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1 Introduction

Let X be a closed, orientable n{manifold. The cut number of X , c (X), is
de�ned to be the maximal number of components of a closed, 2{sided, orientable
hypersurface F � X such that X − F is connected. Hence, for any n �
c (X), we can construct a map f : X !

Wn
i=1 S

1 such that the induced map
on �1 is surjective. That is, there exists a surjective map f� : �1 (X)� F (c),
where F (c) is the free group with c = c (X) generators. Conversely, if we
have any epimorphism � : �1 (X) � F (n), then we can �nd a map f : X !Wn
i=1 S

1 such that f� = �. After making the f transverse to a non-wedge
point xi on each S1 , f−1 (X) will give n disjoint surfaces F = [Fi with
X − F connected. Hence one has the following elementary group-theoretic
characterization of c (X).

Proposition 1.1 c (X) is the maximal n such that there is an epimorphism
� : �1 (X)� F (n) onto the free group with n generators.

Example 1.2 Let X = S1 � S1 � S1 be the 3{torus. Since �1 (X) = Z3 is
abelian, c (X) = 1.

Using Proposition 1.1, we show that the cut number is additive under connected
sum.

Proposition 1.3 If X = X1#X2 is the connected sum of X1 and X2 then

c (X) = c (X1) + c (X2) .

Proof Let Gi = �1 (Xi) for i = 1; 2 and G = �1 (X) �= G1�G2 . It is clear that
G maps surjectively onto F (c (X1)) � F (c (X2)) �= F (c (X1 +X2)). Therefore
c (X) � c (X1) + c (X2).

Now suppose that there exists a map � : G � F (n). Let �i : Gi ! F (n)

be the composition Gi ! G1 � G2
�=! G

�
� F (n). Since � is surjective and

G �= G1 � G2 , Im (�1) and Im (�2) generate F (n). Morever, Im (�i) is a
subgroup of a free group, hence is free of rank less than or equal to c (Xi). It
follows that n � c (X1) + c (X2). In particular, when n is maximal we have
c (X) = n � c (X1) + c (X2).

In this paper, we will only consider 3{manifolds with �1 (X) � 1. Consider the
surjective map �1 (X) � H1 (X) = fZ{torsiong �= Z�1(X) . Since �1 (X) � 1,
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On the Cut Number of a 3{manifold 411

we can �nd a surjective map from Z�1(X) onto Z. It follows from Proposition
1.1 that c (X) � 1. Moreover, every map � : �1 (X) � F (n) gives rise to
an epimorphism � : H1 (X) � H1

(Wn
i=1 S

1
� �= Zn It follows that �1 (X) � n

which gives us the well known result:

1 � c (X) � �1 (X) . (1)

It has recently been asked whether a (non-trivial) lower bound exists for the
cut number. We make the following observations.

Remark 1.4 If S is a closed, orientable surface then c (S) = 1
2�1 (S).

Remark 1.5 If X has solvable fundamental group then c (X) = 1 and �1(X)
� 3.

Remark 1.6 Both c and �1 are additive under connected sum (Proposition
1.3).

Therefore it is natural to ask the following question �rst asked by A Sikora and
T Kerler. This question was motivated by certain results and conjectures on
the divisibility of quantum 3{manifold invariants by P Gilmer{T Kerler [2] and
T Cochran{P Melvin [1].

Question 1.7 Is c (X) � 1
3�1 (X) for all closed, orientable 3{manifolds X ?

We show that the answer to this question is \as far from yes as possible." In
fact, we show that for each m � 1 there exists a closed, hyperbolic 3{manifold
with �1 (X) = m and c (X) = 1. We actually prove a stronger statement.

Theorem 3.1 For each m � 1 there exist closed 3{manifolds X with �1 (X)
= m such that for any in�nite cyclic cover X� ! X , rankZ[t�1]H1 (X�) = 0.

We note the condition stated in the Theorem 3.1 is especially interesting because
of the following theorem of J Howie [3]. Recall that a group G is large if some
subgroup of �nite index has a non-abelian free homomorphic image. Howie
shows that if G has an in�nite cyclic cover whose rank is at least 1 then G is
large.

Theorem 1.8 (Howie [3]) Suppose that eK is a connected regular covering
complex of a �nite 2{complex K , with nontrivial free abelian covering trans-

formation group A. Suppose also that H1

� eK;Q
�

has a free Q [A]{submodule

of rank at least 1. Then G = �1 (K) is large.
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Using the proof of Theorem 3.1 we show that the fundamental group of the
aforementioned 3{manifolds cannot map onto F=F4 where F is the free group
with 2 generators and F4 is the 4th term of the lower central series of F .

Proposition 3.3 Let X be as in Theorem 3.1, G = �1 (X) and F be the free
group on 2 generators. There is no epimorphism from G onto F=F4 .

Independently, A Sikora has recently shown that the cut number of a \generic"
3{manifold is at most 2 [8]. Also, C Leininger and A Reid have constructed
speci�c examples of genus 2 surface bundles X satisfying (i) �1 (X) = 5 and
c (X) = 1 and (ii) �1 (X) = 7 and c (X) = 2 [6].

Acknowledgements I became interested in the question as to whether the
cut number of a 3{manifold was bounded below by one-third the �rst betti
number after hearing it asked by A Sikora at a problem session of the 2001
Georgia Topology Conference. The question was also posed in a talk by T
Kerler at the 2001 Lehigh Geometry and Topology Conference. The author
was supported by NSF DMS-0104275 as well as by the Bob E and Lore Merten
Watt Fellowship.

2 Relative Cut Number

Let � be a primitive class in H1 (X;Z). Since H1 (X;Z) �= Hom (�1 (X) ;Z),
we can assume � is a surjective homomorphism, � : �1 (X) � Z. Since X
is an orientable 3{manifold, every element in H2 (X;Z) can be represented
by an embedded, oriented, 2{sided surface [10, Lemma 1]. Therefore, if � 2
H1 (X;Z) �= H2 (X;Z) there exists a surface (not unique) dual to �. The
cut number of X relative to �, c (X;�), is de�ned as the maximal number of
components of a closed, 2{sided, oriented surface F � X such that X − F is
connected and one of the components of F is dual to �. In the above de�nition,
we could have required that \any number" of components of F be dual to �
as opposed to just \one." We remark that since X − F is connected, these
two conditions are equivalent. Similar to c (X), we can describe c (X;�) group
theoretically.

Proposition 2.1 c (X;�) is the maximal n such that there is an epimorphism
 : �1 (X)� F (n) onto the free group with n generators that factors through
� (see diagram on next page).
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�1 (X)
� - Z

�
�
�
�
��

F (n)

 

?

It follows immediately from the de�nitions that c (X;�) � c (X) for all primitive
�. Now let F be any surface with c (X) components and let � be dual to one
of the components, then c (X;�) = c (X). Hence

c (X) = max
�
c (X;�) j � is a primitive element of H1 (X;Z)

}
. (2)

In particular, if c (X;�) = 1 for all � then c (X) = 1.

We wish to �nd su�cient conditions for c (X;�) = 1. In [5, page 44], T Kerler
develops a skein theoretic algorithm to compute the one-variable Alexander
polynomial �X;� from a surgery presentation of X . As a result, he shows that
if c (X;�) � 2 then the Frohman{Nicas TQFT evaluated on the cut cobordism
is zero, implying that �X;� = 0. Using the fact that Q

�
t�1
�

is a principal ideal
domain one can prove that �X;� = 0 is equivalent to rankZ[t�1]H1 (X�) � 1.
We give an elementary proof of the equivalent statement of Kerler’s.

Proposition 2.2 If c (X;�) � 2 then rankZ[t�1]H1 (X�) � 1.

Proof Suppose c (X;�) � 2 then there is a surjective map  : �1 (X)� F (n)
that factors through � with n � 2. Let � : F (n) � Z be the homomorphism
such that � = � �  . � surjective implies that  j ker� : ker � � ker � is sur-
jective. Writing Z as the multiplicative group generated by t, we can consider

ker�
[ker�;ker�] and ker�

[ker�;ker�] as modules over Z
�
t�1
�
. Here, the t acts by conjugat-

ing by an element that maps to t by � or �. Moreover,  j ker� : ker�
[ker�;ker�] �

ker�

[ker�;ker�] is surjective hence

rankZ[t�1]

�
ker �

[ker�; ker �]

�
� rankZ[t�1]

 
ker��

ker �; ker �
�! = n− 1.

Since n � 2, rankZ[t�1]H1 (X�) = rankZ[t�1]

�
ker�

[ker�;ker�]

�
� 1.

Corollary 2.3 If �1 (X)� F=F 00 where F is a free group of rank 2 then there
exists a � : �1 (X)� Z such that rankZ[t�1]H1 (X�) � 1.
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Proof This follows immediately from the proof of Proposition 2.2 after notic-
ing that F 00 �

�
ker
(
�
�
; ker

(
�
��

and Hom (F=F 00;Z) �= Hom (F;Z).

3 The Examples

We construct closed 3{manifolds all of whose in�nite cyclic covers have �rst
homology that is Z

�
t�1
�
{torsion. The 3{manifolds we consider are 0{surgery

on an m{component link that is obtained from the trivial link by tying a
Whitehead link interaction between each two components.

Theorem 3.1 For each m � 1 there exist closed 3{manifolds X with �1 (X)
= m such that for any in�nite cyclic cover X� ! X , rankZ[t�1]H1 (X�) = 0.

It follows from Propostion 2.2 that the cut number of the manifolds in Theorem
3.1 is 1. In fact, Corollary 2.3 implies that �1 (X) does not map onto F=F 00

where F is a free group of rank 2. Moreover, the proof of this theorem shows
that �1 (X) does not even map onto F=F4 where Fn is the nth term of the
lower central series of F (see Proposition 3.3).

By a theorem of Ruberman [7], we can assume that the manifolds with cut
number 1 are hyperbolic.

Corollary 3.2 For each m � 1 there exist closed, orientable, hyperbolic 3{
manifolds Y with �1 (Y ) = m such that for any in�nite cyclic cover Y� ! Y ,
rankZ[t�1]H1 (Y�) = 0.

Proof Let X be one of the 3{manifolds in Theorem 3.1. By [7, Theorem 2.6],
there exists a degree one map f : Y ! X where Y is hyperbolic and f� is
an isomorphism on H� . Denote by G = �1 (X) and P = �1 (Y ). It is then
well-known that f is surjective on �1 . It follows from Stalling’s theorem [9,

page 170] that the kernel of f� is P! � \Pn . Now, suppose � : P
f�� G

�
� Z

de�nes an in�nite cyclic cover of Y . Then H1 (Y�) � H1

�
X�

�
has kernel

P!= [ker �; ker �]. To show that rankZ[t�1]H1 (Y�) = 0 it su�ces to show that
P! vanishes under the map H1 (Y�)! H1 (Y�)⊗Z[t�1]Q

�
t�1
�
! H1 (Y�)⊗Z[t�1]

Q (t) since then rankZ[t�1]H1 (Y�) = rankZ[t�1]H1

�
X�

�
= 0.

Note that H1 (Y�) ⊗Z[t�1] Q
�
t�1
� �= Ln

i=1Q
�
t�1
�
� T where T is a Q

�
t�1
�

torsion module. Moreover, Pn is generated by elements of the form γ =
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[p1 [p2 [p3; : : : [pn−2; �]]]] where � 2 P2 � ker �. Therefore

[γ] = (� (pi)− 1) � � � (� (pn−2)− 1) [�]

in H1 (Y�) which implies that Pn � Jn−2 (H1 (Y�)) for n � 2 where J is the
augmentation ideal of Z

�
t�1
�
. It follows that any element of P! considered as

an element of H1 (Y�) ⊗Z[t�1] Q
�
t�1
�

is in�nitely divisible by t − 1 and hence
is torsion.

Proof of Theorem 3.1 Let L = tLi be the oriented trivial link with m
components in S3 and tDi be oriented disjoint disks with @Di = Li . The
fundamental group of S3−L is freely generated by fxig where xi is a meridian
curve of Li which intersects Di exactly once and Di � xi = 1. For all i; j with
1 � i < j � m let �ij : I ! S3 be oriented disjointly embedded arcs such that
�ij (0) 2 Li and �ij (1) 2 Lj and �ij (I) does not intersect tDi . For each arc
�ij , let γij be the curve embedded in a small neighborhood of �ij representing
the class [xi; xj ] as in Figure 1. Let X be the 3{manifold obtained performing

�ij

Li

Lj

xi

xj

Li

Lj

�ij

γij

Figure 1

0{framed Dehn surgery on L and −1{framed Dehn surgery on each γ = tγij .
See Figure 2 for an example of X when m = 5.

Denote by X0 , the manifold obtained by performing 0{framed Dehn surgery
on L. Let W be the 4{manifold obtained by adding a 2{handle to X0 � I
along each curve γij � f1g with framing coe�cient -1. The boundary of W is
@W = X0 t −X . We note that

�1 (W ) = hx1; : : : ; xmj [xi; xj ] = 1 for all 1 � i < j � mi �= Zm.

Geometry & Topology, Volume 6 (2002)



416 Shelly L Harvey

L30

L5 0L40

L10 L2

0

γ25

-1

γ15-1

γ13

-1
γ23

-1

γ35

-1

γ24-1

γ34

-1

γ12-1

γ14

-1

γ45-1

Figure 2: The surgered manifold X when m = 5

Let fxik; �ijlg be the generators of �1

(
S3 − (L t γ)

�
that are obtained from a

Wirtinger presentation where xik are meridians of the ith component of L and
�ijl are meridians of the (i; j)th component of γ . Note that fxik; �ijlg generate
G � �1 (X). For each 1 � i � m let xi = xi1 and �ij be the speci�c �ijl that
is denoted in Figure 3. We will use the convention that

[a; b] = aba−1b−1

and
ab = bab−1.

We can choose a projection of the trivial link so that the arcs �ij do not pass
under a component of L. Since �ij is equal to a longitude of the curve γij in
X , we have �ij =

�
xinij ; �xjnji�

−1
�

for some nij and nji and � where � is a
product of conjugates of meridian curves �lk and �−1

lk . Moreover, we can �nd
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Li

Lj

xinij

xjnji

�ij

Figure 3

a projection of Ltγ so that the individual components of L do not pass under
or over one another. Hence xij = !xi!

−1 where ! is a product of conjugates
of the meridian curves �lk and �−1

lk . As a result, we have

�ij =
�
xinij ; �xjnji�

−1
�

(3)

=
�
!1xi!

−1
1 ; �!2xj!

−1
2 �−1

�
=

�
xi; !

−1
1 �!2xj!

−1
2 �−1!−1

1

�!1

for some �, !1 , and !2 .

We note that �ij =
�
xinij ; �xjnji�

−1
�

hence �ij 2 G0 for all i < j . Setting
v = !−1

1 �!2 and using the equality

[a; bc] = [a; b] [a; c]b (4)

we see that

�ij =
�
xi; vxjv

−1
�!1 (5)

=
�
xi; vxjv

−1
�

mod G00

= [xi; [v; xj ]xj ]

= [xi; [v; xj ]] [xi; xj ]
[v;xj ]

= [xi; [v; xj ]] [xi; xj ] mod G00

since !1; v 2 G
0
.

Consider the dual relative handlebody decomposition (W;X). W can be ob-
tained from X by adding a 0{framed 2{handle to X � I along each of the
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meridian curves �ij � f1g. (3) implies that �ij is trivial in H1 (X) hence the

inclusion map j : X ! W induces an isomorphism j� : H1 (X)
�=! H1 (W ).

Therefore if � : G� � where � is abelian then there exists a  : �1 (W )� �
such that  � j� = �.

Suppose � : G� hti �= Z and  : �1 (W )� hti is an extension of � to �1 (W ).
Let X� and W be the in�nite cyclic covers of W and X corresponding to  
and � respectively. Consider the long exact sequence of pairs,

! H2 (W ;X�) @�! H1 (X�)! H1 (W )! (6)

Since �1 (W ) �= Zm , H1 (W ) �= Zm−1 where t acts trivially so that H1 (W )

has rank 0 as a Z
�
t�1
�
{module. H2 (W ;X�) �=

(
Z
�
t�1
��(m2 ) generated by the

core of each 2{handle (extended by �ij � I ) attached to X . Therefore, Im@�
is generated by a lift of �ij in H1 (X�) for all 1 � i < j � m. To show that
H1 (X�) has rank 0 it su�ces to show that each of the �ij are Z

�
t�1
�
{torsion

in H1 (X�).

Let F = hx1; : : : ; xmi be the free group of rank m and f : F ! G be de�ned by
f (xi) = xi . We have the following

(m
3

�
Jacobi relations in F=F

00
[4, Proposition

7.3.6]. For all 1 � i < j < k � m,

[xi; [xj; xk]] [xj ; [xk; xi]] [xk; [xi; xj ]] = 1 mod F 00.

Using f , we see that these relations hold in G=G00 as well. From (5), we can
write

[xi; xj] = [[vij ; xj ] ; xi]�ij mod G00.

Hence for each 1 � i < j < k � m we have the Jacobi relation J (i; j; k) in
G=G00 ,

1 = [xi; [xj; xk]]
h
xj; [xi; xk]

−1
i

[xk; [xi; xj]] mod G00

=
�
xi; [[vjk; xk] ; xj ]�jk

� �
xj ; �

−1
ik [xi; [vik; xk]]

��
xk; [[vij ; xj ] ; xi]�ij

�
mod G00

= [xi; [[vjk; xk] ; xj]]
�
xi; �jk

� �
xj ; �

−1
ik

�
[xj ; [xi; [vik; xk]]]

[xk; [[vij ; xj ] ; xi]]
�
xk; �ij

�
mod G00

=
�
xi; �jk

� �
xj; �

−1
ik

� �
xk; �ij

�
[xi; [[vjk; xk] ; xj ]] [xj; [xi; [vik; xk]]]

[xk; [[vij ; xj ] ; xi]] mod G00. (7)

Moreover, for each component of the trivial link Li the longitude, li , of Li is
trivial in G and is a product of commutators of �ij with a conjugate of xj . We
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can write each of the longitudes (see Figure 4) as

li =
Y
j<i

�j�
−1
j �−1

ji �j �
Y
k>i

�ik�k mod G00

=
Y
j<i

�
�−1
j x−1

jnji
�jixjnji�j

�
�−1
j �−1

ji �j �Y
k>i

�ik

�
�kx

−1
knki

�−1
k �−1

ik �kxknki�
−1
k

�
=

Y
j<i

h
x−1
jnji

; �ji

i�−1
j �

Y
k>i

h
�ik; �kx

−1
knki

�−1
k

i
=

Y
j<i

h
x−1
j ; �ji

i
�
Y
k>i

�
�ik; x

−1
k

�
mod G00. (8)

�ji

γj

xjnji

�j

Lj

Li

Lj
xjnji

�ji

xinij

�j

j < i

�ik

xinik
�

k > i

xknkiLk

Figure 4
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It follows that Y
j<i

h
x−1
j ; �ji

i
�
Y
k>i

�
�ik; x

−1
k

�
= 1 mod G00.

Since G00 � [ker �; ker �], the relations in (7) and (8) hold in H1 (X�)
(= ker �= [ker�; ker �]) as well. Suppose � : G� Z is de�ned by sending xi 7−!
tni . Since � is surjective, nN 6= 0 for some N . We consider a subset of

(
m
2

�
relations in H1 (X�) that we index by (i; j) for 1 � i < j � m. When i = N
or j = N we consider the m− 1 relations

(i) RiN = li and (ii) RNj = l−1
j .

Rewriting li as an element of the Z
�
t�1
�

-module H1 (X�) generated by�
�ijj1 � i < j � m

}
from (8) we have

RiN =
X
j<i

(
t−nj − 1

�
�ji +

X
k>i

(
1− t−nk

�
�ik

=
X
j<i

t−nj (1− tnj)�ji +
X
k>i

t−nk (tnk − 1)�ik

=
X
j<i

�
(1− tnj) +

(
t−nj − 1

�
(1− tnj )

�
�ji +

X
k>i

�
(tnk − 1) +

(
t−nk − 1

�
(tnk − 1)

�
�ik. (9)

Similarily, we have

RNj =
X
i<j

�
(tni − 1) +

(
t−ni − 1

�
(tni − 1)

�
�ij +

X
k>j

�
(1− tnk) +

(
t−nk − 1

�
(1− tnk)

�
�jk. (10)

For the other
(m−1

3

�
relations, we use the Jacobi relations from (7). De�ne Rij

to be

Rij =

8<:
J (N; i; j) for N < i < j

J (i;N; j)−1 for i < N < j
J (i; j;N) for i < j < N

.

We can write these relations as

Rij =

8>>>>>><>>>>>>:

(tnj − 1)�Ni + (1− tni)�Nj + (tnN − 1)�ij+
(tnN − 1) (tni − 1) (tnj − 1) (evij + evNj − evNj) for N < i < j
(1− tnj)�iN + (tnN − 1)�ij + (1− tni)�Nj+
(tnN − 1) (tni − 1) (tnj − 1) (−eviN − evNj + evij) for i < N < j
(tnN − 1)�ij + (1− tnj )�iN + (tni − 1)�jN+
(tnN − 1) (tni − 1) (tnj − 1) (evij + evjN − eviN ) for i < j < N

(11)
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where evij is a lift of vij .

For 1 � i < j � m order the pairs ij by the dictionary ordering. That is,
ij < lk provided either i < l or j < k when i = l . The relations above give us
an
(m

2

�
�
(m

2

�
matrix M with coe�cients in Z

�
t�1
�
. The (ij; kl)th component

of M is the coe�cient of �kl in Rij . We claim for now that

M = (tnN − 1) I + (t− 1)S + (t− 1)2E (12)

for some \error" matrix E where I is the identity matrix and S is a skew-
symmetric matrix. For an example, when m = 4 and N = 1, M is the matrix26666664

tn1 − 1 0 0 1− tn3 1− tn4 0
0 tn1 − 1 0 tn2 − 1 0 1− tn4

0 0 tn1 − 1 0 tn2 − 1 tn3 − 1
tn3 − 1 1− tn2 0 tn1 − 1 0 0
tn4 − 1 0 1− tn2 0 tn1 − 1 0

0 tn4 − 1 1− tn3 0 0 tn1 − 1

37777775+ (t− 1)2 E.

The proof of (12) is left until the end.

We will show that M is non-singular as a matrix over the quotient �eld Q (t).
Consider the matrix A = 1

t−1M . We note that A is a matrix with entries in
Z
�
t�1
�

and A (1) evaluated at t = 1 is

A (1) = NI + S (1) .

To show that M is non-singular, it su�ces to show that A (1) is non-singular.

Consider the quadratic form q : Q(m2 ) ! Q(m2 ) de�ned by q (z) � zTA (1) z
where zT is the transpose of z . Since A (1) = NI + S (1) where S (1) is
skew-symmetric we have,

q (z) = N
X

z2
i .

Moreover, N 6= 0 so q (z) = 0 if and only if z = 0. Let z be a vector satisfying
A (1) z = 0. We have q (z) = zTA (1) z = zT 0 = 0 which implies that z = 0.
Therefore M is a non-singular matrix. This implies that each element �ij is
Z
�
t�1
�
{torsion which will complete the the proof once we have established the

above claim.

We ignore entries in M that lie in J2 where J is the augmentation ideal of
Z
�
t�1
�

since they only contribute to the error matrix E . Using (9), (10), and
(11) above we can explicitely write the entries in M

(
mod J2

�
. Let mij;lk

denote the (ij; lk) entry of M
(
mod J2

�
.
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Case 1 (j = N): From (9) we have

miN;li = 1− tnl , miN;ik = tnk − 1,

and miN;lk = 0 when neither l nor k is equal to N .

Case 2 (i = N): From (10) we have

mNj;lj = tnl − 1, mNj;jk = 1− tnk ,

and mNj;lk = 0 when neither l nor k is equal to N .

Case 3 (N < i < j): From (11) we have

mij;Ni = tnj − 1, mij;Nj = 1− tni , mij;ij = tnN − 1,

and mij;lk = 0 otherwise.

Case 4 (i < N < j): From (11) we have

mij;iN = 1− tnj , mij;ij = tnN − 1, mij;Nj = 1− tni ,
and mij;lk = 0 otherwise.

Case 5 (i < j < N): From (11) we have

mij;ij = tnN − 1, mij;iN = 1− tnj , mij;jN = tni − 1,

and mij;lk = 0 otherwise.

We �rst note that in each of the cases, the diagonal entries mij;ij are all tnN−1.
Next, we will show that the o� diagonal entries have the property that mij;lk =
−mlk;ij for ij < lk . This will complete the proof of the claim since we see that
each entry is divisible by t− 1.

We verify the skew symmetry in Cases 1 and 3. The other cases are similar and
we leave the veri�cations to the reader.

Case 1 (j = N):

miN;li = 1− tnl = −mli;iN (case 5)

and

miN;ik = tnk − 1 = −mik;iN (case 4).

Case 3 (N < i < j):

mij;Ni = tnj − 1 = −mNi;ij (case 2)

and
mij;Nj = 1− tni = −mNj;ij (case 2).
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Proposition 3.3 Let X be as in Theorem 3.1, G = �1 (X) and F be the free
group on 2 generators. There is no epimorphism from G onto F=F4 .

Proof Let F = hx; yi be the free group and � : F /F4 � hti be de�ned by
x 7−! t and y 7−! 1. Suppose that there exists a surjective map � : G� F /F4 .
Let N = ker � and H = ker (� � �). Since � is surjective we get an epimorphism
of Z

�
t�1
�
{modules e� : H /H 0 � N /N 0 . From (6) we get the short exact

sequence

0! Im@�
i! H1 (X���)! H1 (W )! 0:

Let J be the augmentation ideal of Z
�
t�1
�
. We compute N /N 0 �= Z

�
t�1
� �
J3

so that e� : H1 (X���) � Z
�
t�1
� �
J3 . Let � 2 H1 (X���) such that e� (�) = 1.

Since every element in H1 (W ) �=
Lm−1

i=1

Z[t�1]
J is (t− 1){torsion, (t− 1) � 2

Im@� hence t− 1 2 Im (e� � i). Recall that in the proof of the Theorem 3.1, we
showed that there exists a surjective Z

�
t�1
�
{module homomorphism � : P �

Im@� where P is �nitely presented as

0! Z
�
t�1
�(m2 ) (t−1)A! Z

�
t�1
�(m2 ) �! P ! 0.

Let g : P ! Z
�
t�1
� �
J3 de�ned by g � e� � i � �. Since � is surjective, t− 1 2

Img . After tensoring with Q
�
t�1
�
, we get a map g : P ⊗Z[t�1] Q

�
t�1
�
!

Q
�
t�1
� �
J3 . It is easy to see that either g is surjective or the image of g is

the submodule generated by t − 1. Note that the submodule generated by
t− 1 is isomorphic Q

�
t�1
� �
J2 . Hence, in either case, we get a surjective map

h : P ⊗Z[t�1] Q
�
t�1
�
! Q

�
t�1
� �
J2 .

Consider the Q
�
t�1
�
{module P 0 presented by A. Let h0 : Q

�
t�1
�(m2 ) !

Q
�
t�1
� �
J2 be de�ned by h0 = (t− 1)h � � . Since

h0 (A (�)) = (t− 1)h (� (A (�))) = h (� ((t− 1)A (�))) = h (0) = 0;

this de�nes a map h0 : P 0 ! Q
�
t�1
� �
J2 whose image is the submodule gen-

erated by t − 1. It follows that P 0 maps onto Q
�
t�1
�

/J . Setting t = 1, the
vector space over Q presented by A (1) maps onto Q. Therefore det(A(1)) = 0.
However, it was previously shown that A (1) was non-singular which is a con-
tradiction.

Corollary 3.4 For any closed, orientable 3{manifold Y with P=P4
�= G=G4

where P = �1 (Y ) and G = �1 (X) is the fundamental group of the examples
in Theorem 3.1, c(Y ) = 1.
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Using Proposition 3.3, it is much easier to show that there exist hyperbolic
3{manifolds with cut number 1.

Corollary 3.5 For each m � 1 there exist closed, orientable, hyperbolic 3{
manifolds Y with �1 (Y ) = m such that �1 (Y ) cannot map onto F=F4 where
F is the free group on 2 generators.

Proof Let X be one of the 3{manifolds in Theorem 3.1. By [7, Theorem 2.6],
there exists a degree one map f : Y ! X where Y is hyperbolic and f� is an
isomorphism on H� . Denote by G = �1 (X) and P = �1 (Y ). It follows from
Stalling’s theorem [9] that f induces an isomorphism f� : P=Pn ! G=Gn . In
particular this is true for n = 4 which completes the proof.
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