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1 Introduction

Let Y be a closed, oriented three{manifold. A positive, coorientable contact
structure on Y is the kernel � = ker� � TY of a one{form � 2 Ω1(Y ) such that
�^ d� is a positive volume form on Y . In this paper we only consider positive,
coorientable contact structures, so we call them simply ‘contact structures’. For
an introduction to contact structures the reader is referred to [1, Chapter 8]
and [8].

There are two kinds of contact structures � on Y . If there exists an embedded
disk D � Y tangent to � along its boundary, � is called overtwisted, otherwise it
is said to be tight. The isotopy classi�cation of overtwisted contact structures
coincides with their homotopy classi�cation as tangent two{plane �elds [5].
Tight contact structures are much more di�cult to classify, and capture subtle
information about the underlying three{manifold.

A contact three{manifold (Y; �) is symplectically �llable, or simply �llable, if
there exists a compact symplectic four{manifold (W;!) such that (i) @W = Y
as oriented manifolds (here W is oriented by ! ^ !) and (ii) !j� 6= 0 at every
point of Y . (Y; �) is symplectically semi{�llable if there exists a �llable contact
manifold (N; �) such that Y � N and �jY = � . Semi{�llable contact struc-
tures are tight [6]. The converse is known to be false by work of Etnyre and
Honda, who recently found two examples of tight but not semi{�llable contact
three{manifolds [9]. This discovery naturally led to a search for such examples,
in the hope that they would tell us something about the di�erence between
tight and �llable contact structures. By a result announced by E Giroux [12],
isotopy classes of contact structures on a closed three{manifold are in one{to{
one correspondence with \stable" isotopy classes of open book decompositions.
When the monodromy of the open book decomposition is positive, the corre-
sponding contact structure is �llable. Therefore, it would be very interesting to
know examples of monodromies associated with tight but not �llable contact
structures.

In this paper we prove that in�nitely many tight contact circle bundles over
surfaces are not semi{�llable. Let �g be a closed, oriented surface of genus
g � 1. Denote by Yg;n the total space of an oriented S1{bundle over �g with
Euler number n. Honda gave a complete classi�cation of the tight contact
structures on Yg;n [15]. The three{manifolds Yg;n carry in�nitely many tight
contact structures up to di�eomorphism. The classi�cation required a special
e�ort for two tight contact structures �0 and �1 , for n, g satisfying n � 2g (see
De�nition 2.5 below). Honda conjectured that none of these contact structures
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are symplectically semi{�llable. Our main result establishes Honda’s conjecture
in in�nitely many cases:

Theorem 1.1 Suppose that d(d + 1) � 2g � n � (d + 1)2 + 3 for some
positive integer d. Then, the tight contact structures �0 and �1 on Yg;n are not
symplectically semi{�llable.

Remark 1.2 Let � be a tight contact structure on a three{manifold Y . If the
pull{back of � to the universal cover of Y is tight, then � is called universally
tight. Honda showed in [15] that the contact structures �i become overtwisted
when pulled{back to a �nite cover, i.e. they are virtually overtwisted. Thus,
the question whether every universally tight contact structure is symplectically
�llable is untouched by Theorem 1.1.

The proof of Theorem 1.1 is similar in spirit to the argument used by the
�rst author to prove that certain oriented three{manifolds with positive scalar
curvature metrics do not carry semi{�llable contact structures [17, 18]. But
the fact that the three{manifolds Yg;n do not admit positive scalar curvature
metrics made necessary a modi�cation of the analytical as well as the topological
parts of the original argument.

We �rst show that if W is a semi{�lling of (Yg;n; �i), then @W is connected,
b+2 (W ) = 0 and the homomorphism H2(W ;R) ! H2(@W ;R) induced by the
inclusion @W � W is the zero map (see Proposition 4.2). To do this, we start
by identifying the Spinc structures t�i induced by the contact structures �i .
Then, using results of Mrowka, Ozsv�ath and Yu [20], we establish properties
of the Seiberg{Witten moduli spaces for the Spinc structures t�i which are
su�cient to apply the argument used in the positive scalar curvature case. Such
an argument relies on the non{triviality of the Kronheimer{Mrowka monopole
invariants of a symplectic �lling [16].

Then, under some restrictions on g and n, we construct smooth, oriented four{
manifolds Z with boundary orientation{reversing di�eomorphic to Yg;n , with
the property that if W were a symplectic �lling of (Yg;n; �i), the closed four{
manifold W [Yg;n Z would be negative de�nite and have non{diagonalizable
intersection form. On the other hand, by Donaldson’s celebrated theorem [2, 3],
such a closed four{manifold cannot exist. Therefore, (Yg;n; �i) does not have
symplectic �llings.

The paper is organized as follows. In Section 2 we de�ne, following [15], the
contact structures �0 and �1 . In Section 3 we determine the Spinc structures
t�i , and in Section 4 we prove Theorem 1.1.
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2 De�nition of the contact structures

In this section we describe in detail the construction of the contact structures �i .
For the sake of the exposition, we start by recalling some basic facts regarding
convex surfaces and Legendrian knots in contact three{manifolds.

Basic properties of contact structures

Let Y be a closed, oriented three{manifold and let � be a contact structure on
Y .

De�nition 2.1 An embedded surface � � Y is convex if there exists a vector
�eld V on Y such that (i) V is transverse to � and (ii) V is a contact vector
�eld, i.e. � is invariant under the flow generated by V . The dividing set is

Γ�(V ) = fp 2 � j V (p) 2 �g � �:

The following facts are proved in the seminal paper by E Giroux [10]:

(1) Let � � (Y; �) be an embedded surface. Then, � can be C1{perturbed
to a convex surface.

(2) Let � � (Y; �) be a convex surface and V a contact vector �eld transverse
to �. Then, (i) the isotopy class Γ� of Γ�(V ) does not depend on the
choice of V and (ii) the germ of � around � is determined by Γ� .

In the case of a convex torus T � (Y; �), the set ΓT consists of an even number
of disjoint simple closed curves. The germ of � around T is determined by the
number of connected components of ΓT { the dividing curves { together with
a (possibly in�nite) rational number representing their slope with respect to an
identi�cation T �= R2=Z2 . Note that the slope depends on the choice of the
identi�cation. If T is the boundary of a neighborhood of a knot k � Y , then
by identifying the meridian with one copy of R=Z in the above identi�cation,
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the slope p=q , regarded as a vector
(q
p

�
, is determined up to the action of the

group

f
�

1 m
0 1

�
j m 2 Zg:

A knot k � (Y; �) is Legendrian if k is everywhere tangent to � . The framing
of k naturally induced by � is called the contact framing. A Legendrian knot
k has a basis fU�g of neighborhoods with convex boundaries. The dividing set
of each boundary @U� consists of two dividing curves having the same slope
independent of �. Any one of those neighborhoods of k is called a standard
convex neighborhood of k . The meridian and the contact framing of a Leg-
endrian knot k � (Y; �) provides an identi�cation of the convex boundary T
of a neighborhood of k with R2=Z2 ; easy computation shows that with this
identi�cation the slope of the dividing curves is 1.

Let �g be a closed, oriented surface of genus g � 1, and let � : Yg;n ! �g be
an oriented circle bundle over �g with Euler number n. Let � be a contact
structure on Yg;n such that a �ber f = �−1(s) � Yg;n (s 2 �g ) is Legendrian.
We say that f has twisting number −1 if the contact framing of f is ‘−1’ with
respect to the framing determined by the �bration � . A contact structure on
Yg;n is called horizontal if it is isotopic to a contact structure transverse to the
�bers of � .

De�nition of the contact structures �i

The following lemma is probably well{known to the experts. A proof can be
found e.g. in [11, x1.D]. We include it here to make our exposition more self{
contained, and for later reference.

Lemma 2.2 The circle bundle � : Yg;2g−2 ! �g carries a horizontal contact
structure � such that all the �bers of � are Legendrian and have twisting
number −1.

Proof Think of Yg;2g−2 as the manifold of the oriented lines tangent to �g .
Then, the �ber �−1(s) � Yg;2g−2 (s 2 �g ) consists of all the oriented lines
l tangent to �g at the point s. The contact two{plane �(l) at the point l
is, by de�nition, the preimage of l � Ts�g under the di�erential of � . It
is a classical fact that � is a contact structure. It follows directly from the
de�nition that every �ber of � is Legendrian and has twisting number −1.
To see that � is horizontal, let V be a vector �eld on Yg;2g−2 tangent to � ,
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transverse to the �bers and such that, for every l 2 Yg;2g−2 the projection
d�(V (l)) 2 l � T�(l)Yg;2g−2 de�nes the orientation on l . Let � be a one{form
de�ning � , and T a nonvanishing vector �eld on Yg;2g−2 tangent to the �bers.
The fact that d� does not vanish on the contact planes is equivalent to the fact
that the Lie derivative of � in the direction of V is nowhere vanishing when
evaluated on T , because LV (�)(T ) = d�(V; T ). Thus, following the flow of V
the contact structure � can be isotoped to a transverse contact structure.

Suppose that n � 2g . Let � be the contact structure given by Lemma 2.2
(according to [15, x5] � could be any horizontal contact structure on Yg;2g−2

such that a �ber f of the projection � is Legendrian with twisting number
−1). Let U � Yg;2g−2 be a standard convex neighborhood of f . The �bration
induces a trivialization U �= S1 � D2 . Remove U from Yg;2g−2 and reglue it
using the di�eomorphism ’A : @U ! −@(Yg;2g−2nU) determined, via the above
trivialization, by the matrix

A =
�
−1 0
p+ 1 −1

�
;

where p = n − 2g + 1. The map � extends to the resulting three{manifold
yielding the bundle Yg;n , and we are going to show that � extends as well. The
germ of � around @(Yg;2g−2nU) is determined by the slope of any dividing curve
C � @(Yg;2g−2 nU). We are going to extend � to U as a tight contact structure
� having convex boundary and two dividing curves isotopic to ’−1

A (C) � @U .
Since the �ber f has twisting number −1 with respect to � , the slope of C is
−1 with respect to the trivialization used to de�ne the gluing map. Therefore,
the slope of ’−1

A (C) is p. Applying the self{di�eomorphism of S1 �D2 given
by the matrix

(
1 −1
0 1

�
, we may assume that the boundary slope of (U; �) be

− p
p−1 .

Summarizing, assuming the existence of � we have constructed a contact three{
manifold (Yg;n; �) of the form

(Yg;n; �) = (Yg;2g−2 n U; �) [’A (U; �): (2.1)

The following result says that we have two possible choices for � when n > 2g ,
and one when n = 2g .

Theorem 2.3 [14] Let p be a positive integer. Up to an isotopy keeping the
boundary �xed, there are at most two tight contact structures on S1�D2 with
convex boundary and two dividing curves with slope − p

p−1 . More precisely,
when p > 1 there are exactly two such contact structures. When p = 1, i.e.
when the boundary slope is in�nite, there is only one.

Geometry & Topology, Volume 7 (2003)



An in�nite family of tight, not semi{�llable contact three{manifolds 1061

We need to be more speci�c about the contact structures appearing in the
statement of Theorem 2.3. The next lemma will be used in the following section
as well.

Lemma 2.4 Let p be a positive integer and � a tight contact structure on
S1�D2 with convex boundary and two dividing curves with slope − p

p−1 . Then,
� can be isotoped keeping the boundary convex until there exists a section v
of � such that:

(1) At every boundary point v is nonvanishing and tangent to the circles
S1 � fxg, x 2 @D2 ;

(2) The zero locus of v is a smooth curve homologous to

�(p− 1)[S1 � f(0; 0)g]: (2.2)

Moreover, each sign in formula (2.2) above can be realized by some contact
structure � .

Proof Using Giroux’s Flexibility Theorem (see [10] and [14, x3.1.4]) we may
isotope � keeping the boundary convex until � is tangent to the circles S1�fxg,
x 2 @D2 at each boundary point.

By [14, Proposition 4.15] there exists a decomposition

S1 �D2 = N [ (S1 �D2 nN);

where N is a standard convex neighborhood of a Legendrian knot isotopic to
the core circle of S1�D2 . Thus, N �= S1�D2 with coordinates (z; (x; y)) and

�jN = ker (sin(2�z)dx − cos(2�z)dy) :

Moreover, there is a di�eomorphism

’ : S1 �D2 nN �= T 2 � [0; 1]

and (T 2� [0; 1]; ’��) is a basic slice (see [14, x4.3]) with convex boundary com-
ponents T 2 � f0g and T 2 � f1g of slopes −1 and − p

p−1 respectively. Without
loss of generality we may also assume that

’jS1�@D2 : S1 � @D2 ! T 2 � f1g
is the obvious identi�cation.

According to [14, Lemma 4.6 and Proposition 4.7] the Euler class of a basic
slice with boundary slopes 0 and −1, relative to a section which is nowhere
zero at the boundary and tangent to it, is equal to

�(0; 1) 2 H1(T 2 � [0; 1];Z) �= H1(T 2;Z) �= Z2:

Geometry & Topology, Volume 7 (2003)
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Moreover, each sign is realized by a unique (up to isotopy) basic slice. Applying
the di�eomorphism

T 2 � [0; 1] −! T 2 � [0; 1]

given by �
1 2− p
−1 p− 1

�
we obtain a basic slice with boundary slopes −1 and − p

p−1 which is di�eomor-
phic to (S1 �D2 nN; �), together with a section v of � which is nowhere zero
at the boundary, tangent to it, and with zero locus a smooth curve homologous
to �(2 − p; p − 1). The section v can be assumed to coincide with the vector
�eld @

@z on @N in the above coordinates (z; (x; y)). Since @
@z is a nowhere zero

section of � on N , this implies that v extends as a section of � on S1�D2 with
the stated properties. By choosing the appropriate basic slice one can construct
� with either choice of sign in Formula (2.2).

De�nition 2.5 Let �0 (respectevely �1 ) be a tight contact structure on S1�
D2 as in the conclusion of Lemma 2.4, satisfying condition (2.2) with the pos-
itive (respectively negative) sign. Let n � 2g , and de�ne �0 (respectively �1)
to be the contact structure on Yg;n , n � 2g , given by (2.1) with � replaced by
�0 (respectively �1 ).

Remark 2.6 By Theorem 2.3 the contact structures �0 and �1 of De�nition 2.5
are isotopic when n = 2g . By the classi�cation from [15], �0 is not isotopic to
�1 when n > 2g . In fact, �0 and �1 are not even homotopic (see Remark 3.7
below).

3 Calculations of Spinc structures

The goal of this section is to determine the Spinc structures t�i induced by the
contact structures �i of De�nition 2.5. We begin with a short review about Spin
and Spinc structures in general. Then, we study Spin and Spinc structures
on disk and circle bundles over surfaces. The section ends with the calculation
of t�0 and t�1 .

Generalities on Spin and Spinc structures

Let X be a smooth, oriented n{dimensional manifold, n � 3. The structure
group of its tangent frame bundle PX can be reduced to SO(n) by e.g. in-
troducing a Riemannian metric on X . A Spin structure on X is a principal
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Spin(n){bundle PSpin(n) ! X such that PX is isomorphic to the associated
bundle

PSpin(n) �� SO(n);

where
� : Spin(n)! SO(n)

is the universal covering map. A Spin structure on X exists if and only if
the second Stiefel{Whitney class w2(X) vanishes. In this case, the set of Spin
structures is a principal homogeneous space on H1(X;Z=2Z).

The quotient of Spin(n)� S1 modulo the subgroup

f�(1; 1)g �= Z=2Z

is, by de�nition, the group Spinc(n). There are two canonical surjective homo-
morphisms

�1 : Spinc(n)! Spin(n)=f�1g = SO(n); �2 : Spinc(n)! S1=f�1g = S1:

A Spinc structure on X is a principal Spinc(n){bundle PSpinc(n) such that

PX �= PSpinc(n) ��1 SO(n):

Let Spinc(X) denote the (possibly empty) set of Spinc structures on X . An
element

s = PSpinc(n) 2 Spinc(X)

naturally induces a principal S1{bundle PSpinc(n)��2S
1 . Let c1(s) 2 H2(X;Z)

be the �rst Chern class of the corresponding complex line bundle. A manifold
X admits a Spinc structure if and only if w2(X) has an integral lift, and in
fact the set

fc1(s) j s 2 Spinc(X)g � H2(X;Z)

is the preimage of w2(X) under the natural map

H2(X;Z)! H2(X;Z=2Z):

Moreover, Spinc(X) is a principal homogeneous space on H2(X;Z), and c1(s+
�) = c1(s) + 2� for every

(s; �) 2 Spinc(X) �H2(X;Z):

The group Spin(n) naturally embeds into Spinc(n), so a Spin structure in-
duces a Spinc structure. Moreover, since

Spin(n) = ker �2 � Spinc(n);

a Spinc structure s is induced by a Spin structure if and only if c1(s) = 0.

Geometry & Topology, Volume 7 (2003)
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Since
�−1

1 (f1g � SO(n)) = Spinc(n) � Spinc(n+ 1);

if dimY = n and Y = @X , there is a restriction map Spinc(X) ! Spinc(Y ).
Clearly, this map sends Spin structures to Spin structures.

An oriented two{plane �eld � (and so a contact structure) on a closed, oriented
three{manifold Y reduces the structure group of TY to U(1) � SO(3). Since
the inclusion U(1) � SO(3) admits a canonical lift to U(2) = Spinc(3), there
is a Spinc structure t� 2 Spinc(Y ) canonically associated to � . The Spinc

structure t� depends only on the homotopy class of � as an oriented tangent
two{plane �eld.

Disk bundles

Let �g be a closed, oriented surface of genus g � 1. Let � : Dg;n ! �g be an
oriented 2{disk bundle over �g with Euler number n.

By e.g. �xing a metric on Dg;n one sees that the tangent bundle of Dg;n is
isomorphic to the direct sum of the pull{back of T�g and the vertical tangent
bundle, which is isomorphic to the pull{back of the real oriented two{plane
bundle Eg;n ! �g with Euler number n. In short, we have

TDg;n
�= ��(T�g � Eg;n): (3.1)

Therefore, the structure group of TDg;n can be reduced to U(2) � SO(4),
which admits a natural lift

A 7! (
�

detA 0
0 1

�
; A)

to Spinc(4) = f(A;B) 2 U(2)� U(2) j detA = detBg:
Denote by s0 the induced Spinc structure on Dg;n . The orientation on Dg;n

determines an isomorphism H2(Dg;n;Z) �= Z, so the set

Spinc(Dg;n) = s0 +H2(Dg;n;Z)

can be canonically identi�ed with the integers. We denote by

se = s0 + e 2 Spinc(Dg;n)

the element corresponding to the integer e 2 Z �= H2(Dg;n;Z).

Lemma 3.1 (a) If n is odd, Dg;n admits no Spin structure.

(b) If n is even, Dg;n carries Spin structures. Every Spin structure on Dg;n

induces the Spinc structure sg−n
2
−1 .

Geometry & Topology, Volume 7 (2003)
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Proof In view of (3.1) we have c1(s0) = 2− 2g + n, hence

c1(se) = c1(s0) + 2e = 2(1− g + e) + n:

Since each c1(se) reduces modulo 2 to w2(Dg;n), Dg;n admits a Spin structure
if and only if n is even. Solving the equation c1(se) = 0 for e yields the
statement.

Circle bundles

Consider Yg;n = @Dg;n . We have

H1(Yg;n;Z) �= H2(Yg;n;Z) �= Z2g � Z=nZ;

where the summand Z=nZ is generated by the Poincar�e dual F of the class of
a �ber of the projection � : Yg;n ! �g . Each Spinc structure se 2 Spinc(Dg;n)
determines by restriction a Spinc structure te 2 Spinc(Yg;n). We have

te = t0 + eF; e 2 Z:

Since nF = 0, we see that te+n = te for every e. Therefore, t0; : : : ; tn−1 is a
complete list of torsion Spinc structures on Yg;n , i.e. Spinc structures on Yg;n
with torsion �rst Chern class. Notice that for n even di�erent Spinc structures
might have coinciding �rst Chern classes; for n odd, c1(ti) determines ti .

Remark 3.2 The pull{back of Eg;n is trivial when restricted to the comple-
ment of the zero section, therefore we have

TYg;n �= R� ��(T�g) � TDg;njYg;n �= C� ��(T�g);

where R and C are, respectively, the trivial real and complex line bundles. This
shows that

t0 = s0jYg;n = t� ;

where � � TYg;n is any oriented tangent two{plane �eld transverse to the �bers
of � : Yg;n ! �g .

Lemma 3.3 (a) If n is odd, tg−1 is the only torsion Spinc structure on Yg;n
induced by a Spin structure.

(b) If n is even, tg−1 and tg+n
2
−1 are the only torsion Spinc structures on

Yg;n induced by a Spin structure.
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Proof Since c1(s0) restricts to H2(Yg;n;Z) as (2− 2g)F , we have

c1(te) = 2(1 − g + e)F:

Solving the equation c1(te) = 0 yields the statement.

Remark 3.4 The Spinc structure tg−1 on Yg;n is (by de�nition) the restric-
tion of a Spinc structure on Dg;n . Although tg−1 is induced by a Spin struc-
ture on Yg;n , by Lemma 3.1 tg−1 does not extend as a Spin structure to Dg;n

when n > 0. On the other hand, when n is even the Spinc structure tg+n
2
−1 is

induced by a Spin structure on Yg;n which is the restriction of a Spin structure
on Dg;n .

Calculations

Let Y be a closed, oriented three{manifold and let � � TY be an oriented
tangent two{plane �eld. The Spinc structure t� 2 Spinc(Y ) determined by �
can be also de�ned as follows [13]. Using a trivialization of TY , the oriented
two{plane bundle � can be realized as the pull{back of the tangent bundle to
the two{sphere S2 under a smooth map Y ! S2 . This implies, in particular,
that the Euler class of � is always even. Therefore � has a section v which
vanishes along a link Lv � Y with multiplicity two. Being a non{zero section of
TY jY nLv , v determines a trivialization and so a Spin structure on Y nLv . Since
v vanishes with multiplicity two along Lv , this Spin structure extends uniquely
to a Spin structure on Y , which induces a Spinc structure tv 2 Spinc(Y ). The
link Lv carries a natural orientation such that 2 PD([Lv]) equals the Euler class
of � . According to [13] the Spinc structure t� is given by

t� = tv + PD([Lv]): (3.2)

Lemma 3.5 Let n � 2g , and let �0 and �1 be the contact structures on Yg;n
given by De�nition 2.5. Let F 2 H2(Yg;n;Z) denote the Poincar�e dual of the
homology class of a �ber of the �bration � : Yg;n ! �g . Then, the Euler class
of �i , i 2 f0; 1g, as an oriented two{plane bundle is equal to

(−1)i+12gF:

If n is even, then �i admits a section v vanishing with multiplicity two along a
smooth curve Lv � Yg;n with

PD([Lv]) = (−1)i(
n

2
− g)F:

Moreover, the Spin structure tv 2 Spin(Yg;n) is equal to tg+n
2
−1 .
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Proof The contact structure � on Yg;2g−2 given by Lemma 2.2 is tangent to
the �bers of the �bration Yg;2g−2 ! �g . Therefore, any nowhere vanishing
vector �eld tangent to the �bers gives a nowhere zero section v of � . By
the construction (2.1) de�ning �i , this gives a nowhere vanishing section v of
�ijYg;2g−2nU , which glues up to the section given in (2) of Lemma 2.4. Therefore,
by De�nition 2.5 the Euler class of �i is

(−1)i(p− 1)F = (−1)i(n − 2g)F = (−1)i+12gF:

If n is even, then p − 1 = n − 2g is even as well. In this case we may assume
that the section given in (2) of Lemma 2.4 vanishes with multiplicity two along
a smooth curve representing (−1)i(p−1

2 ) = (−1)i(n2 − g) times the homology
class of the core circle. Splicing such a section to the nowhere zero section v
we obtain the formula for PD([Lv ]).

We see from Equation (3.2) that if v is the non{vanishing section of � used
above, we have tv = t� . On the other hand, by Remark 3.2 t� is equal to
t0 , which extends as a Spin structure to Dg;n by de�nition. Thus, the Spin
structure tv 2 Spin(Yg;n) extends to Dg;n away from the preimage �−1(D2) of
some two{disk D2 � �g . But �−1(D2) is homeomorphic to a ball, therefore the
unique Spin structure on @�−1(D2) extends for trivial reasons to the unique
Spin structure on �−1(D2). This proves that tv extends to Dg;n as a Spin
structure. Therefore, by Remark 3.4 tv must coincide with tg+n

2
−1 .

Proposition 3.6 Let n � 2g and let �0 and �1 be the contact structures on
Yg;n from De�nition 2.5. Then, t�0 = tn−1 and t�1 = t2g−1 .

Proof By Lemma 3.5, the Euler class of �i coincides with c1(t2ig−1), i = 0; 1.
If n is odd, H2(Yg;n;Z) has no 2{torsion and the result follows. If n is even,
by Lemma 3.5 and Equation (3.2) we have

t�i = tg+n
2
−1 + (−1)i(

n

2
− g)F = t2ig−1:

Remark 3.7 Since the Spinc structures t�i are homotopy invariants, Proposi-
tion 3.6 implies that �0 and �1 are not homotopic as oriented tangent two{plane
�elds on Yg;n once n > 2g . It can be shown that �0 and �1 are contactomor-
phic, i.e. there is a self{di�eomorphism of Yg;n sending one to the other. We
will not use that fact in this paper.
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4 Monopole equations and the proof of Theorem 1.1

This section is devoted to the proof of the main result of the paper, Theorem 1.1.
For de�nitions and properties of the solutions to the Seiberg{Witten equations
on cylinders R�Y and on symplectic �llings, we refer the reader to [20] and [16].

Lemma 4.1 Let n � 2g , and let �i , i 2 f0; 1g be one of the contact structures
on Yg;n from De�nition 2.5. Then,

(1) The moduli space N(Yg;n; t�i) of solutions to the unperturbed Seiberg{
Witten equations is smooth and consists of reducibles.

(2) There exists a real number � > 0 such that, if � 2 Ω2(Yg;n) is a closed
two{form whose L2{norm is smaller than �, then either

[�] = 2�c1(t�i) 2 H2(Yg;n;R)

or the �{perturbed Seiberg{Witten moduli space N�(Yg;n; t�i) is empty.

Proof By Theorems 1 and 2 of [20] (see also [21, Theorem 2.2]), if jnj >
2g − 2 and e 62 [0; 2g − 2], then the moduli space N(Yg;n; te) is smooth and
contains only reducibles. Therefore, part (1) of the statement follows from
Proposition 3.6.

To prove (2) we argue by contradiction. Let f�ng1n=1 � Ω2(Yg;n) be a sequence
of closed two{forms such that [�n] 6= 2�c1(t�i), k�nk n!1! 0, and N�n(Y; t�i)
contains some element [(An;  n)]. By a standard compactness argument there
is a subsequence converging, modulo gauge, to a solution (A0;  0) of the un-
perturbed Seiberg{Witten equations, which is reducible by part (1). We have
 n 6= 0 because the assumption [�n] 6= 2�c1(t�i) implies that (An;  n) must be
irreducible, so we can set ’n =  n

k nk for every n.

The smoothness of N(Yg;n; t�i) implies that the kernel of the Dirac operator
DA0 is trivial, so by standard elliptic estimates (see e.g. [4, page 423]) we have

1 = k’nk � CkDA0’nk (4.1)

for some constant C . On the other hand, since the (An;  n)’s are solutions to
the Seiberg{Witten equations, by writing An = A0 + an we have

0 = DAn’n = DA0’n + an � ’n;

where ‘�’ denotes Cli�ord multiplication. Since k’nk = 1 while kank ! 0, this
implies DA0’n ! 0, contradicting (4.1).
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Proposition 4.2 Let n � 2g , and let �i , i 2 f0; 1g be one of the contact
structures on Yg;n from De�nition 2.5. Let (W;!) be a weak symplectic semi{
�lling of (Yg;n; �i). Then @W is connected, b+2 (W ) = 0 and the homomorphism

H2(W ;R)! H2(@W ;R)

induced by the inclusion @W �W is the zero map.

Proof In [17] it is proved that if (W;!) is a weak semi{�lling of a contact
three{manifold (Y; �), where Y carries metrics with positive scalar curvature,
then (a) @W is connected and b+2 (W ) = 0 ([17, Theorem 1.4]) and (b) the
homomorphism

H2(W ;R)! H2(@W ;R)

induced by the inclusion @W �W is the zero map ([17, Proposition 2.1]).

The positive scalar curvature assumption was used in the proof of [17, The-
orem 1.4] to guarantee that the moduli space N(Y; t�) of solutions to the
unperturbed Seiberg{Witten equations is smooth and consists of reducibles.
But this is true for the contact structures �0 and �1 on Yg;n by part (1) of
Lemma 4.1. Therefore, conclusion (a) holds for any symplectic semi{�lling of
(Yg;n; �i), i 2 f0; 1g.

Similarly, the existence of positive scalar curvature metrics was used in [17,
Proposition 2.1] to prove that if � is a closed two{form whose L2{norm is
su�ciently small and [�] 6= 2�c1(t�), then the �{perturbed Seiberg{Witten
moduli space N�(Y; t�) is empty. But for the contact structures �0 and �1 this
is precisely the content of (2) in Lemma 4.1. Hence, conclusion (b) holds for
symplectic semi{�llings of (Yg;n; �i), i 2 f0; 1g.

We shall now give a purely topological argument showing that, under some
restrictions on g and n, there is no smooth four{manifold W with @W = Yg;n
satifying the conclusion of Proposition 4.2.

Let CP2 be the complex projective plane. Denote by dCP2 the blow-up of CP2

at k distinct points. The second homology group H2(dCP2;Z) is generated
by classes h; e1; e2; : : : ; ek , where h corresponds to the standard generator of
H2(CP2;Z) and the ei ’s are the classes of the exceptional curves.

Let d be a positive integer, and suppose k � 2d. De�ne �d = (Hd; Qd) as the
intersection lattice given by the subgroup

Hd = he1 − e2; e2 − e3; : : : ; e2d−1 − e2d; h− e1 − e2 − : : :− edi � H2(dCP2;Z)
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together with the restriction Qd of the intersection form QĈP2 . For m � 1 let
Dm = (Zm;m(−1)) be that standard negative de�nite diagonal lattice. The
following lemma generalizes a result from [18].

Lemma 4.3 �d does not embed into Dm .

Proof Arguing by contradiction, suppose that j : �d ,! Dm is an embedding.
Then,

rk Dm = m � rk �d = 2d:

Let w1; : : : ; w2d be the obvious generators of �d with wi �wi = −2 for i � 2d−1
and w2d � w2d = −(d− 1). Then, since the elements w1; : : : ; w2d−1 have square
−2, there is a set e1; : : : ; em of standard generators of Dm such that

j(wi) = ei − ei+1; i = 1; : : : ; 2d− 1:

Suppose that

j(w2d) = a1e1 + � � �+ amem; a1; : : : ; am 2 Z:

Then, the relations w2d � wi = 0 for i 6= d and w2d � wd = 1 imply

j(w2d) = a

2dX
i=1

ei +
2dX

i=d+1

ei +
X

i�2d+1

aiei;

for some a 2 Z, therefore j(w2d) � j(w2d) � −d, which is impossible because
w2d � w2d = −(d− 1).

Proposition 4.4 Suppose that 2g � d(d+ 1) and n � (d + 1)2 + 3 for some
positive integer d. Then, there is no smooth, compact, oriented four{manifold
W such that @W = Yg;n , b+2 (W ) = 0 and the map

H2(W ;R)! H2(@W ;R)

is the zero map.

Proof Consider a smooth curve C � CP2 of degree d+ 2, and let dCP2 be the
blow-up of CP2 at k distinct points of C . Let bC be the proper trasform of C
inside dCP2 .

Denote by eC � dCP2 a smooth, oriented surface obtained by adding g− 1
2d(d+1)

fake handles to bC . Let Z � dCP2 be the complement of an open tubular
neighborhood of eC . The boundary of Z is orientation{reversing di�eomorphic
to Yg;n , where n = (d+2)2−k . Clearly, any n � (d+1)2 +3 can be realized by
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some k � 2d, in which case the lattice �d can be realized as a sublattice of the
intersection lattice of dCP2 . The generators ei−ei+1 and h−e1− : : :−ed of �d

can all be represented by smooth surfaces inside Z , so we have an embedding

�d � (H2(Z;Z); QZ):

Now we argue by contradiction. Let W be a smooth four{manifold as in the
statement. Consider a smooth, closed four{manifold V of the form

W [Yg;n Z:

Since
H2(W ;R)! H2(@W ;R)

is zero, by Poincar�e duality the map

H2(W;@W ;R)! H1(@W ;R)

vanishes. This implies that

H1(@W ;R)! H1(W ;R)

is injective and by Mayer{Vietoris

H2(V ;R) = H2(W ;R) +H2(Z;R):

Therefore, since b+2 (W ) = b+2 (Z) = 0, we have b+2 (V ) = 0. Donaldson’s theo-
rem on the intersection form of closed, de�nite four{manifolds (see [2, 3]) im-
plies that the intersection lattice (H2(V ;Z); QV ) must be isomorphic to Db2(V ) .
Thus, the resulting existence of an embedding

�d � (H2(Z;Z); QZ)

contradicts Lemma 4.3.

Proof of Theorem 1.1 The statement follows from Propositions 4.2 and 4.4.

Remark 4.5 The restrictions on n and g appearing in the statement of Propo-
sition 4.4 are only due to the inability of the authors to construct more smooth
four{manifolds with the necessary properties. In fact, using slightly di�erent
methods, in [19] we proved that the conclusion of Theorem 1.1 holds for every
n � 2g > 0.
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