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410 Shelly L Harvey

1 Introduction

Let X be a closed, orientable n{manifold. The cut number of X, c(X), is
de ned to be the maximal number of components of a closed, 2{sided, orientable
hypersurface F X such that X — F \is connected. Hence, for any n
c(X), we can construct a map f: X X ?2181 such that the induced map
on 1 is surjective. That is, there exists a surjective map f : 1 (X) — F (¢),
where F (c) is the free group with ¢ = c¢(X) generators. Conversely, if we
er any epimorphism : 1(X) - F (n), thenwecan ndamap f: X 1

" S! such that f = . After making the f transverse to a non-wedge
point x; on each S*, f~1(X) will give n disjoint surfaces F = [F; with
X — F connected. Hence one has the following elementary group-theoretic
characterization of ¢ (X).

Proposition 1.1 ¢ (X) is the maximal n such that there is an epimorphism
1 (X) — F (n) onto the free group with n generators.

Example 1.2 Let X =S! S! S pe the 3{torus. Since ;(X) =73 is
abelian, c(X) = 1.

Using Proposition 1.1, we show that the cut number is additive under connected
sum.

Proposition 1.3 If X = X;#X; is the connected sum of X; and X, then
c(X) =c(X1) +c(X2).

Proof LetGj= 1(Xj)fori=1;2and G= 1(X)=G; G;. Itisclear that
G maps surjectively onto F (c(X1)) F (c(X2)) = F (c (X1 + X3)). Therefore
c(X) c(Xy)+c(Xy).

Now suppose that there existsamap : G — F(n). Let i: G ¥ F(n)
be the composition G; ¥ G; G, ¥ G — F (n). Since is surjective and
G =Gy Gy Im( 1) and Im( 2) generate F (n). Morever, Im( ;) is a
subgroup of a free group, hence is free of rank less than or equal to c(Xj). It

follows that n ¢ (Xy) + ¢ (X3). In particular, when n is maximal we have
c(X)=n c¢(Xy)+c(X2). O

In this paper, we will only consider 3{manifolds with 1 (X) 1. Consider the
surjective map 1 (X) — Hi (X)=FZ{torsiong = Z 1) | Since 1(X) 1,
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On the Cut Number of a 3{manifold 411

we can nd a surjective map from Z 1) onto Z. It follows from Proposition
1.1 that c(X) 1. Moreover, evefy map 1 (X) — F (n) gives rise to
an epimorphism : Hy (X) - H; [, St = 2Z" It follows that ;(X) n
which gives us the well known result:

1 ¢cX) 1(X). (@))

It has recently been asked whether a (non-trivial) lower bound exists for the
cut number. We make the following observations.

Remark 1.4 If S is a closed, orientable surface then ¢ (S) = % 1(8).

Remark 1.5 If X has solvable fundamental group then c(X) =1 and 1(X)
3.

Remark 1.6 Both ¢ and  are additive under connected sum (Proposition
1.3).

Therefore it is natural to ask the following question rst asked by A Sikora and
T Kerler. This question was motivated by certain results and conjectures on
the divisibility of quantum 3{manifold invariants by P Gilmer{T Kerler [2] and
T Cochran{P Melvin [1].

Question 1.7 Is c(X) % 1 (X) for all closed, orientable 3{manifolds X?

We show that the answer to this question is \as far from yes as possible.” In
fact, we show that for each m 1 there exists a closed, hyperbolic 3{manifold
with 1 (X) =m and c(X) = 1. We actually prove a stronger statement.

Theorem 3.1 For each m 1 there exist closed 3{manifolds X with ; (X)
= m such that for any in nite cyclic cover X ¥ X, rankz; 11H; (X ) =0.

We note the condition stated in the Theorem 3.1 is especially interesting because
of the following theorem of J Howie [3]. Recall that a group G is large if some
subgroup of nite index has a non-abelian free homomorphic image. Howie
shows that if G has an in nite cyclic cover whose rank is at least 1 then G is
large.

Theorem 1.8 (Howie [3]) Suppose that K is a connected regular covering
complex of a nite 2{complex K, with nontrivial free abelian covering trans-

formation group A. Suppose also that H; K;Q has a free Q [A]{submodule
of rank at least 1. Then G = ;(K) is large.

Geometry & Topology, Volume 6 (2002)



412 Shelly L Harvey

Using the proof of Theorem 3.1 we show that the fundamental group of the
aforementioned 3{manifolds cannot map onto F=F, where F is the free group
with 2 generators and F4 is the 4 term of the lower central series of F.

Proposition 3.3 Let X beasin Theorem 3.1, G= 3 (X) and F be the free
group on 2 generators. There is no epimorphism from G onto F=F4.

Independently, A Sikora has recently shown that the cut number of a \generic"
3{manifold is at most 2 [8]. Also, C Leininger and A Reid have constructed
speci ¢ examples of genus 2 surface bundles X satisfying (i) 1(X) =5 and
c(X)=1and (ii) 1(X)=7and c(X) =2 [6].

Acknowledgements | became interested in the question as to whether the
cut number of a 3{manifold was bounded below by one-third the rst betti
number after hearing it asked by A Sikora at a problem session of the 2001
Georgia Topology Conference. The question was also posed in a talk by T
Kerler at the 2001 Lehigh Geometry and Topology Conference. The author
was supported by NSF DMS-0104275 as well as by the Bob E and Lore Merten
Watt Fellowship.

2 Relative Cut Number

Let be a primitive class in HX (X;Z). Since H! (X;Z) = Hom ( 1(X);Z),
we can assume is a surjective homomorphism, : 1(X) — Z. Since X
is an orientable 3{manifold, every element in H, (X;Z) can be represented
by an embedded, oriented, 2{sided surface [10, Lemma 1]. Therefore, if 2
H1(X;Z) = H,(X;Z) there exists a surface (not unique) dual to . The
cut number of X relative to , ¢(X; ), is de ned as the maximal number of
components of a closed, 2{sided, oriented surface F X such that X — F is
connected and one of the components of F is dual to . In the above de nition,
we could have required that \any number" of components of F be dual to
as opposed to just \one." We remark that since X — F is connected, these
two conditions are equivalent. Similar to ¢ (X), we can describe ¢ (X; ) group
theoretically.

Proposition 2.1 c¢(X; ) is the maximal n such that there is an epimorphism

1 (X) = F (n) onto the free group with n generators that factors through
(see diagram on next page).
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On the Cut Number of a 3{manifold 413

1 (X) = 7
1
1
1
1
2> [ 1
F (n)

It follows immediately from the de nitions that c(X; ) ¢ (X) for all primitive
. Now let F be any surface with ¢ (>X) components and let  be dual to one
of the components, then ¢ (X; ) = c(X). Hence

1
c(X)=max c(X; )j isa primitive element of H! (X;Z) . 2)
In particular, if c(X; ) =1 forall then c(X)=1.

We wish to nd su cient conditions for c(X; ) = 1. In [5, page 44], T Kerler
develops a skein theoretic algorithm to compute the one-variable Alexander
polynomial x. from a surgery presentation of X. As a result, he shows that
if c(X; ) 2 then the Frohman{Nicas TQFT evaluated on the cut cobordism
is zero, implying that x. = 0. Using the fact that Q t ! is a principal ideal
domain one can prove that x; = 0 is equivalent to ranky, yH; (X ) 1.
We give an elementary proof of the equivalent statement of Kerler’s.

Proposition 2.2 If ¢(X; ) 2 then ranky; yHy (X') 1.

Proof Suppose c(X; ) 2 then thereisasurjectivemap : 1(X)—»F (n)
that factors through with n 2. Let : F (n) — Z be the homomorphism
such that = .  surjective implies that jker - ker - ker is sur-
jective. Writing Z as the multiplicative group generated by t, we can consider

T e and [kerk_e:keq as modules over Z t 1 . Here, the t acts by conjugat-
ker

ing by an element that maps to t by — or . Moreover, i : Rer ker ]

[kerkf%rkeq is surjective hence
' '
ker ker
rankz[t 1 W rankz[t 1] W =n-—1.
Since n 2, rankg 1M1 (X ) = rankg 1 [kerkeirker] 1 0

Corollary 2.3 If 1(X) — F=F" where F is a free group of rank 2 then there
existsa @ 1(X) - Z such that rankz; 1jH1 (X' ) 1.
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414 Shelly L Harvey

Proof This followg-Hnmediately from the proof of Proposition 2.2 after notic-
ing that F¥  ker  ;ker and Hom (F=F%;Z) = Hom (F; Z). 0

3 The Examples

We construct closed 3{manifolds all of whose in nite cyclic covers have rst
homology that is Z t  {torsion. The 3{manifolds we consider are 0{surgery
on an m{component link that is obtained from the trivial link by tying a
Whitehead link interaction between each two components.

Theorem 3.1 For each m 1 there exist closed 3{manifolds X with 1 (X)
= m such that for any in nite cyclic cover X ¥ X, rankz; 1jH1 (X ) =0.

It follows from Propostion 2.2 that the cut number of the manifolds in Theorem
3.1 is 1. In fact, Corollary 2.3 implies that 1 (X) does not map onto F=F"
where F is a free group of rank 2. Moreover, the proof of this theorem shows
that 1 (X) does not even map onto F=F, where F, is the nt" term of the
lower central series of F (see Proposition 3.3).

By a theorem of Ruberman [7], we can assume that the manifolds with cut
number 1 are hyperbolic.

Corollary 3.2 For each m 1 there exist closed, orientable, hyperbolic 3{
manifolds Y with 1 (Y) = m such that for any in nite cyclic cover Y ¥ Y,
rankzy 1yH1 (Y ) =0.

Proof Let X be one of the 3{manifolds in Theorem 3.1. By [7, Theorem 2.6],
there exists a degree one map f: Y ¥ X where Y is hyperbolic and T is
an isomorphism on H . Denote by G = 1(X) and P = 1 (Y). Itis then
well-known that f is surjective on 1. It follows from Stalling’s theorem [9,
. _
page 170] that the kernel of ¥ is Py \P,. Now, suppose : P —» G —» Z
de nes an in nite cyclic cover of Y. Then Hy(Y ) - Hy X-— has kernel
Py=[ker ;ker ]. To show that rankg; 1jHy (Y ) = 0 it su ces to show that
Py vanishes under themap Hy (Y ) ¥ Hi(Y ) CzdyQ t 1 0 Hy(Y ) Lzl
Q (1) since then ranky 1yHy (Y ) =rankg; yHi1 X- =0.

L
Note that Hy (Y ) [zl yQ t 1 = "L, Qt! TwhereTisaQt'?
torsion module. Moreover, P, is generated by elements of the form y =

Geometry & Topology, Volume 6 (2002)
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[P1Ip2[p3;:::[pn—2; 11l where 2P, ker . Therefore

I=C (Pe)—1)  ( (Pn-2)— D[]

in Hi (Y ) which implies that P, J"2(H;(Y )) for n 2 where J is the
augmentation ideal of Z t 1 . It follows that any element of P, considered as
an element of Hy (Y ) [zl Q t L is in nitely divisible by t — 1 and hence
is torsion. O

Proof of Theorem 3.1 Let L = tL; be the oriented trivial link with m
components in S2 and tD; be oriented disjoint disks with @D; = L;. The
fundamental group of S®—L is freely generated by fxjg where x; is a meridian
curve of L; which intersects D; exactly once and D; x; = 1. For all i;j with
1 i<j mlet j5:118 S® be oriented disjointly embedded arcs such that

ij(0)2Liand (1) 2L; and (1) does not intersect tD;. For each arc

ij» let yij be the curve embedded in a small neighborhood of j; representing
the class [xj; X;j] as in Figure 1. Let X be the 3{manifold obtained performing

L Xi <L;|/\ N
A Yij
A
ij ij
e —_—tY = —
Figure 1

0{framed Dehn surgery on L and —1{framed Dehn surgery on each y = tyj;.
See Figure 2 for an example of X when m = 5.

Denote by X, the manifold obtained by performing 0{framed Dehn surgery
on L. Let W be the 4{manifold obtained by adding a 2{handle to Xo |
along each curve y;;  flg with framing coe cient -1. The boundary of W is
@W = Xg t —X . We note that

1(W) =hxq;ii s Xmj[xisxj]=1foralll i<j mi=2zZM.
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-1 vyis

Figure 2: The surgered manifold X when m =5

Let Xk, ij1g be the generators of %l" — (L ty) that are obtained from a
Wirtinger presentation where X, are meridians of the it" component of L and

iji are meridians of the (i;j)th component of y. Note that fX;x; ijig generate
G 1(X). Foreach 1 i m let X; =X and Tij be the speci ¢ jj that
is denoted in Figure 3. We will use the convention that

[a;b] = aba™ bt

and
aP = bab™1.

We can choose a projection of the trivial link so that the arcs j; do not pass
under a component of L. Since 7j; is equal to a longitude of the curve yjj in
X, we have 7jj = Xin;s Xjnj; ~1' for some nijj and nj; and where isa
product of conjugates of meridian curves — and _ﬁ(l. Moreover, we can nd
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Li M

Figure 3

a projection of L ty so that the individual components of L do not pass under
or over one another. Hence Xjj = !X; 1-1 where ! is a product of conjugates
of the meridian curves =, and —ﬁ(l. As a result, we have
_ij = Xinij; Xjnji -1 (3)
= uxirh Lyt 7l
1 —1y-1 1
1

— w1l yo.p—
for some , 1;,and I,.

We note that 7; = Xin;; Xjn;; ~1 hence Tij 2 G’ for all i < j. Setting

v=171 1, and using the equality
[a; bc] = [a;b] [a; c]” 4)
we see that
= gt (5)

Xi;vXjv~t mod G"

[Xi; [v; X1 %]
=[x v X510 ;5 5109
[Xi; [v; ;11 [Xi; %] mod G”

. 0
since 11;v2G.

Consider the dual relative handlebody decomposition (W;X). W can be ob-
tained from X by adding a 0{framed 2{handle to X | along each of the

Geometry & Topology, Volume 6 (2002)



418 Shelly L Harvey

meridian curves 7j;  flg. (3) implies that —; is trivial in Hy (X) hence the

inclusion map j: X ¥ W induces an isomorphism j : Hi (X) T Hy(W).
Therefore if : G — where is abelian then there existsa : 1 (W) —
such that j =

Suppose : G—»hti=Zand : (W) — hti isan extensionof to 1(W).
Let X and W be the in nite cyclic covers of W and X corresponding to
and  respectively. Consider the long exact sequence of pairs,

P Hy (W X ) T HI (X ) T H (W) ®)
Since 1 (W) =2Z", Hy (W ) = Z™ ! where t acts trivially so that Hy (W )

hasrank 0 asa Z t * {module. Hy (W ;X )= %I t1 () generated by the
core of each 2{handle (extended by —;; ) attached to X. Therefore, Im@
is generated by a lift of 75; in Hy (X ) forall 1 i<j m. To show that
Hy (X ) has rank 0 it su ces to show that each of the —; are Z t L {torsion
in Hy (X ).

Let F =hXy;::: ;Xmi be the free greyp of rank mand f: F ¥ G be de ned by
T (Xi) = Xj. We have the following 5 Jacobi relations in F=F" [4, Proposition
736]. Forall1 i<j<k m,

[Xi: %3 Xicl] (% [Ric; Xill [Xic: [%i: %3]] = 1 mod F.

Using T, we see that these relations hold in G=G" as well. From (5), we can
write

[Xi; X1 = [lvij: Xj1; %] —5; mod G".

Hence foreach 1 i <j <k m we have the Jacobi relation J (i;J; k) in
G:GOO,

h i
[%i; [Xi; %]l X [Ki; %] ™ [Re; [%i; X511 mod G”

1

Xi; [Viks X i Xl Tk Xis e X [Vik: Xl
Xic; [[vij; Xj1;%il 75; mod G”
= [Rislvi & X0l i Tik Xis Tie IR X Viks Xl
[Xic; [[Vij; X515 Xill Xi; 5; mod G”
= Xk Xime X Tij XK Vi Xid s Xl K5 (K Vi Xl
[Xk; [[Vij; X]; Xil] mod G )

Moreover, for each component of the trivial link L; the longitude, I;, of L; is
trivial in G and is a product of commutators of —;; with a conjugate of X;. We
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can write each of the longitudes (see Figure 4) as

Y ., Y .

i = ij i d Tik k mod G
L.</i k=i

— 1,1 — /. . —1—1

= TRSTOTIN Lo LT R RN T

L<(i

_ -1 —1-——1 —1
ik  KXkng k- ik kKXkngi

k=i ) }
Y h I -1 yh i
_ -1 .— i — . -1 -1
- Xinji» i ik KXk k
j<i - k>i
&h N
— X_l'_-- —. .X—l mod GOO (8)
- jor Ji ik Mk .
j<i k>i
Xjnji
Lj N JFJ
P
! o
J1
L ] L ]
L. Tk —|—> }
! [ XX ] *)
| — >
Xinge o/
-
Lj — Il N
T
e—
T
J
Figure 4
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It follows that v h i v

% 1.—.

i di
j<i k>i

Since G” [ker ;ker ], the relations in (7) and (8) hold in Hy (X )

(=ker =[ker ;ker ])aswell. Suppose : G — Z isde ned by sending X; ﬁs
t"i. Since s surjective, ny & 0 for some N. We consider a subset of 7
relations in Hy (X ) that we index by (i;j) for 1 i<j m. Wheni=N

or j =N we consider the m — 1 relations
() Rin=l and (i) Rnj=I"
Rewriting | as an g¢lement of the Z t 1 -module H; (X ) generated by
Tl i<j  m from (8) we have
X

T Xt =1 mod GY.

L1 L1 -
RiN = tnj_l_ji+ 1—-t Nk _ik
'5<i k>iX
= VAT O = 1) Ty
£<<i - k>i
= (l_tnj)+ t_nj_l (1_tnj) _ji+
- -
" =1+ t™ =1 ("™ —=1) . (©))
k=i
Similarily, we have O
Rnj = -+ -1 (" -1) T+
L -
A=t + t™ =1 (1—1t") k- (10)
k=>j

[

For the other ™~ relations, we use the Jacobi relations from (7). De ne Rjj
to be 8
< JN;i;j) forN<i<]
Rij=_J@N;j) Hfori<N<j.
T J(@;N) fori<j<N
We can é/rite these relations as
(tY = 1) TN Q) Ty (AN = 1) T+
% ("™ = 1) (" = 1) (t" — 1) (& +enj —enj) for N <i<j
o (@-th)Ty H ™ D) Ty A () T (11)
. ("™ — 1) (tN — 1) (t — 1) (—eijn —enj + &) fori <N <j
= (N -D) T+ Q- T+ D) Tt
("™ =1 (" —=1) (Y — 1) (5 +ejn —&n) Tori<j <N

R
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where &; is a lift of vjj.

Forl i<]j m order the pairs ij by the dictionary ordering. That is,
ij ﬁl( prE\T/Jided either i <1 or j <k when i =1. The relations above give us
an > Mmatrix M with coe cientsin Z t 1 The (ij;kl)th component
of M is the coe cient of 7, in R;j. We claim for now that

M=(™—1)1+(t—1)S+(t—1)°E (12)

for some \error’ matrix E where 1 is the identity matrix and S is a skew-
symmetric matrix. For an example, when m =4 and N =1, M is the matrix

2t“1—1 0 0 1—t 1—t 0 3
0 th—1 0 th2 -1 0 1—ths
0 0 thr—1 0 t"z2—1 ts—1
s —1 1-—t" 0 th—1 0 0
th—1 0 1—1t"2 0 thr—1 0
0 th—1 1—t" 0 0 th—1

The proof of (12) is left until the end.

+(t—1)%E.

We will show that M is non-singular as a matrix over the quotient eld Q (t).
Consider the matrix A = =M. We note that A is a matrix with entries in
Z t 1 and A(1) evaluated at t =1 is

AQ)=NI+S().
To show that M is non-singular, it su ces to show that A (1) is non-singular.

Consider the quadratic form q: @(?) 1 Q(T) de ned by q(z) z'A(1)z
where z' is the transpose of z. Since A(1) = NI + S (1) where S (1) is

skew-symmetric we have,
>
a@)=N z.

Moreover, N & 0 so q(z) =0 if and only if z=0. Let z be a vector satisfying
A1)z =0. We have q(z) = z"A(1)z = z"0 = 0 which implies that z = 0.
Therefore M is a non-singular matrix. This implies that each element —; is
7 t ' {torsion which will complete the the proof once we have established the
above claim.

We ignore entries in M that lie in J? where J is the augmentation ideal of
7Z t 1 since they only contribute to the error matrix E ¥sing (9), (10), and
(11) above we can explicitely \ﬁite the entries in M mod J? . Let Mij:1k
denote the (ij;1k) entry of M mod J? .

Geometry & Topology, Volume 6 (2002)
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Case 1 (j =N): From (9) we have
Min:i = 1=t Minik =t — 1,
and mjn:.ix = 0 when neither | nor k is equal to N.
Case 2 (i=N): From (10) we have
Mnjij = 1 =1 M= 1 -t
and myjj:ik = 0 when neither | nor k is equal to N.
Case 3 (N <i<j): From (11) we have
mij.ni =t — 1, mijng = 1=t mjj =™ — 1,
and mijj.x = 0 otherwise.
Case4 (i<N <j): From (11) we have
Mij.in = 1 —t, mjjij = t™ — 1, mjjng =1 -t
and mij;ix = 0 otherwise.
Case 5 (i<j <N): From (11) we have
Mij.ij = t"™ — 1, mjj.in = 1 —t, mjj;jn =M — 1,
and mijj.x = 0 otherwise.

We rst note that in each of the cases, the diagonal entries m;;;;; are all t"™ —1.
Next, we will show that the o diagonal entries have the property that mjj,x =
—my;ij for ij < Ilk. This will complete the proof of the claim since we see that
each entry is divisible by t — 1.

We verify the skew symmetry in Cases 1 and 3. The other cases are similar and
we leave the veri cations to the reader.

Case 1 (J = N):

Min:ii = 1 —t™ = —my;.in (case 5)
and

Min:ik = "k — 1 = —Mijk.in (case 4).
Case 3 (N <i<j):

mij.ni = tY — 1 = —myi;ij (case 2)

and
Mij:Nj = 1—ti = —MNj;ij (case 2). ]
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Proposition 3.3 Let X be asin Theorem 3.1, G = 1 (X) and F be the free
group on 2 generators. There is no epimorphism from G onto F=F4.

Proof Let F = hx;yi be the free group and : F /F; — hti be de ned by
X7#¥ tandy #¥ 1. Suppose that there exists a surjectivemap : G —« F /F,4.
Let N = ker and H = ker ( ). Since s surjective we get an epimorphism
of Z t * {modules e: H/H" - N/N". From (6) we get the short exact
sequence

0% Im@ ¥ Hi(X ) ¥ Hi (W)Y O:

Let J be the augmentation ideal of Z t 1 . Wecompute N/N =7 t * J3
sothat e: Hy(X )—»2Z t!1 J3 Let 2Hy(X ) suchthat e( )=1.

. . I—m—l Z[t 1] . .

Since every element in Hy (W ) = =7 —5— is (t—1){torsion, (t—1) 2
Im@ hence t—12 Im(e i). Recall that in the proof of the Theorem 3.1, we
showed that there exists a surjective Z t * {module homomorphism : P —

Im@ where P is nitely presented as

01zt GDEPA, L 1G) yp g

letg: P ¥Z t! J3denedbyg e i .Since Iissurjective, t—12
Img. After tensoring with Q t *, we get a map g: P [zl Q t S |
Q t 1 J3. Itiseasy to see that either g is surjective or the image of g is
the submodule generated by t — 1. Note that the submodule generated by
t—1 is isomorphic @ t ' J?. Hence, in either case, we get a surjective map

h: P glyQt! 1 Qt?t J2.

Consider the Q t ' {module P’ presented by A. Let h’: Q t ! ) x
Qt?! J2bede nedby h'=(t—1)h . Since

WA()=0t-Dh( (AN =h( (E-DA()))=h()=0;

this de nesamap h’: P* ¥ Q t ' J2? whose image is the submodule gen-
erated by t— 1. It follows that P’ maps onto Q t 1 /J. Setting t = 1, the
vector space over Q presented by A (1) maps onto Q. Therefore det(A(1)) = 0.
However, it was previously shown that A (1) was non-singular which is a con-
tradiction. O

Corollary 3.4 For any closed, orientable 3{manifold Y with P=P, = G=G,4
where P = 1(Y) and G = 1 (X) is the fundamental group of the examples
in Theorem 3.1, c(Y) = 1.
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Using Proposition 3.3, it is much easier to show that there exist hyperbolic
3{manifolds with cut number 1.

Corollary 3.5 For each m 1 there exist closed, orientable, hyperbolic 3{
manifolds Y with ;(Y) = m such that (Y ) cannot map onto F=F4 where
F is the free group on 2 generators.

Proof Let X be one of the 3{manifolds in Theorem 3.1. By [7, Theorem 2.6],
there exists a degree one map f: Y ¥ X where Y is hyperbolic and f is an
isomorphism on H . Denote by G = (X)) and P = ;(Y). It follows from
Stalling’s theorem [9] that f induces an isomorphism f : P=P, ¥ G=G,. In
particular this is true for n =4 which completes the proof. O
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