C1 . In particular, let S be any small rectangle whose boundary
is contained in C1 . We can de�ne the (leafwise) convex hull H(S) of S (or,
generally of any subset of C1) to be the set of points p 2 fM such that if
p 2 �, the visual angle of �1 \S as seen from p is � � . If S had the property
that the translates of S under �1(M) were all disjoint, then the translates of
the convex hull of S would also be disjoint, since there cannot be two disjoint
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closed arcs in a circle of angle � � . The following lemma quanti�es the notion
that every leaf of F is dense in M .

Lemma 4.4.1 If F is a taut foliation of a manifold M such that every leaf is
dense, then for every � > 0 there exists an R such that for any p 2M and leaf
� containing p, the disk of radius R in � with center p is an �{net for M .

Proof Observe that the such an R(p) exists for every such p 2M . Moreover,
by taking a larger R(p) than necessary, we can �nd an R(p) that works in
an open neighborhood of p. Therefore by compactness of M we can �nd a
universal R by taking the maximum of R(p) over a �nite open cover of M .

In particular, for every �, the set �(� \ H(S)) is dense in M . But now it
follows that if � � H(S) is any maximal integral curve of X , that there is some
other maximal integral curve of X in H(S), call it � 0 and some � 2 �1(M) so
that �(� 0) � � . In particular, there is some � 2 �1(M) so that �(S) \ S is a
rectangle which is strictly bounded in the vertical direction by the upper and
lower sides of S . In particular, � �xes some horizontal leaf passing through
the interior of S .

More generally, we prove:

Theorem 4.4.2 Fixed points of elements in �1(M) are dense in C .

Proof Let R be any con�ned rectangle. In local co-ordinates, let R be given
by the set jxj � 1; jyj � 1 where the horizontal and vertical foliations of C in
this chart are given by level sets of y and x respectively. Let p 2 @H(R) so
that the visual angle of R is � as seen from p, and so that p is on the leaf
corresponding to y = 0. There is some positive � so that, as seen from p,
there are no uncon�ned points within visual angle � of the extreme left and
right edges of R. But now we can �nd a q such that the visual angle of R
as seen from q is at least 2� − � such that there is some � 2 �1(M) so that
�(q) = p, and so that the integral curve of X \H(R) through q is very small
compared to the integral curve of X \ H(R) through p. Moreover, the fact
that the visual angle of �(R), as seen from p is at least 2� − �, and consists
entirely of con�ned directions, implies that the rectangles �(R) and R must
intersect \transversely"; that is to say, �(R) is de�ned in local co-ordinates by
a < x < b; c < y < d where a < −1 < 1 < b and −1 < c < 0 < d < 1. For,
otherwise, the union R [ �(R) would contain an entire circle at in�nity, which
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circle could not contain any uncon�ned points, contrary to our assumption that
no leaf is con�ned.

By two applications of the intermediate value theorem, it follows that � has
some �xed point in R. Since R was arbitrary, it follows that con�ned �xed
points are dense in C .

�(q) = p
q

Figure 4: A su�ciently large disk about any point in any leaf is an �{net for M . By
going su�ciently far out towards C so that the vertical height of H(R) is small, we
can �nd points p; q and � as in the �gure.

4.5 Semi-con�ned points

Given a point at in�nity p and a side in C1 of the circle at in�nity containing
p, we say that p is semi-con�ned on that side if for all semi-in�nite paths γ
limiting to p, there is a transversal on the chosen side with one endpoint on
the leaf through p which has holonomic images of bounded length along γ .
If p is uncon�ned but still semi-con�ned, we say it is strictly semi-con�ned.
Notice that the condition that p is uncon�ned implies that it can only be semi-
con�ned on one side. It is clear from the de�nition that a semi-con�ned point
can be a limit of uncon�ned points from only one side; that is, if p is a limit of
uncon�ned points pi , then the leaves containing pi are all on the same side of
p. We can actually prove the converse:

Lemma 4.5.1 Let p be uncon�ned. Then on each side of p which is not
semi-con�ned, p is a limit of uncon�ned points pi .

Proof Let R be a small rectangle in C1 containing p, bounded above and
below by S1

1(��) respectively. Let p lie on the leaf �. Suppose without loss
of generality that p is not semi-con�ned on the positive side. Then we can �nd
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a sequence of points qi ! p in � such that the shortest transversal �i through
qi whose endpoints lie on � and �+ has length bounded between i and i+ 1.
By passing to a subsequence, we can �nd �i so that �i(qi) converges to q . Let
H(R) denote the leafwise convex hull of R, and @H(R) denote the leafwise
boundary of this set | ie, the collection of geodesics in leaves of eF which limit
to pairs of points on the vertical edges of R. Then the distance from qi to
@H(R) gets larger and larger, so the rectangle R has visual angle ! 2� as
seen from qi . If R contains uncon�ned points above p, we are done, since R
was arbitrary. Otherwise the uncon�ned points on the leaves between � and
�+ are constrained to lie outside R. As seen from qi , the visual angle of R
converges to 2� , and the transversal between � and �+ has length !1. For
each �xed distance t > 0, let qi(t) be the point on �i at distance t from qi .
Then the visual angle of R as seen from qi(t) also converges to 2� , since qi(t)
is only a bounded distance from qi and therefore the distance from qi(t) to
@H(R) also increases without bound. Therefore the geometric limit of �i(R)
is an in�nite strip omitting exactly one vertical line at in�nity which contains
all the uncon�ned points. It follows that C1 − C is a single bi-in�nite line
containing all the uncon�ned points, including p. In particular, p is a limit of
uncon�ned points from above and below.

Let p be a con�ned �xed point of an element � 2 �1(M). Let � be the leaf
of eF containing p. Then � acts as a hyperbolic isometry of �, since otherwise
its translation distance in fM is 0, contradicting the fact that M is compact.
Without loss of generality we can assume that p is an attracting �xed point
for the action of � on �. Let q be the other �xed point of p. Then for every
point p0 2 S1

1(�)− q the sequence �n(p0)! p. It follows that every such p0 is
con�ned. By theorem 4.2.5 this implies that q is uncon�ned. Call such a q the
uncon�ned �xed point conjugate to p.

Lemma 4.5.2 Let q be the uncon�ned �xed point conjugate to some p in
S1
1(�). Let � �x the axis from p to q so that p is an attracting �xed point

for �. Then for every su�ciently small rectangle R containing q in its interior
�−1 takes R properly into its interior.

Proof We can �nd con�ned transversals �1; �2 in C1 near q which run from
�− to �+ for a pair of leaves �� with � 2 [�−; �+]. Since � �xes a con�ned
transversal through p, it expands this transversal, by lemma 4.2.6. It follows
that � expands [�−; �+] for all su�ciently close �� . Moreover, q is a repelling
�xed point on S1

1(�) for �, so the lemma follows.
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4.6 Spines and product structures on C1

De�nition 4.6.1 A �1{invariant bi-in�nite curve Ψ � C1 intersecting every
circle at in�nity exactly once is called a spine.

Lemma 4.6.2 Suppose there exists a spine Ψ. Then for any uncon�ned point
p 2 C1 − Ψ and any pair of concentric rectangles S � R containing p and
avoiding the spine, there is some � 2 �1(M) which takes the rectangle R
properly inside S .

Proof Let I be a �xed transversal passing through the leaf � containing p.
Then there is an l such that any ball in any leaf of radius l contains a translate
of some point in I . Since p is uncon�ned, there is a sequence pi ! p of points in
� such that the transversal with limits determined by S blows up to arbitrary
length. Then we can �nd a pi so that the ball of radius l in the leaf about pi
has the property that all transversals through this ball whose projection to L
is equal to �v(S) are of length > jIj on either side. For, the fact that F is
R{covered and M is compact implies that for any lengths l0; t1 there is a t2
so that a transversal of length t1 cannot blow up to length t2 under holonomy
transport of length � l0 (simply take the supremum of the lengths of holonomy
transport of all transversals of length � t1 under all paths of length � l0 and
apply compactness).

But now it follows that some translate of I intersects the ball of radius l in the
leaf about pi in such a way that the translating element � maps the interval in
leaf space delimited by R completely inside S . Furthermore, we can choose pi
as above so that the visual angle of S seen from any point in the ball is at least
2�− �. This, together with the fact that both R and �(R) are the same visual
angle away from the spine, as viewed from I and �(I) respectively, imply that
�(R) is properly contained in S and therefore has an uncon�ned �xed point q
in S with the desired properties.

Theorem 4.6.3 Let F be any nonuniform R{covered foliation with dense
leaves, not necessarily containing con�ned points at in�nity. Let I be some
nonempty �1{invariant embedded collection of pairwise disjoint arcs transverse
to the horizontal foliation of C1 . Then at least one of the following two things
happens:

� For any pair of leaves � < � in L, there are a collection of elements of I
whose projection to L contains [�; �] and which intersect each of S1

1(�)
and S1

1(�) in a dense set.
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� C1 contains a spine.

In the �rst case, the set I determines a canonical identi�cation between S1
1(�)

and S1
1(�) for any pair of leaves �; �.

Proof Observe that there is some element � of I whose projection �v(�)
contains [�; �], by corollary 2.4.3. Let Ii be an exhaustion of L by compact
intervals, and let �i be a sequence of elements of I such that Ii � �v(�i). Then
we can extract a subsequence of �i which converges on compact subsets to a
bi-in�nite �̂ which is transverse to the horizontal foliation of C1 and which
does not cross any element of I transversely. Call such a �̂ a long transversal.
Let U be the complement of the closure of the set of long transversals. Then
U is open and �1{invariant, and is therefore either empty or omits at most
one point in a.e. circle at in�nity, by theorem 3.3.3. In the second case, it
is clear that there is a unique long transversal, which must be a spine. In
the �rst case, pick a point p in the cylinder limited by S1

1(�) and S1
1(�).

There is a long transversal arbitrarily close to p, and by the de�nition of a
long transversal, there are elements of I stretching arbitrarily far in either
direction of L arbitrarily close to such a long transversal. It follows that there
is an element of I whose projection to L contains [�; �] arbitrarily close to p.
The elements of I are disjoint, and therefore they let us canonically identify a
dense subset of S1

1(�) with a dense subset of S1
1(�); this identi�cation can be

extended uniquely by continuity to the entire circles.

Theorem 4.6.4 For any R{covered foliation with hyperbolic leaves, not nec-
essarily containing con�ned points at in�nity, there are two natural maps

�v : C1 ! L; �h : C1 ! S1
univ

such that:

� �v is the projection to the leaf space.

� �h is a homeomorphism for every circle at in�nity.

� These functions give co-ordinates for C1 making it homeomorphic to a
cylinder with a pair of complementary foliations in such a way that �1(M)
acts by homeomorphisms on this cylinder preserving both foliations.

Proof If F is uniform, any two leaves of eF are quasi-isometrically embedded
in the slab between them, which is itself quasi-isometric to H2 . It follows that
the circles at in�nity of every leaf can be canonically identi�ed with each other,
producing the product structure required. Furthermore, it is obvious that the
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product structure can be extended over blow-ups of leaves. We therefore assume
that F is not uniform and has no con�ned leaves.

Consider T , the union of weakly con�ned transversals. By theorem 4.6.3, we
only need to consider the case that C1 has a spine; for otherwise there is
a canonical identi�cation of S1

1(�) with S1
1(�) for any �; � 2 L, so we can

�x some S1
1(�) = S1

univ and let �h take each point in some S1
1(�) to the

corresponding point in S1
1(�). It is clear that the �bers of this identi�cation

give a foliation of C1 with the required properties.

It follows that we may reduce to the case that there is a spine Ψ. Let Y be the
vector �eld on eF which points towards the spine with unit length. Observe Y
descends to a vector �eld on F .

De�nition 4.6.5 Say a semi-in�nite integral curve γ � � of Y pointing to-
wards the spine is weakly expanding if there exists an interval I � L with � in
its interior such that holonomy transport through integral curves of Y keeps the
length of a transversal representing I uniformly bounded below. That is there
is a � > 0 such that for any map H : [−1; 1] � R+ ! fM with the properties

� � �H(�; t) : [−1; 1]! I is a homeomorphism for all t

� H(r; �) : R+ ! fM is an integral curve of Y

� H(0; �) : R+ ! fM is equal to the image of γ

we have kH([−1; 1]; t)k > � independent of t and H .

Suppose that a periodic weakly expanding integral curve γ of Y exists. That
is, there is � 2 �1(M) with �(γ) � γ . By periodicity, we can choose I as above
so that �(I) � I , since a transversal representing I cannot shrink too small
as it flows under Y . Then we claim every semi-in�nite integral curve γ0 of Y
is uniformly weakly expanding. That is, there is a universal � such that any
interval I � L with the property that the shortest transversal � through the
initial point of γ0 with �(�) = I has k�k > � will have the properties required
for the de�nition of a weakly expanding transversal, for some � independent of
γ0 and depending only on �.

To see this, let D be a fundamental domain for M centered around the initial
point p of γ . Let R be a rectangle transverse to the integral curves of Y with
top and bottom sides contained in leaves of eF and �v(R) = I such that D
projects through integral curves of Y to a proper subset of R. Then projec-
tion through integral curves of Y takes the vertical sides of R properly inside
the vertical sides of �(R), since the flow along Y shrinks distances in leaves.
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Furthermore, since �(I) � I , the top and bottom lines in R flow to horizontal
lines which are above and below respectively the top and bottom lines of �(R)

Thus, holonomy transport of any vertical line in R through integral curves of
Y keeps its length uniformly bounded below by some � . For any interval J � L
with �v(R) � J therefore, an integral curve of Y beginning at a point in D is
weakly expanding for the interval J and for some universal � as above. Since
D is a fundamental domain, this proves the claim.

By theorem 3.2.3 there is some point p 2 C1 not on Ψ, a pair of leaves ��

above and below the leaf � containing p, and a sequence of points pi in �
converging to p such that the distance from pi to �� converges to 0. Let D be
a disk in C1 about p. Then the visual angle of D , as seen from pi , converges
to 2� . Moreover, there are a sequence of transversals �i between �� passing
through pi whose length converges to 0. Since there is a uniform t so that any
disk in a leaf of radius t intersects a translate of �1 , we can �nd points p0i in
� within a distance t of pi so that there exists �i with �i(p0i) = p1 . This �i
must satisfy �i([�−; �+]) � [�−; �+] and furthermore it must �x Ψ, since Ψ is
invariant under every transformation. If the visual angle of D seen from p0i is
at least 2�− � where D is at least � away from the spine, as seen from p1 , then
�i must also �x a point in D . It follows that a semi-in�nite ray contained in
the axis of �i going out towards Ψ is a periodic weakly expanding curve. This
implies, as we have pointed out, that every semi-in�nite integral curve of Y is
uniformly weakly expanding.

We show now that the fact that every integral curve of Y is uniformly weakly
expanding is incompatible with the existence of uncon�ned points o� the spine.

For, by lemma 4.6.2 the existence of an uncon�ned point q implies that there
are �i �xing points at in�nity near q which take a �xed disk containing q
into arbitrarily small neighborhoods of q . This implies that as one goes out to
in�nity away from the spine along the axes of the �i that some transversal is
blown up arbitrarily large. Conversely, this implies that going along these axes
in the opposite direction | towards the spine | for any t; � we can �nd shortest
transversals of length � t which are shrunk to transversals of length � � by
flowing along Y . This contradicts the uniformly weakly expanding property of
integral curves of Y . This contradiction implies that there are no uncon�ned
points o� the spine.

In either case, then we have shown that there are a dense set of vertical leaves
in C between � and �. This lets us canonically identify the entire circles at
in�nity � and �. Since � and � were arbitrary, we can de�ne �h to be the
canonical identi�cation of every circle at in�nity with S1

1(�).
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Remark 4.6.6 The identi�cation of all the circles at in�nity of every leaf with
a single \universal" circle generalizes Thurston’s universal circle theorem (see
[31] or [5] for details of an alternative construction) to R{covered foliations. The
universal circle produced in [31] is not necessarily canonically homeomorphic
to every circle at in�nity; rather, one is guaranteed a monotone map from this
universal circle to the circle at in�nity of each leaf.

Remark 4.6.7 There is another approach to theorem 4.6.3 using \leftmost
admissible trajectories". It is this approach which generalizes to the context
of taut foliations with branching, and allows one to prove Thurston’s universal
circle theorem.

4.7 Spines and Solvmanifolds

Corollary 4.7.1 If there exists at least one semi-con�ned point in C1 and if
every semi-con�ned point is con�ned, the uncon�ned points lie on a spine.

Proof Let R1 be a closed rectangle containing some uncon�ned point p. We
can �nd such an R1 so that the left and right vertical edges of R are con�ned.
Then if K1 denotes the intersection of the uncon�ned points with R1 , �v(K1)
is a closed subset of an interval. Suppose it does not contain the entire interval.
Then its image contains a limit point which is a limit of points from below but
not from above. This pulls back to an uncon�ned point in R1 , which point
must necessarily be semi-con�ned, contrary to assumption. Hence �v(K1) is
the entire closed interval. But R1 was arbitrary, so by the density of vertical
con�ned directions, we can take a sequence Ri limiting in the Hausdor� sense to
a single vertical interval containing p. Since �v(Ki) is still the entire interval,
it follows that the entire interval � containing p is uncon�ned. If �i is a
sequence of elements of �1(M) which blow up �v(�) to all of L, then every
�i must preserve the vertical leaf containing � , since otherwise there would be
an interval of leaves containing at least two uncon�ned points. It follows that
there is a single bi-in�nite vertical leaf of uncon�ned directions, which must be
�1{invariant, and which contains p. But p was an arbitrary uncon�ned point,
and therefore every such point is contained in the spine.

Theorem 4.7.2 If C1 contains a spine Ψ and F is R{covered but not uni-
form, then M is a Solvmanifold and F is the suspension foliation of the stable
or unstable foliation of an Anosov automorphism of a torus.
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Proof Since leaves of eF come close together as one goes out towards in�nity
in a con�ned direction, it follows that the map �h is compatible with the
projective structures on each circle at in�nity coming from their identi�cations
with the circle at in�nity of H2 . More explicitly, a transverse vector �eld X to
F regulates a uniform neighborhood of any leaf. Transport along integral curves
of X determines a quasi-conformal map between the subsets of two leaves �
and � which are su�ciently close together, and the modulus of dilatation can
be bounded in terms of the length of integral curves of X between the leaves.
Since this length goes to 0 as we go o� to in�nity anywhere except the spine,
the map is more and more conformal as we go o� to in�nity, and in fact is a 1{
quasisymmetric map at in�nity, away from the spine, and is therefore symmetric
(see [24] or [25]). Hence it preserves the projective structure on these circles.

It follows that �1(M) acts as a group of projective transformations of (S1; �),
which is to say, as a group of similarities of R. For, given � 2 �1(M) and
any leaf � 2 eF , the map � : � ! �(�) is an isometry and therefore induces a
projective map �1 ! (�(�))1 ; but �v is projective on every circle at in�nity,
by the above discussion, and so �v � � is a projective map from the universal
circle at in�nity to itself. There is a homomorphism to R given by logarithm
of the distortion; the image of this is actually discrete, since it is just the
translation length of the element acting on a leaf of eF , now identi�ed with
H2 . Such translation lengths are certainly bounded away from 0 since M is a
compact manifold and has a lower bound on its geodesic length spectrum. Hence
we can take this homomorphism to Z. But the kernel of this homomorphism is
abelian, so �1(M) is solvable and M is a torus bundle over S1 , as required.

It follows that we have proved the following theorem:

Theorem 4.7.3 Let F be an R{covered taut foliation of a closed 3{manifold
M with hyperbolic leaves. Then after possibly blowing down con�ned regions,
F falls into exactly one of the following four possibilities:

� F is uniform.

� F is (isotopic to) the suspension foliation of the stable or unstable folia-
tion of an Anosov automorphism of T 2 , and M is a Solvmanifold.

� F contains no con�ned leaves, but contains strictly semi-con�ned direc-
tions.

� F contains no con�ned directions.

Remark 4.7.4 We note that in [32], Thurston advertises a forthcoming paper
in which he intends to prove that uniform foliations are geometric. We expect
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that the case of strictly semi-con�ned directions cannot occur; any such example
must be quite bizarre. We make the following conjecture:

Conjecture If an R{covered foliation has no con�ned leaves then it has no
strictly semi-con�ned directions.

Remark 4.7.5 In fact, we do not even know the answer to the following ques-
tion in point set topology: suppose a �nitely generated group Γ acts by home-
omorphisms on R and on S1 . Let it act on the cylinder R�S1 by the product
action. Suppose K � R�S1 is a minimal closed, invariant set for the action of
Γ with the property that the projection to the R factor is 1{1 on a dense set
of points. Does K contain the non-constant continuous image of an interval?

Remark 4.7.6 Finally, we note that foliations with no con�ned directions do,
in fact, exist, even in atoroidal 3{manifolds. A construction is given in [2].

5 Ru�ed foliations

5.1 Laminations

In this section we study ru�ed foliations, and in particular their interactions
with essential laminations.

We begin with some de�nitions that will be important to what follows.

De�nition 5.1.1 A lamination in a 3{manifold is a foliation of a closed subset
of M by 2{dimensional leaves. The complement of this closed subset falls
into connected components, called complementary regions. A lamination is
essential if it contains no spherical leaf or torus leaf bounding a solid torus,
and furthermore if C is the closure (with respect to the path metric) of a
complementary region, then C is irreducible and @C is both incompressible
and end incompressible in C . Here an end compressing disk is an embedded
(D2 − (closed arc in @D2)) in C which is not properly isotopic rel @ in C to
an embedding into a leaf. Finally, an essential lamination is genuine if it has
some complementary region which is not an I {bundle.

Each complementary region falls into two pieces: the guts, which carry the
essential topology of the complementary region, and the interstitial regions,
which are just I bundles over non-compact surfaces, which get thinner and
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thinner as they go away from the guts. The interstitial regions meet the guts
along annuli. Ideal polygons can be properly embedded in complementary
regions, where the cusp neighborhoods of the ideal points run up the interstitial
regions as I � R+ . An end compressing disk is just a properly embedded
monogon which is not isotopic rel @ into a leaf. See [20] or [18] for the basic
properties of essential laminations.

De�nition 5.1.2 A lamination of H2 is an embedded collection of bi-in�nite
geodesics which is closed as a subset of H2 .

De�nition 5.1.3 A lamination of a circle S1 is a closed subset of the space of
unordered pairs of distinct points in S1 such that no two pairs link each other.

If we think of S1 as the circle at in�nity of H2 , a lamination of S1 gives rise
to a lamination of H2 , by joining each pair of points in S1 by the unique
geodesic in H2 connecting them. A lamination �univ of S1

univ invariant under
the action of �1(M) determines a lamination in each leaf of eF , and the union
of these laminations sweep out a lamination e� of fM which, by equivariance of
the construction, covers a lamination � in M . By examining e� one sees that
� is genuine.

5.2 Invariant structures are vertical

De�nition 5.2.1 Let F be an R{covered foliation of M with dense hyper-
bolic leaves. If F is neither uniform nor the suspension foliation of an Anosov
automorphism of a torus, then say F is ru�ed.

The de�nition of \ru�ed" therefore incorporates both of the last two cases in
theorem 4.7.3.

Lemma 5.2.2 Let F be ru�ed. Then the action of �1(M) on S1
univ is min-

imal; that is, the orbit of every point is dense. In fact, for any pair I; J or
intervals in S1

univ , there is an � 2 �1(M) for which �(I) � J .

Proof For p 2 S1
univ , let op be the closure of the orbit of p in S1

univ , and let
Vp be the union of the leaves of the vertical foliation of C1 corresponding to
op . By theorem 4.6.3 the set Vp is either all of C1 or there is a spine; but F
is ru�ed, so there is no spine.
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Now let I; J be arbitrary. There is certainly some sequence �i so that �i(I)
converges to a single point p, since we can look at a rectangle R � C1 with
�h(R) = I and choose a sequence of points in fM from which the visual angle
of R is arbitrarily small, and choose a convergent subsequence. Conversely, we
can �nd a sequence of elements �i so that �i(J) converges to the complement
of a single point q . Now choose some γ so that γ(p) 6= q . Then �−1

j γ�i(I) � J
for su�ciently large i; j .

Lemma 5.2.3 Let F be a ru�ed foliation. Then for any rectangle R � C1
with vertical sides in leaves of the vertical foliation and horizontal sides in leaves
of the horizontal foliation, for every p 2 S1

univ , and for every weakly con�ned
transversal � dividing R into two rectangles Rl; Rr , there are a sequence of
elements �i 2 �1(M) so that

�v(�i(R0))! L and �h(�i(R0))! p

for R0 one of Rl; Rr .

Proof We have seen that weakly con�ned transversals are dense in C1 . Let
� be such a transversal such that �v(R) � �v(�), and observe that � divides
R into two rectangles Rl; Rr . There is a sequence of elements �i in �1(M)
which blow up � to an arbitrarily long transversal, as seen from some �xed
p 2 fM such that �v(p) 2 �v(�i(R)). Let � be a leaf in �v(R). Then the
points in � from which the visual angle of both Rr and Rl are bigger than
�, are contained in a bounded neighborhood of a geodesic ray in � limiting to
� \ S1

1(�). Since � is a weakly con�ned transversal, the length of a shortest
transversal � with �v(�) = �v(R) running through such a point is uniformly
bounded. It follows that for our choice of p as above, for at least one of Rl; Rr
(say Rl ) the visual angle of �i(Rl) goes to zero, as seen from p. It follows that
there is a subsequence of �i for which �v(�i(Rl))! L and �h(�i(Rl)) = q . If
�i is a sequence of elements for which �i(q) ! p, then the sequence �i�ni for
ni growing su�ciently fast will satisfy

�v(�i�ni(Rl))! L and �h(�i�ni(Rl))! p:

The method of proof used in theorem 4.6.4 is quite general, and may be under-
stood as showing that for a ru�ed foliation, certain kinds of �1(M){invariant
structures at in�nity must come from �1(M){invariant structures on the uni-
versal circle S1

univ . For, any group-invariant structure at in�nity can be \blown
up" by the action of �1(M) so that it varies less and less from leaf to leaf. By
extracting a limit, we can �nd a point p 2 S1

univ corresponding to a vertical
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leaf in C1 where the structure is constant. Either this vertical leaf is unique,
in which case it is a spine and M is Solv, or the orbit of p is dense in S1

univ by
theorem 3.3.3 and our structure is constant along all vertical leaves in C1 |
that is, it comes from an invariant structure on S1

univ .

We can make this precise as follows:

Theorem 5.2.4 Let F be a ru�ed foliation, and let I be a �1{invariant
collection of embedded pairwise-disjoint arcs in C1 transverse to the horizontal
foliation by circles. Then I is vertical: that is, the arcs in I are contained in
the vertical foliation of C1 by preimages of points in S1

univ .

Proof Since F is ru�ed, C1 does not admit a spine. Therefore by theo-
rem 4.6.3, we know that for any pair of leaves � < �, there are a set of arcs
in I whose projection to L includes [�; �] and intersect each of S1

1(�) and
S1
1(�) in a dense set of points. It follows that there is a product structure
C1 = S1

I � R so that the elements of I are contained in the vertical foliation
FI for this product structure.

We claim that this foliation agrees with the vertical foliation by preimages of
points in S1

univ under �−1
h .

For, let �1; �2 be two segments of FI running between leaves �; � so that �h(�1)
and �h(�2) are disjoint. Then we can �nd a rectangle R with vertical sides in
the vertical foliation of C1 and �v(R) = �v(�1) = �v(�2) which is divided
into rectangles Rl; Rr by a weakly con�ned transversal as in the hypothesis of
lemma 5.2.3 so that �1 � Rl and �2 � Rr . Then lemma 5.2.3 implies that
for any p 2 S1

univ , there are a sequence of elements �i so that for some j ,
�v(�i(�j)) ! L and �h(�i(�j)) ! p. It follows that there is a vertical leaf of
FI which agrees with �−1

h (p). Since p was arbitrary, the foliation FI agrees
with the vertical foliation of C1 ; that is, I is vertical, as required.

Theorem 5.2.5 Let F be a ru�ed foliation. Let � be any essential lami-
nation transverse to F intersecting every leaf of F in quasi-geodesics. Then
� is regulating. That is, the pulled-back lamination e� of fM comes from a
�1(M){invariant lamination in S1

univ .

Proof Let � be a leaf of e�. Then � intersects leaves of eF in quasi-geodesics
whose endpoints determines a pair of transverse curves in C1 . These transverse
curves are continuous for the following reason. We can straighten � leafwise
in its intersection with leaves of eF so that these intersections are all geodesic.
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This \straightening" can be done continuously; for if s; s0 = � \ �; � 0 for �; � 0

leaves of eF , and �; �0 are long segments of s; s0 , then the straightenings of �; �0

stay very close to the straightenings of s; s0 along most of their interiors. In
particular, the straightenings of � and �0 are very close, since the leaves �; � 0

are close along �; �0 . Thus the straightenings of s; s0 will be close wherever
�; � 0 are close, which is the de�nition of continuity. If � is a transversal to eF
contained in �, then we can identify UTFj� with a cylindrical subset of C1 .
The endpoints of � can be identi�ed with UTFj� \T� and therefore sweep out
continous curves.

By theorem 5.2.4, these transverse curves are actually leaves of the vertical
foliation of C1 , and therefore each leaf of e� comes from a leaf of a �1(M){
invariant lamination of S1

univ .

If � is transverse to F but does not intersect quasigeodesically, we can nev-
ertheless make the argument above work, except in extreme cases. For, if �
is a leaf of eF and � is a leaf of e� such that � \ � = �, then we can look at
the subsets �� of S1

1(�) determined by the two ends of �. If these are both
proper subsets, we can \straighten" � to a geodesic � running between the two
most anticlockwise points in �� . This straightens � to � which intersects F
geodesically. Of course, we may have collapsed � somewhat in this process.

5.3 Constructing invariant laminations

In this section we show that for M atoroidal and F ru�ed, there exist a pair of
essential laminations �� with solid toroidal complementary regions which inter-
sect each other and F transversely, and whose intersection with F is geodesic.
By theorem 5.2.5 such laminations must come from a pair of transverse invari-
ant laminations of S1

univ , but this is actually the method by which we construct
them.

De�nition 5.3.1 A quadrilateral is an ordered 4{tuple of points in S1 which
bounds an embedded ideal rectangle in H2 .

Let S4 denote the space of ordered 4{tuples of distinct points in S1 whose
ordering agrees with the circular order on S1 . We �x an identi�cation of S1

with @H2 . To each 4{tuple in S4 there corresponds a point p 2 H2 which is
the center of gravity of the ideal quadrilateral whose vertices are the four points
in question. Let S4 denote the space obtained from S4 by adding limits of 4{
tuples whose center of gravity converges to a de�nite point in H2 . For R 2 S4
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let c(R) = center of gravity. We say a sequence of 4{tuples escapes to in�nity
if their corresponding sequence of centers of gravity exit every compact subset of
H2 . We will sometimes use the terms 4{tuple and quadrilateral interchangeably
to refer to an element of S4 , where it should be understood that the geometric
realization of such a quadrilateral may be degenerate. Let S04 = S4−S4 be the
set of degenerate quadrilaterals whose center of gravity is well-de�ned, but the
vertices of the quadrilateral have come together in pairs.

Corresponding to an ordered 4{tuple of points fa; b; c; dg in S1 = @H2 there is
a real number known as the modulus or cross-ratio, de�ned as follows. Identify
S1 with R [1 by the conformal identi�cation of the unit disk with the upper
half-plane. Let � 2 PSL(2;R) be the unique element taking a; b; c to 0; 1;1.
Then mod(fa; b; c; dg) = �(d). Note that we can extend mod to all of S4 where
it might take the values 0 or 1.

See [24] for the de�nition of the modulus of a quadrilateral and a discussion of
its relation to quasiconformality and quasi-symmetry.

De�nition 5.3.2 A group Γ of homeomorphisms of S1 is renormalizable if
for any bounded sequence Ri 2 S4 with jmod(Ri)j bounded such that there
exists a sequence �i 2 Γ with jmod(�i(Ri))j ! 1 there is another sequence �i
such that jmod(�i(Ri))j ! 1 and �i(Ri)! R0 2 S04 .

De�nition 5.3.3 Let � 2 hom(S1). We say that � is weakly topologically
pseudo-Anosov if there are a pair of disjoint closed intervals I1; I2 � S1 which
are both taken properly into their interiors by the action of �. We say that � is
topologically pseudo-Anosov if � has 2n isolated �xed points, where 2 < 2n <
1 such that on the complementary intervals � translates points alternately
clockwise and anticlockwise.

Obviously an � which is topologically pseudo-Anosov is weakly topologically
pseudo-Anosov. A topologically pseudo-Anosov element has a pair of �xed
points in the associated intervals I1; I2 ; such �xed points are called weakly
attracting.

The main idea of the following theorem was communicated to the author by
Thurston:

Theorem 5.3.4 (Thurston) Let G be a renormalizable group of homeomor-
phisms of S1 such that no element of G is weakly topologically pseudo-Anosov.
Then either G is conjugate to a subgroup of PSL(2;R), or there is a lamination
� of S1 left invariant by G.
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Proof Suppose that there is no sequence Ri of 4{tuples and �i 2 G such that
mod(Ri) ! 0 and mod(�i(Ri)) ! 1. Then the closure of G is a Lie group,
and therefore either discrete, or conjugate to a Lie subgroup of PSL(2;R), by
the main result of [23]. If G is discrete it is a convergence group, and the main
result of [16] or [8], building on substantial work of Tukia, Mess, Scott and
others, implies G is a Fuchsian group.

Otherwise the assumption of renormalizability implies there is a sequence Ri
of 4{tuples with jmod(Ri)j bounded and a sequence �i 2 G such that

mod(�i(Ri))!1
and c(Ri) and c(�i(Ri)) both converge to particular points in H2 . A 4{tuple
can be subdivided as follows: if a; b; c; d; e; f is a cyclically ordered collection
of points in S1 we say that the two 4{tuples fa; b; e; dg and fb; c; d; eg are
obtained by subdividing fa; c; d; fg. If we subdivide Ri into a pair of 4{tuples
R1
i ; R

2
i with moduli approximately equal to 1

2mod(Ri), then a subsequence
in mod(�i(R

j
i )) converges to in�nity for some �xed j 2 f1; 2g. Subdividing

inductively and extracting a diagonal subsequence, we can �nd a sequence of
4{tuples which we relabel as Ri with

mod(Ri)! 0 and modi(�i(Ri))!1
with c(Ri) and c(�i(Ri)) bounded in H2 . Extracting a further subsequence,
it follows that there are a pair of geodesics γ; � of H2 such that the points of
Ri converge in pairs to the endpoints of γ , and the points of �i(Ri) converge
in pairs to the endpoints of � , in such a way that the partition of Ri into
convergent pairs is di�erent in the two cases. Informally, a sequence of \long,
thin" rectangles is converging to a core geodesic. Its images under the �i are
a sequence of \short, fat" rectangles, converging to another core geodesic. We
can distinguish a \thin" rectangle from a \fat" rectangle by virtue of the fact
that the Ri are ordered 4{tuples, and therefore we know which are the top and
bottom sides, and which are the left and right sides.

We claim that no translate of γ can intersect a translate of � . For, this would
give us a new sequence of elements �i which were manifestly weakly topologi-
cally pseudo-Anosov, contrary to assumption. It follows that the unions G(γ)
and G(�) are disjoint as subsets of H2 .

We point out that this is actually enough information to construct an invariant
lamination, in fact a pair of such. For, since no geodesic in G(γ) intersects a
geodesic in G(�), the connected components of G(�) separate the connected
components of G(γ) | in fact, since G(�) is a union of geodesics, it separates
the convex hulls of the connected components of G(γ). Let Ci be the convex
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hulls of the connected components of G(γ). It is straightforward to see that
there are in�nitely many Ci . Each Ci has nonempty boundary consisting of a
collection of geodesics @Ci , and the invariance of G(γ) under G implies

S
i @Ci

has closure a geodesic lamination. A similar construction obviously works for
the connected components of G(�).

But in fact we can show that a priori the closure of one of G(γ) or G(�) is a
lamination. For, suppose �(γ) intersects γ transversely for some γ . Then if
Ri ! γ with �i(Ri)! � , we must have �i�(γ)! � . It follows that � is a limit
of leaves of G(γ). If now for some � we have �(�) intersects � transversely,
then �(�) intersects �i�(γ) transversely for su�ciently large i, and therefore
some element of G is weakly topologically pseudo-Anosov.

thin

thin

thin

thin

fat
fat R

R

�(R)�(R)

�(R)

��(R)

Figure 5: A fat rectangle cannot cross a thin rectangle, or some element would act
on S1 in a weakly pseudo-Anosov manner. Similarly, if a thin rectangle crosses a thin
rectangle, a translate of this thin rectangle \protects" fat rectangles from being crossed
by fat rectangles.

Theorem 5.3.4 is especially important in our context, in view of the following
observation:

Lemma 5.3.5 Let �1(M)! S1
univ be the standard action, where S1

univ inher-

its the symmetric structure from S1
1(�) for some leaf � of eF . Then this action

is renormalizable.

Proof Let D be a fundamental domain for M intersecting �. Suppose we
have a sequence of 4{tuples Ri in S1

univ whose moduli, as measured by the
identi�cation of S1

univ with S1
1(�), goes to 0. Then this determines a sequence
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of rectangles in � with moduli ! 0, whose centers of mass can all be trans-
lated by elements �i of �1(M) to intersect D . By compactness of D , as we
sweep the rectangles �i(Ri) through the leaf space of eF to �, their modulus
does not distort very much, and their centers of mass can be made to land
in a �xed compact region of �. If �i is a sequence in �1(M) such that the
moduli of �i(Ri) converges to 1 as measured in S1

1(�), we can translate the
corresponding rectangles in � back to D by γi without distorting their moduli
too much. This shows the action is renormalizable, as required.

We discuss the implications of these results for the action of �1(M) on S1
univ .

Lemma 5.3.6 The action of �1(M) is one of the following three kinds:

� �1(M) is a convergence group, and therefore conjugate to a Fuchsian
group.

� There is an invariant lamination �univ of S1
univ constructed according to

theorem 5.3.4.

� There are two distinct pairs of points p; q and r; s in S1
univ which link

each other so that for each pair of closed intervals I; J in S1
univ − fr; sg

with p 2 I and q 2 J the sequence �i restricted to the intervals I; J
converge to p; q uniformly as i!1, and �−1

i restricted to the intervals
S1 − (I [ J) converge to r; s uniformly as i!1.

Proof If �1(M) is not Fuchsian, by lemma 5.3.5, there are a sequence of 4{
tuples Ri with moduli ! 0 converging to γ and a sequence �i 2 �1(M) so that
mod(�i(Ri)) ! 1 and �i(Ri) ! � . Either all the translates of γ are disjoint
from � and vice versa, or we are in the situation of the third alternative.

If all the translates of γ avoid all the translates of � , the closure of the union
of translates of one of these gives an invariant lamination.

In fact we will show that the second case cannot occur. However, the proof
of this relies logically on lemma 5.3.6. It is an interesting question whether
one can show the existence of a family of weakly topologically pseudo-Anosov
elements of �1(M) directly.

We analyze the action of �1(M) on S1
univ in the event of the third alternative

provided by lemma 5.3.6.
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Lemma 5.3.7 Suppose �1(M) acts on S1
univ in a manner described in the

third alternative given by lemma 5.3.6. Let γ be the geodesic joining p to q
and γ0 the geodesic joining r to s. Then the closure of �1(M)(γ) is an invariant
lamination �+

univ of S1
univ , and similarly the closure of �1(M)(γ0) is an invariant

lamination �−univ of S1
univ .

Proof All we need do to prove this lemma is to show that no translate of γ
intersects itself. Let �(γ) intersect γ transversely. Then the endpoints of �(γ)
avoid I; J for some choice of I; J containing p; q respectively. We know �i does
not �x any leaf of eF , since otherwise its action on S1

univ would be topologically
conjugate to an element of PSL(2;R). For su�ciently large i, depending on
our choice of I; J , the dynamics of �i imply that there are two �xed points pi; qi
for �i , very close to p; q ; in particular, they are contained in I; J . Let γi be the
geodesic joining pi to qi , and let � be the corresponding plane in fM obtained
by sweeping γi from leaf to leaf of eF . Then �i stabilizes � , and quotients it
out to give a cylinder C which maps to M . The hypothesis on � implies that
�(γi) intersects γi transversely, and therefore � intersects �(�) in a line in fM .
If we comb this intersection through fM in the direction in which �−1

i translates
leaves, we see that the projection of this ray of intersection to C must stay in a
compact portion of C . For otherwise, the translates of �(γi) under �ni would
escape to an end of γi , which is incompatible with the dynamics of �i . But
if this ray of intersection of C with itself stays in a compact portion of C , it
follows that it is periodic | that is, the line �\�(�) is stabilized by some power
of �i . For, there is a compact sub-cylinder C 0 � C containing the preimage of
the projection of the line of intersection. C 0 maps properly to M , and therefore
its self-intersections are compact. The image of the ray in question is therefore
compact and has at most one boundary component. In particular, it must be
a circle, implying periodicity in � .

This implies that
��mi �

−1 = �ni

for some n;m. The co-orientability of F implies that n;m can both be chosen
to be positive. It follows that � permutes the �xed points of �i . But this is true
for all su�ciently large i. The de�nition of the collection f�ig implies that the
only �xed points of �i are in arbitrarily small neighborhoods of p; q; r; s, for
su�ciently large i. It follows that � permutes p; q; r; s and that these are the
only �xed points of any �i . Since �(γ) intersects γ transversely, it follows that
� permutes fp; qg and fr; sg. But this means that it permutes an attracting
point of �n with a repelling point of �m , which is absurd.
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Observe that the roles of p; q and r; s are interchanged by replacing the �i by
�−1
i , so no translate of γ0 intersects γ0 either, and the closure of its translates

is an invariant lamination too.

Corollary 5.3.8 Let M be a 3{manifold with an R{covered foliation F .
Then either M is Seifert �bered or solv, or there is a genuine lamination � of
M transverse to F .

Proof If the action of �1(M) on S1
univ is Fuchsian, then M is either solv or

Seifert �bered by a standard argument (see eg [29]). Otherwise lemma 5.3.6
and lemma 5.3.7 produce �.

Corollary 5.3.9 If M is atoroidal and admits an R{covered foliation, then
�1(M) is �{hyperbolic in the sense of Gromov.

Proof This follows from the existence of a genuine lamination in M , by the
main result of [19].

We analyze now how the hypothesis of atoroidality of M constrains the topology
of the lamination � transverse to F .

Lee Mosher makes the following de�nition in [27]:

De�nition 5.3.10 A genuine lamination of a 3{manifold is very full if the
complementary regions are all �nite-sided ideal polygon bundles over S1 . Put
another way, the gut regions are all sutured solid tori with the sutures a �nite
family of parallel curves nontrivially intersecting the meridian.

Lemma 5.3.11 If M is atoroidal, the lamination � is very full, and the com-
plementary regions to �univ are all �nite sided ideal polygons. Otherwise, there
exist reducing tori transverse to F which are regulating. M can be split along
such tori to produce simpler manifolds with boundary tori, inheriting taut fo-
liations which are also R{covered.

Proof Let G be a gut region complementary to �, and let Ai be the collection
of interstitial annuli, which are subsets of the boundary of G. Let eG be a lift
of G to fM and eAi a collection of lifts of the Ai compatible with eG. Let �i be
the element of �1(M) stabilizing eAi , so that eAi=�i = Ai .

The �rst observation is that the interstitial annuli Ai can be straightened to be
transverse to F . Firstly, we can �nd a core curve ai � Ai and straighten Ai
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leafwise so that Ai = ai� I where each I is contained in a leaf of F . Then, we
can successively push the critical points of ai into leaves of F . One might think
that there is a danger that the kinks of ai might get \caught" on something
as we try to push them into a leaf; but this is not possible for an R{covered
foliation, since obviously there is no obstruction in fM to doing so, and since
the lamination � is transverse to F , we can \slide" the kinks along leaves of �
whenever they run into them. The only danger is that the curves eai might be
\knotted", and therefore that we might change crossings when we straighten
kinks. But ai is isotopic into each of the boundary curves of Ai , and these
lift to embedded lines in leaves of e� which are properly embedded planes. It
follows that the eai are not knotted, and kinks can be eliminated.

Now, the boundary of a gut region is a compact surface transverse to F . It
follows that it has Euler characteristic 0, and is therefore either a torus or Klein
bottle. By our orientability/co-orientability assumption, the boundary of a gut
region is a torus. If M is atoroidal, this torus must be inessential and bounds a
solid torus in M (because the longitude of this torus is non-trivial in �1(M)).
One quickly sees that this solid torus is exactly G, and therefore � is very full.

One observes that a pair of leaves �; � of � which have an interstitial annulus
running between them must correspond to geodesics in �univ which run into
a \cusp" in S1

univ | ie, they have the same endpoint in S1
univ . For, by the

de�nition of an interstitial region, the leaves �; � stay very close away from
the guts, whereas if the corresponding leaves of �univ do not have the same
endpoint, they eventually diverge in any leaf, and one can �nd points in the
interstitial regions arbitrarily far from either � or �, which is absurd. It follows
that the annuli Ai are regulating, and each lift of a gut region of � corresponds
to a �nite sided ideal polygon in S1

univ .

Conversely, if the boundary of some gut region is an essential torus, it can be
pieced together from regulating annuli and regulating strips of leaves, showing
that this torus is itself regulating. It follows that we can decompose M along
such regulating tori to produce a taut foliation of a (possibly disconnected)
manifold with torus boundary which is also R{covered.

Corollary 5.3.12 If M admits an R{covered foliation F then any homeo-
morphism h : M !M homotopic to the identity is isotopic to the identity.

Proof This follows from the existence of a very full genuine lamination in M ,
by the main result of [18].
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Theorem 5.3.13 Let F be an R{covered foliation of an atoroidal manifold
M . Then there are a pair �� of essential laminations in M with the following
properties:

� The complementary regions to �� are ideal polygon bundles over S1 .

� Each �� is transverse to F and intersects F in geodesics.

� �+ and �− are transverse to each other, and bind each leaf of F , in the
sense that in the universal cover, they decompose each leaf into a union
of compact �nite-sided polygons.

If M is not atoroidal but F has hyperbolic leaves, there is a regulating essential
torus transverse to F .

Proof We have already shown the existence of at least one lamination �+
univ

giving rise to a very full lamination �+ of M with the requisite properties, and
we know that it is de�ned as the closure of the translates of some geodesic γ ,
which is the limit of a sequence of 4{tuples Ri with modulus ! 0 for which
there are �i so that mod(�i(Ri))!1 and �i(Ri)! � . In fact, by passing to
a minimal sublamination, we may assume that γ is a boundary leaf of �univ ,
so that there are a sequence γi of leaves of �univ converging to γ .

Fix a leaf � of eF and an identi�cation of S1
1(�) with S1

univ . Now, an element
�i 2 �1(M) acts on a 4{tuple Ri in S1

univ in the following manner; let Qi � �
be the ideal quadrilateral with vertices corresponding to Ri . Then there is a
unique ideal quadrilateral Q0i � �−1

i (�) whose vertices project to the elements
of Ri in S1

univ . The element �i translates Q0i isometrically into �, where
its vertices are a 4{tuple of points in S1

1(�) which determines �i(Ri) in S4 .
By de�nition, the moduli of the Qi converge to 0, and the moduli of the Q0i
converge to 1. The possibilities for the moduli of �(Ri) as � ranges over
�1(M) are constrained to be a subset of the moduli of the ideal quadrilaterals
Q0i obtained by sweeping Qi through fM .

Let P be an ideal polygon which is a complementary region to �+
univ , corre-

sponding to a lift of a gut region G of �+ . eG is foliated by ideal polygons in
leaves of eF . As we sweep through this family of ideal polygons in eG, the mod-
uli of the polygons P� in each leaf � corresponding to P stay bounded, since
they cover a compact family of such polygons in M . Let � be an element of
�1(M) stabilizing eG. Then after possibly replacing � with some �nite power,
� acts on S1

univ by �xing P pointwise, and corresponds to the action on S1
1(�)

de�ned by sweeping through the circles at in�nity from � to �(�) and then
translating back by �−1 . Without loss of generality, γ is an edge of P . We
label the endpoints of γ in S1

univ as p; q . Note that p; q are �xed points of �.
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A careful analysis of the combinatorics of the action of � and the �i on S1
univ

will reveal the required structure.

We have quadrilaterals Qi � � corresponding to the sequence Ri , and the ver-
tices of these quadrilaterals converge in pairs to the geodesic γ� in � correspond-
ing to γ . Suppose there are �xed points m;n; r; s of � so that p;m; n; q; r; s
are cyclically ordered. Then the moduli of all quadrilaterals Q0i obtained by
sweeping Qi through fM , for i su�ciently large, are uniformly bounded. For,
there is an ideal hexagon bundle in M corresponding to p;m; n; q; r; s and the
moduli of these hexagons are bounded, by compactness. The pattern of sepa-
ration of the vertices of this hexagon with Ri implies the bound on the moduli
of the Qi . It follows that there is at most one �xed point of � between p; q on
some side. See �gure 6a.

If there is no �xed point of � between p and q on one side, then � acts as a
translation on the interval between p and q on that side. Obviously, the side of
γ containing no �xed points of � must lie outside P , since the other vertices
of P are �xed by �. It follows that the γi are on the side on which � acts
as a translation. But this implies that for su�ciently large i, �(γi) crosses
γi , which is absurd since the γi are leaves of an invariant lamination. Hence
there is exactly one �xed point of � on one side of γ , and this point must be
attracting for either � or �−1 . See �gure 6b.

It follows that we have shown in each complementary interval of the vertices of
P , there is exactly one �xed point of � which is attracting for either � or �−1 .

The same argument actually implies that �univ was already minimal, since
otherwise for γ0 a leaf of �univ which is a diagonal of P , the modulus of any
sequence of 4{tuples converging to γ0 is bounded under the image of powers
of �, and therefore under the image of all elements of �1(M). This would
contradict the de�nition of �univ . Likewise, � cannot be a diagonal of �univ ,
since again the dynamics of � would imply that for any sequence of 4{tuples
Ri ! � , the modulus of translates of Ri by any element of �1(M) would be
bounded. It follows that if no translate of � crosses any translate of γ , then
the closure of the union of translates of � is exactly equal to �univ .

To summarize, we have established the following facts:

� �univ is minimal.

� Either � may be chosen transverse to γ , so that we are in the third
alternative of lemma 5.3.6 and lemma 5.3.7 applies, or else the closure of
the union of the translates of � is equal to �univ .
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Figure 6: p; q are the vertices of a boundary leaf γ of P . If � has at least two �xed
points on either side of p; q , the moduli of rectangles nested between these �xed points
are bounded above by the action of �1(M). If � has no �xed points on some side
of p; q , the fact that γ is not isolated on one side says that some nearby geodesic γi
intersects its translate under �. The solid dots in the �gure are �xed points of �. The
arrows indicate the dynamics of �.

In fact, we will see that the �xed points of � in the complementary intervals
to the vertices of P are all attracting points for � or for �−1 . For, suppose
otherwise, so that there are consecutive vertices p; q; r of P and between them,
points s; t which are repelling and attracting �xed points of � respectively,
so that p; s; q; t; r are circularly ordered. Let γ0 be the geodesic from s to q .
Choose si ! s from the side between s and q , and qi ! q from the side between
q and t. Then R0i = fs; si; q; qig is a sequence of 4{tuples with mod(R0i) ! 0
and R0i ! γ0 so that there are ni with mod(�ni(R0i))!1. It follows that there
is a minimal lamination �0univ constructed in exactly the same manner as �univ

which contains γ0 as a leaf. Observe that � acts as a translation on the interval
of S1

univ from s to q , so that γ0 must be the boundary of some complementary
region P 0 of �0univ . But then the core �0 of the gut region in the complement
of �0 corresponding to P 0 is isotopic into the cylinder obtained by suspending
γ0 , as is �, so in fact � and �0 are freely isotopic, and correspond to the same
element of �1(M) in our lift. It follows that � can have only one �xed point
on the other side of γ0 , contradicting the fact that it �xes p and r there.

The end result of this �xed-point chase is that the �xed points of � in the
complementary intervals to the vertices of P are all attracting �xed points for
� (say) and therefore the vertices of P are all repelling �xed points of �.

Since �univ is minimal, we can �nd �i taking γ very close to γi . For γi
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su�ciently close to γ , there is not much room for the image of P under �i ; on
the other hand, the modulus of �(P ) cannot be distorted too much, since it
varies in a compact family. Hence all the vertices of P but one are carried very
close to one endpoint of γi . We can �nd a 4{tuple R00i with modulus close to 0
and vertices close to the endpoints of γi so that mod(�n�−1

i (R00i ))!1 and this
sequence of rectangles converges to one of the geodesics joining s to an adjacent
�xed point of �, which �xed point depending on which vertices of P are taken
close to each other. It follows that for a sequence ni growing su�ciently quickly,
the sequence of rectangles R00i and the sequence �ni�−1

i (R00i ) have moduli going
to 0 and to 1 respectively, and converge to a pair of transverse geodesics.

This establishes that we are in the third alternative of lemma 5.3.6, and there-
fore lemma 5.3.7 applies. That is, there are two laminations ��univ which are
minimal, and transverse to each other, and these two laminations are exactly
the closure of the union of the translates of γ and of � respectively. Every
complementary region to either lamination is �nite sided, and therefore every
complementary region to the union of these laminations is �nite sided. To
show that these laminations bind every leaf (ie, these �nite sided regions are
compact), it su�ces to show that for p a vertex of a complementary region to
�+

univ , say, there is a sequence of leaves in �−univ which nest down around p.
This is actually an easy consequence of minimality of �� , the fact that they
are transverse, and the fact that M is compact. For completeness, and because
it is useful in the sequel, we prove this statement as lemma 5.3.14.

Lemma 5.3.14 Let p 2 S1
univ be arbitrary. Then there is a sequence �i of

leaves in either �+
univ or �−univ which nest down around p.

Proof Since both �� are minimal and transverse, it follows that there is a
uniform t such that any leafwise geodesic γ contained in � \ e�+ , for some
leaf � in eF , must intersect a leaf of � \ e�− with a de�nite angle within every
subinterval of length t. It follows that these intersections determine leaves of
�−univ which nest down to the point in S1

univ corresponding to the endpoint of
γ . It follows that endpoints of leaves of ��u enjoy the property required by the
lemma.

Now, there is a uniform t so that if γ � � is an arbitrary geodesic, it intersects
some leaf of e��\� within every subinterval of length t, by the fact that e��\�
bind �, and the compactness of M . There is a T and an � such that every
subinterval of length T must contain an intersection with angle bounded below
by �. For, if γ intersects e�+ with a very small angle, it must stay close to a leaf
of e�+\� for a long time, and therefore within a bounded time must intersect a
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leaf of e�−\� with a de�nite angle. It follows that some subsequence contained
in either �+

univ or �−univ must nest down to the point in S1
univ corresponding to

the endpoint of γ . Since γ was arbitrary, we are done.

Theorem 5.3.15 Every � 2 �1(M) acts on S1
univ in a manner either conju-

gate to an element of PSL(2;R), or it is topologically pseudo-Anosov, or it has
no �xed points and a �nite power is topologically pseudo-Anosov.

Proof Suppose � has non-isolated �xed points. Then either � is the identity,
or it has a �xed point p which is a limit of �xed points on the left but not
on the right. Let �i be a sequence of leaves of �+

univ say nesting down to p.
Then for some integer i, �i(�j) intersects �j transversely, which is absurd. It
follows that the �xed points of � are isolated. Again, the existence of a nesting
sequence �i for every p implies that � must move all su�ciently close points
on one side of p clockwise and on the other side, anticlockwise.

If � has no �xed points at all, either it is conjugate to a rotation, or some �nite
power has a �xed point and we can apply the analysis above.

Notice that for any topologically pseudo-Anosov �, the �xed points of � are
alternately the vertices of a �nite-sided complementary region to �+

univ;�
−
univ

respectively.

In fact, we showed in theorem 5.3.13 that for � corresponding to the core of a
lift eG of a gut region G of �+ , the attracting �xed points of � are exactly the
ideal vertices of the corresponding ideal polygon in S1

univ , and the repelling �xed
points are exactly the ideal vertices of a \dual" ideal polygon, corresponding to
a lift of a gut region of �− .

In [27], Lee Mosher de�nes a topologically pseudo-Anosov flow Ψ on a 3{
manifold as, roughly speaking, a flow with weak stable and unstable foliations,
singular along a collection of pseudohyperbolic orbits, and Ψ has a Markov
partition which is \expansive". For the full de�nition one should consult [27],
but the idea is that away from the (isolated) singular orbits, the manifold de-
composes locally into a product F � Es � Eu , where F corresponds to the
flow-lines and Es and Eu to the stable and unstable foliations, so that dis-
tances along the stable foliations are exponentially expanded under the flow,
and distances along the unstable foliations are exponentially contracted under
the flow. Mosher conjectures that every topological pseudo-Anosov flow on a
closed 3{manifold should be smoothable | that is, there should exist a smooth
structure on M with respect to which � is a smooth pseudo-Anosov (in the
usual sense) flow.

Danny Calegari

Geometry and Topology, Volume 4 (2000)

508



Corollary 5.3.16 An R{covered foliation F admits a regulating transverse
flow. If the ambient manifold M is atoroidal, this flow can be chosen to have iso-
lated closed orbits. It can also be chosen to be \topologically pseudo-Anosov",
as de�ned by Mosher in [27].

Proof The laminations e�� bind every leaf of eF , so we can canonically identify
each leaf � with each other leaf � complementary region by region, where any
canonical parameterization of a �nite-sided hyperbolic polygon will su�ce. For
instance, the sided can be parameterized by arclength, and then coned o� to
the center of mass.

Alternatively, the method of [27] can be used to \blow down" fM and therefore
M to the lines e�+ \ e�− . The flow along these lines descends to a flow on
the blown down fM where it is manifestly topologically pseudo-Anosov. More
precisely, we can collapse, leafwise, intervals and polygons of the strati�cation
of each leaf by its intersection with e�� to their boundary vertices. To see that
this does not a�ect the homeomorphism type of M , choose a �ne open cover of
the blown-down manifold by open balls (such that the nerve of the cover gives
a triangulation of M ), and observe that its preimage gives a �ne open cover
of M with the same combinatorics. Theorem 5.3.15 implies that the flow so
constructed satis�es the properties demanded by Mosher. To get a constant
rate of expansion and contraction, pick an arbitrary metric on M and look at
the expansion and contraction factors of the time t flow of an arbitrary segment
� in a leaf γ of e�+ \ � for some leaf � of eF , say. By construction, there are a
sequence of rectangles Ri with moduli converging to 0 which nest down along
γ , such that under the time t flow the moduli of the rectangles �t(Ri) converge
to 1. On can see from this pictures that the length of � will shrink by a
de�nite amount under the time t flow for some �xed t. The minimality of �+

implies that the same is true for an arbitrary segment. By the usual argument,
the expanding dynamics implies this flow is ergodic, and therefore the rate of
expansion/contraction is asymptotically constant. One can therefore �x up the
metric in�nitesimally in the stable and unstable directions by looking at the
asymptotic behavior, to get a rate of expansion and contraction bounded away
from 1. By reparameterizing the metric in the flow direction, we can make this
rate of expansion/contraction constant.

If M has a torus decomposition, but F has hyperbolic leaves, we have seen that
the tori can be chosen to be transverse and regulating, and therefore inductively
split along, and the flow found on simpler pieces.

If F has Euclidean or spherical leaves, it admits a transverse measure; any flow
transverse to a transversely measured foliation is regulating.
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Remark 5.3.17 It is not too hard to see that all the results of this section
can be made to apply to 3{manifolds with torus boundary and R{covered
foliations with hyperbolic leaves which intersect this boundary transversely.
The laminations �� obtained will not necessarily have solid torus guts: they
will also include components which are torus�I neighborhoods of the boundary
tori. The main point is that the laminations ��univ of S1

univ will still have cusps,
so that they can be canonically completed to laminations with �nite sided
complements by adding new leaves which spiral around the boundary torus.

Remark 5.3.18 In [17], Gabai poses the general problem of studying when
3{manifold group actions on order trees \come from" essential laminations in
the manifold. He further suggests that an interesting case to study is the one
in which the order tree in question is R. The previous theorem, together with
the structure theorems from earlier sections, provide a collection of non-trivial
conditions that an action of �1(M) on R must satisfy to have come from an
action on the leaf space of a foliation. We consider it a very interesting question
to formulate (even conjecturally) a list of properties that a good \realization
theorem" should require. We propose the following related questions as being
perhaps more accessible:

Fix an R{covered foliation of M and consider the associated action of �1(M)
on R, the leaf space of the foliation in the universal cover.

� Is this action conjugate to a Lipschitz action?
� Are leaves in the foliation eF at most exponentially distorted?
� Is the pseudo-Anosov flow transverse to an R{covered foliation of an

atoroidal 3{manifold quasi-geodesic? That is, are the flowlines of the lift
of the transverse regulating pseudo-Anosov flow to fM quasigeodesically
embedded?

We remark that the construction in [2] allows us to embed any �nitely generated

subgroup of ˜Homeo(S1) in the image of �1(M) in Homeo(R) for some R{
covered foliation. In fact, we can take any �nite collection of irrationally related

numbers t1; : : : tn , any collection of �nitely generated subgroups of ˜Homeo(S1
ti

)
| the group of homeomorphisms of R which are periodic with period ti | and
consider the group they all generate in Homeo(R). Then this group can be
embedded in the image of �1(M) in Homeo(R) for some R{covered foliation
of M , for some M . Probably M can be chosen in each case to be hyperbolic,
by the method of [2], but we have not checked all the details of this.

It seems di�cult to imagine, but perhaps all R{covered foliations of atoroidal
manifolds are at worst \mildly" nonuniform, in this sense. We state this as a
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Question 5.3.19 If F is an R{covered foliation of an atoroidal 3{manifold
M , is there a choice of parameterization of the leaf space of eF as R so that
�1(M) acts on this leaf space by coarse 1{quasi-isometries? That is, is there a
k� for each � such that, for every p; q 2 R, there is an inequality

�(p)− �(q)− k� � p− q � �(p)− �(q) + k�

Remark 5.3.20 A regulating vector �eld integrates to a 1{dimensional folia-
tion which lifts in the universal cover to the product foliation of R3 by vertical
copies of R. Such a foliation is called product covered in [10] where they are
used to study the question of when an immersed surface is a virtual �ber. It
is tautological from the de�nition of a product covered foliation that there is
an associated slithering of M over R2 . One may ask about the quality of the
associated representation �1(M)! Homeo(R2).

De�nition 5.3.21 A family of R{covered foliations on a manifold M indexed
by the unit interval I is a choice of 2{plane �eld Dt for each t 2 I such that
each Dt is integrable, and integrates to an R{covered foliation Ft , and such
that Dt(p) for any �xed p varies continuously with t.

Notice that the local product structure on Ft in a small ball varies continuously.
That is, for any su�ciently small ball B there is a 1{parameter family of
isotopies it : B ! M such that i�t (Ft)jit(B) = F0jB . In particular, a family of
foliations on M is a special kind of foliation on M � I .

Corollary 5.3.22 Let Ft be a family of R{covered foliations of an atoroidal
M . Then the action of �1(M) on (S1

univ)t is independent of t, up to conjugacy.
Moreover, the laminations ��t do not depend on the parameter t, up to isotopy.

Proof Let �t be one of the two canonical geodesic laminations constructed
from Ft in theorem 5.3.13. For s; t close enough, �t intersects Fs quasi-
geodesically. For, in H2 , quasigeodesity is a local property; that is, a line in
H2 is quasigeodesic provided the subsets of the line of some �xed length are
su�ciently close to being geodesic. For s su�ciently close to t, the lines of
intersection �t \ Fs are very close to being geodesic, so are quasigeodesic.

The only subtlety is that we need to know that we can choose uniformizing
metrics on M so that leaves of Ft are hyperbolic for each t in such a way that
the metrics vary continuously in t. Candel’s theorem in full generality says that
we can do this; for, we can consider the foliation FI of M � I whose leaves are

FI =
[

�2Ft;t2I
�� t:
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This is a foliation of a compact manifold with Riemann surface leaves and no
invariant transverse measure of non-negative Euler characteristic, so Candel’s
theorem 2.1.3 applies.

It follows by theorem 5.2.5 that �t comes from an invariant lamination of
(S1

univ)s . This gives a canonical, equivariant identi�cation of (S1
univ)s and

(S1
univ)t as follows: for a dense set of points p 2 (S1

univ)t and each leaf � ofeFt there is a leaf � of �t which intersects � in a geodesic g , one of whose end-
points projects to p under (�h)t . For a leaf �0 of eFs which contains some point
of � \ �, the intersection �0 \ � is a quasigeodesic which can be straightened
to a geodesic g0 with the same endpoints. By choosing an orientation on �
and continuously varying orientations on � and �0 , the geodesics g and g0 are
oriented, so we know which of the endpoints to choose in S1

1(�0). Projecting
to (S1

univ)s by (�h)s , we get a point p0 . Since the structure of �t in (C1)s and
(C1)t are vertical, this construction does not depend on any choices.

Extending by continuity we get a canonical, and therefore �1{invariant iden-
ti�cation of (S1

univ)s and (S1
univ)t . Since the laminations ��t are canonically

constructed from the action of �1(M) on the universal circle of Ft , the fact
that these actions are all conjugate implies that the laminations too are invari-
ant.

Remark 5.3.23 Thurston has a program to construct a universal circle and
a pair of transverse laminations intersecting leaves geodesically for any taut
foliation of an atoroidal M ; see [33]. In [6] we produce a pair of genuine
laminations �� transverse to an arbitrary minimal taut foliation of an atoroidal
M .

If an R{covered foliation is perturbed to a non{R{covered foliation, neverthe-
less this lamination stays transverse for small perturbations, and therefore the
action of �1(M) on the universal circle of the taut foliation is the same as the
action on S1

univ of the R{covered foliation. This may give a criteria for an
R{covered foliation to be a limit of non{R{covered foliations.

One wonders whether every taut foliation of an atoroidal manifold M is homo-
topic, as a 2{plane �eld, to an R{covered foliation.

Remark 5.3.24 As remarked in the introduction, S�ergio Fenley has proved
many of the results in this section independently, by somewhat di�erent meth-
ods, using the canonical product structure on C1 constructed in theorem 4.6.4.
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5.4 Are R{covered foliations geometric?

In 1996, W. Thurston outlined an ambitious and far-reaching program to prove
that 3{manifolds admitting taut foliations are geometric. Speaking very vaguely,
the idea is to duplicate the proof of geometrization for Haken manifolds as
outlined in [29],[30] and [34] by developing the analogue of a quasi-Fuchsian
deformation theory for leaves of such a foliation, and by setting up a dynamical
system on such a deformation space which would �nd a hyperbolic structure on
the foliated manifold, or �nd a topological obstruction if one existed.

This paper may be seen as foundational to such a program for geometrizing R{
covered foliations. In [12] it is shown that for R{covered foliations of Gromov-
hyperbolic 3{manifolds, leaves in the universal cover limit to the entire sphere
at in�nity. This is evidence that R{covered foliations behave geometrically
somewhat like surface bundles over circles. This suggests the following strategy,
obviously modeled after [34]:

� Pick a leaf � in eF , and an element � 2 �1(M) which acts on L without
�xed points. Then the images �n(�) for −1 < n <1 go o� to in�nity
in L in either direction.

� We can glue � to �n(�) along their mutual circles at in�nity by the
identi�cation of either with S1

univ to get a topological S2 . We would like
to \uniformize" this S2 to get CP 1 .

� Let X be a regulating transverse vector �eld. This determines a map
�n from � to �n(�) by identifying points which lie on the same integral
curve of eX .

� The map �n is uniformly quasi-isometric on regions where � and �n(�)
are close, but cannot be guaranteed to be uniformly quasi-isometric on all
of �, and probably is not so. By comparing the conformal structure on
� and �n(�) we get a Beltrami di�erential �n d�z

dz which is not necessarily
in B(H)1 . Nevertheless, the fact that � and �n(�) are asymptotic at
in�nity in almost every direction encourages one to hope that one has
enough geometric control to construct a uniformizing homeomorphism of
S2 to CP 1 with prescribed Beltrami di�erential.

� Taking a sequence of such uniformizing maps corresponding to di�eren-
tials �n with n ! 1 one hopes to show that there is a convergence
S1

univ ! S2 geometrically. Then the action of �1(M) on S1
univ will ex-

tend to S2 since the map S1
univ ! S2 is canonical and therefore �1(M){

equivariant. Does this action give a representation in PSL(2;C)?
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� Group-theoretically, we can use X to let �1(M) act on any given leaf �
of eF . �1(M) therefore acts on �[�n(�) and so on CP 1 . We can use the
barycentric extension map of Douady and Earle to extend this to a map of
H3 to itself. We hope that some of the powerful technology developed by
McMullen in [26] can be used to show that this action is nearly isometric
deep in the convex hull of the image of S1

univ , and perhaps a genuine
isometric action can be extracted in the limit.

We stress that this outline borrows heavily from Thurston’s strategy to prove
that manifolds admitting uniform foliations are geometric, as communicated to
the author in several private communications. In fact, the hope that one might
generalize this strategy to R{covered foliations was our original motivation for
undertaking this research, and it has obviously greatly influenced our choice of
subject and approach.
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