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Abstract

In this paper we continue an earlier study of ends non-compact manifolds. The
over-arching goal is to investigate and obtain generalizations of Siebenmann’s
famous collaring theorem that may be applied to manifolds having non-stable
fundamental group systems at in�nity. In this paper we show that, for mani-
folds with compact boundary, the condition of inward tameness has substatial
implications for the algebraic topology at in�nity. In particular, every inward
tame manifold with compact boundary has stable homology (in all dimensions)
and semistable fundamental group at each of its ends. In contrast, we also con-
struct examples of this sort which fail to have perfectly semistable fundamental
group at in�nity. In doing so, we exhibit the �rst known examples of open
manifolds that are inward tame and have vanishing Wall �niteness obstruction
at in�nity, but are not pseudo-collarable.
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256 C R Guilbault and F C Tinsley

1 Introduction

In [7] we presented a program for generalizing Siebenmann’s famous collaring
theorem (see [15]) to include open manifolds with non-stable fundamental group
systems at in�nity. To do this, it was �rst necessary to generalize the notion
of an open collar. De�ne a manifold Nn with compact boundary to be a ho-
motopy collar provided @Nn ,! Nn is a homotopy equivalence. Then de�ne a
pseudo-collar to be a homotopy collar which contains arbitrarily small homo-
topy collar neighborhoods of in�nity. An open manifold is pseudo-collarable if
it contains a pseudo-collar neighborhood of in�nity. The main results of our
initial investigation may be summarized as follows:

Theorem 1.1 (see [7]) Let Mn be a one ended n-manifold with compact
(possibly empty) boundary. If Mn is pseudo-collarable, then

(1) Mn is inward tame at in�nity,

(2) �1("(Mn)) is perfectly semistable, and

(3) �1 (Mn) = 0 2 eK0 (�1 ("(Mn))).

Conversely, for n � 7, if Mn satis�es conditions ((1){(3) and �2(" (Mn)) is
semistable, then Mn is pseudo-collarable.

Remark 1 While it its convenient (and traditional) to focus on one ended
manifolds, this theorem actually applies to all manifolds with compact boundary
|in particular, to all open manifolds. The key here is that an inward tame
manifold with compact boundary has only �nitely many ends|we provide a
proof of this fact in Section 3. Hence, Theorem 1.1 may be applied to each
end individually. For manifolds with non-compact boundaries, the situation
is quite di�erent. A straight forward in�nite-ended example of this type is
given in Section 3. A more detailed discussion of manifolds with non-compact
boundaries will be provided in [9].

The condition of inward tameness means (informally) that each neighborhood
of in�nity can be pulled into a compact subset of itself. We let �1(" (Mn))
denote the inverse system of fundamental groups of neighborhoods of in�nity.
Such a system is semistable if it is equivalent to a system in which all bonding
maps are surjections. If, in addition, it can be arranged that the kernels of these
bonding maps are perfect groups, then the system is perfectly semistable. The
obstruction �1 (Mn) 2 eK0 (�1 ("(Mn))) vanishes precisely when each (clean)
neighborhood of in�nity has �nite homotopy type. More precise formulations of
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these de�nitions are given in Section 2. For a detailed discussion of the structure
of pseudo-collars, along with some useful examples of pseudo-collarable and
non-pseudo-collarable manifolds, the reader is referred to Section 4 of [7].

One obvious question suggested by Theorem 1.1 is whether the �2 -semistability
condition can be omitted from the converse, ie, whether conditions (1){(3)
are su�cient to guarantee pseudo-collarability. We are not yet able to resolve
that issue. In this paper, we focus on other questions raised in [7]. The �rst
asks whether inward tameness implies �1 -semistability; and the second asks
whether inward tameness (possibly combined with condition 3)) guarantees
perfect semistability of �1 . Thus, one arrives at the question: Are conditions
(1) and (3) su�cient to ensure pseudo-collarability? Some motivation for this
last question is provided by [3] where it is shown that these conditions do indeed
characterize pseudo-collarability in Hilbert cube manifolds.

Our �rst main result provides a positive answer to the �1 -semistability question,
and more. It shows that|for manifolds with compact boundary|the inward
tameness hypothesis, by itself, has signi�cant implications for the algebraic
topology of that manifold at in�nity.

Theorem 1.2 If an n-manifold with compact (possibly empty) boundary
is inward tame at in�nity, then it has �nitely many ends, each of which has
semistable fundamental group and stable homology in all dimensions.

Our second main result provides a negative answer to the pseudo-collarability
question discussed above.

Theorem 1.3 For n � 6, there exists a one ended open n-manifold Mn
� in

which all clean neighborhoods of in�nity have �nite homotopy types (hence, Mn
�

satis�es conditions (1) and (3) from above), but which does not have perfectly
semistable fundamental group system at in�nity. Thus, Mn

� is not pseudo-
collarable.

Theorems 1.2 and 1.3 and their proofs are independent. The �rst is a very
general result that is valid in all dimensions. Its proof is contained in Section
3. The second involves the construction of rather speci�c high-dimensional
examples, with a blueprint being provided by a signi�cant dose of combinatorial
group theory. Although independent, Theorem 1.2 o�ers crucial guidance on
how delicate such a construction must be. The necessary group theory and the
construction of the examples may be found in Section 4. Section 2 contains
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the background and de�nitions needed to read each of the above. In the �nal
section of this paper we discuss a related open question.

The authors wish to acknowledge Tom Thickstun for some very helpful discus-
sions.

The �rst author wishes to acknowledge support from NSF Grant DMS-0072786.

2 De�nitions and Background

This section contains most of the terminology and notation needed in the re-
mainder of the paper. It is divided into two subsections|the �rst devoted to
inverse sequences of groups, and the second to the topology of ends of manifolds.

2.1 Algebra of inverse sequences

Throughout this section all arrows denote homomorphisms, while arrows of the
type � or � denote surjections. The symbol �= denotes isomorphisms.

Let
G0

�1 − G1
�2 − G2

�3 − � � �

be an inverse sequence of groups and homomorphisms. A subsequence of fGi; �ig
is an inverse sequence of the form:

Gi0
�i0+1������i1 − Gi1

�i1+1������i2 − Gi2
�i2+1������i3 − � � �

In the future we will denote a composition �i � � � � � �j (i � j ) by �i;j .

We say that sequences fGi; �ig and fHi; �ig are pro-equivalent if, after passing
to subsequences, there exists a commuting diagram:

Gi0
�i0+1;i1 − Gi1

�i1+1;i2 − Gi2
�i2+1;i3 − � � �

- . - . - .
Hj0

�j0+1;j1 − Hj1

�j1+1;j2 − Hj2 � � �

Clearly an inverse sequence is pro-equivalent to any of its subsequences. To
avoid tedious notation, we often do not distinguish fGi; �ig from its subse-
quences. Instead we simply assume that fGi; �ig has the desired properties
of a preferred subsequence|often prefaced by the words \after passing to a
subsequence and relabelling".
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The inverse limit of a sequence fGi; �ig is a subgroup of
Q
Gi de�ned by

lim −fGi; �ig =

(
(g0; g1; g2; � � � ) 2

1Y
i=0

Gi

������i (gi) = gi−1

)
:

Notice that for each i, there is a projection homomorphism pi : lim −fGi; �ig !
Gi . It is a standard fact that pro-equivalent inverse sequences have isomorphic
inverse limits.

An inverse sequence fGi; �ig is stable if it is pro-equivalent to an inverse se-
quence fHi; �ig for which each �i is an isomorphism. Equivalently, fGi; �ig is
stable if, after passing to a subsequence and relabelling, there is a commutative
diagram of the form

G0
�1 − G1

�2 − G2
�3 − G3

�4 − � � �
- . - . - .
im(�1)  − im(�2)  − im(�3)  − � � �

(�)

where each bonding map in the bottom row (obtained by restricting the corre-
sponding �i ) is an isomorphism. If fHi; �ig can be chosen so that each �i is an
epimorphism, we say that our inverse sequence is semistable (or Mittag-Le�er,
or pro-epimorphic). In this case, it can be arranged that the restriction maps
in the bottom row of (�) are epimorphisms. Similarly, if fHi; �ig can be chosen
so that each �i is a monomorphism, we say that our inverse sequence is pro-
monomorphic; it can then be arranged that the restriction maps in the bottom
row of (�) are monomorphisms. It is easy to see that an inverse sequence that
is semistable and pro-monomorphic is stable.

Recall that a commutator element of a group H is an element of the form
x−1y−1xy where x; y 2 H ; and the commutator subgroup of H; denoted [H;H] ,
is the subgroup generated by all of its commutators. The group H is perfect
if [H;H] = H . An inverse sequence of groups is perfectly semistable if it is
pro-equivalent to an inverse sequence

G0
�1� G1

�2� G2
�3� � � �

of �nitely presentable groups and surjections where each ker (�i) perfect. The
following shows that inverse sequences of this type behave well under passage
to subsequences.

Lemma 2.1 A composition of surjective group homomorphisms, each having
perfect kernels, has perfect kernel. Thus, if an inverse sequence of surjective
group homomorphisms has the property that the kernel of each bonding map
is perfect, then each of its subsequences also has this property.
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260 C R Guilbault and F C Tinsley

Proof See Lemma 1 of [7].

For later use, we record an easy but crucial property of perfect groups.

Lemma 2.2 If f : G � H is a surjective group homomorphism and G is
perfect, then H is perfect.

Proof The image of each commutator from G is a commutator in H:

We conclude this section with a technical result that will be needed later. Com-
pare to the well-known Five Lemma from homological algebra.

Lemma 2.3 Assume the following commutative diagram of �ve inverse se-
quences:

...
...

...
...

...
# # # # #
A2 ! B2 ! C2 ! D2 ! E2

# # # # #
A1 ! B1 ! C1 ! D1 ! E1

# # # # #
A0 ! B0 ! C0 ! D0 ! E0

If each row is exact and the inverse sequences fAig, fBig, fDig, and fEig are
stable, then so is fCig.

Proof The proof is by an elementary but intricate diagram chase. See Lemmas
2.1 and 2.2 of [6].

2.2 Topology of ends of manifolds

In this paper, the term manifold means manifold with (possibly empty) bound-
ary. A manifold is open if it is non-compact and has no boundary. For conve-
nience, all manifolds are assumed to be PL. Analogous results may be obtained
for smooth or topological manifolds in the usual ways.

Let Mn be a manifold with compact (possibly empty) boundary. A set N �Mn

is a neighborhood of in�nity if Mn −N is compact. A neighborhood of in�nity
N is clean if

� N is a closed subset of Mn ,
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� N \ @Mn = ;, and

� N is a codimension 0 submanifold of Mn with bicollared boundary.

It is easy to see that each neighborhood of in�nity contains a clean neighborhood
of in�nity.

Remark 2 We have taken advantage of the compact boundary by requiring
that clean neighborhoods of in�nity be disjoint from @Mn . In the case of
non-compact boundary, a slightly more delicate de�nition is required.

We say that Mn has k ends if it contains a compactum C such that, for every
compactum D with C � D , Mn − D has exactly k unbounded components,
ie, k components with noncompact closures. When k exists, it is uniquely
determined; if k does not exist, we say Mn has in�nitely many ends.

If Mn has compact boundary and is k -ended, then Mn contains a clean neigh-
borhood of in�nity N that consists of k connected components, each of which
is a one ended manifold with compact boundary. Therefore, when studying
manifolds (or other spaces) having �nitely many ends, it su�ces to understand
the one ended situation. In this paper, we are primarily concerned with mani-
folds possessing �nitely many ends (See Theorem 1.2 or Prop. 3.1), and thus,
we frequently restrict our attention to the one ended case.

A connected clean neighborhood of in�nity with connected boundary is called
a 0-neighborhood of in�nity. If N is clean and connected but has more than
one boundary component, we may choose a �nite collection of disjoint properly
embedded arcs in N that connect these components. Deleting from N the
interiors of regular neighborhoods of these arcs produces a 0-neighborhood of
in�nity N0 � N .

A nested sequence N0 � N1 � N2 � � � � of neighborhoods of in�nity is co�nal
if
T1
i=0Ni = ;. For any one ended manifold Mn with compact boundary, one

may easily obtain a co�nal sequence of 0-neighborhoods of in�nity.

We say that Mn is inward tame at in�nity if, for arbitrarily small neighbor-
hoods of in�nity N , there exist homotopies H : N � [0; 1] ! N such that
H0 = idN and H1 (N) is compact. Thus inward tameness means each neighbor-
hood of in�nity can be pulled into a compact subset of itself. In this situation,
the H ’s will be referred to as taming homotopies.

Recall that a complex X is �nitely dominated if there exists a �nite complex
K and maps u : X ! K and d : K ! X such that d � u ’ idX . The following
lemma uses this notion to o�er equivalent formulations of \inward tameness".
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Lemma 2.4 For a manifold Mn , the following are equivalent.

(1) Mn is inward tame at in�nity.

(2) Each clean neighborhood of in�nity in Mn is �nitely dominated.

(3) For each co�nal sequence fNig of clean neighborhoods of in�nity, the
inverse sequence

N0
j1 - N1

j2 - N2
j3 - � � �

is pro-homotopy equivalent to an inverse sequence of �nite polyhedra.

Proof To see that (1) implies (2), let N be a clean neighborhood of in�nity
and H : N � [0; 1] ! N a taming homotopy. Let K be a polyhedral subset of
N that contains H1 (N). If u : N ! K is obtained by restricting the range of
H1 and d : K ,! N , then d � u = H1 ’ idN , so N is �nitely dominated.

To see that 2) implies 3), choose for each Ni a �nite polyhedron Ki and maps
ui : Ni ! Ki and di : Ki ! Ni such that di � ui ’ idNi . For each i � 1, let
fi = ui−1 � ji and gi = fi �di . Since di−1 �fi = di−1 �ui−1 � ji ’ idNi−1 � ji = ji ,
the diagram

N0
j1 - N1

j2 - N2
j3 - N3

j4 - � � �
d0

-
f1

.
d1

-
f2

.
d2

-
f3

.
K0

g1 − K1
g2 − K2

g3 − � � �
commutes up to homotopy, so (by de�nition) the two inverse sequences are
pro-homotopy equivalent.

Lastly, we assume the existence of a homotopy commutative diagram as pictured
above for some co�nal sequence of clean neighborhoods of in�nity and some
inverse sequence of �nite polyhedra. We show that for each i � 1, there is
a taming homotopy for Ni . By hypothesis, di � fi+1 ’ ji+1 . Extend ji+1 to
idNi , then apply the homotopy extension property (see [10, pp.14-15]) for the
pair (Ni;Ni+1) to obtain H : Ni � [0; 1] ! Ni with H0 = idNi and H1jNi+1

=
di � fi+1 . Now,

H1 (Ni) = H1 (Ni −Ni+1) [H1 (Ni+1) � H1

(
Ni −Ni+1

�
[ di (Ki) ;

so H1 (Ni) is compact, and H is the desired taming homotopy.

Given a nested co�nal sequence fNig1i=0 of connected neighborhoods of in�nity,
base points pi 2 Ni , and paths �i � Ni connecting pi to pi+1 , we obtain an
inverse sequence:

�1 (N0; p0) �1 − �1 (N1; p1) �2 − �1 (N2; p2) �3 − � � �
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Here, each �i+1 : �1 (Ni+1; pi+1) ! �1 (Ni; pi) is the homomorphism induced
by inclusion followed by the change of base point isomorphism determined by
�i . The obvious singular ray obtained by piecing together the �i ’s is often
referred to as the base ray for the inverse sequence. Provided the sequence
is semistable, one can show that its pro-equivalence class does not depend on
any of the choices made above. We refer to the pro-equivalence class of this
sequence as the fundamental group system at in�nity for Mn and denote it
by �1 (" (Mn)). (In the absence of semistability, the pro-equivalence class of
the inverse sequence depends on the choice of base ray, and hence, this choice
becomes part of the data.) It is easy to see how the same procedure may also
be used to de�ne �k (" (Mn)) for k > 1.

For any coe�cient ring R and any integer j � 0, a similar procedure yields an
inverse sequence

Hj (N0;R) �1 − Hj (N1;R) �2 − Hj (N2;R) �3 − � � �

where each �i is induced by inclusion|here, no base points or rays are needed.
We refer to the pro-equivalence class of this sequence as the j th homology at
in�nity for Mn with R-coe�cients and denote it by Hj (" (Mn) ;R).

In [17], Wall shows that each �nitely dominated connected space X deter-
mines a well-de�ned element � (X) lying in eK0 (Z [�1X]) (the group of stable
equivalence classes of �nitely generated projective Z [�1X]-modules under the
operation induced by direct sum) that vanishes if and only if X has the ho-
motopy type of a �nite complex. Given a nested co�nal sequence fNig1i=0 of
connected clean neighborhoods of in�nity in an inward tame manifold Mn , we
have a Wall obstruction �(Ni) for each i. These may be combined into a single
obstruction

�1(Mn) = (−1)n (�(N0); �(N1); �(N2); � � � )
2 eK0 (�1 (" (Mn))) � lim −

eK0 (Z [�1Ni])

that is well-de�ned and which vanishes if and only if each clean neighborhood
of in�nity in Mn has �nite homotopy type. See [3] for details.

We close this section with a known result from the topology of manifolds. Its
proof is short and its importance is easily seen when one considers the \one-
sided h-cobordism" (W;@N; @N 0) that occurs naturally when N 0 is a homotopy
collar contained in the interior of another homotopy collar N and W = N −N 0 .
In particular, this result explains why pseudo-collarable manifolds must have
perfectly semistable fundamental groups at their ends. Additional details may
be found in Section 4 of [7].
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Theorem 2.5 Let (W n; P;Q) be a compact connected cobordism between
closed (n− 1)-manifolds with the property that P ,!W n is a homotopy equiv-
alence. Then the inclusion induced map i# : �1(Q)! �1(W n) is surjective and
has perfect kernel.

Proof Let p : fW ! W n be the universal covering projection, eP = p−1 (P ),
and bQ = p−1 (Q). By Poincar�e duality for non-compact manifolds,

Hk

�fW; bQ;Z
�
�= Hn−k

c

�fW; eP ;Z
�
;

where cohomology is with compact supports. Since eP ,! fW is a proper homo-
topy equivalence, all of these relative cohomology groups vanish. It follows that
H1

�fW; bQ;Z
�

= 0, so by the long exact sequence for
�fW; bQ�, eH0

� bQ;Z
�

= 0;

therefore bQ is connected. By covering space theory, the components of bQ are
in one-to-one correspondence with the cosets of i# (�1(Q)) in �1(W n), so i#

is surjective. Similarly, H2

�fW; bQ;Z
�

= 0, and since fW is simply connected,

the long exact sequence for
�fW; bQ� shows that H1

� bQ;Z
�

= 0. This im-

plies that �1

� bQ� is a perfect group, and covering space theory tell us that

�1

� bQ� �= ker (i#).

3 Inward tameness, �1-semistability, and H�-stability

The theme of this section is that|for manifolds with compact (possibly empty)
boundary|inward tameness, by itself, has some signi�cant consequences. In
particular, an inward tame manifold of this type has:

� �nitely many ends,

� semistable fundamental group at each of these ends, and

� stable (�nitely generated) homology at in�nity in all dimensions.

The �rst of these properties is known; for completeness, we will provide a proof.
The second property answers a question posed in [7]. A stronger conclusion of
�1 -stability is not possible, as can be seen in the exotic universal covering
spaces constructed in [5]. (See Example 3 of [7] for a discussion.) Somewhat
surprisingly, inward tameness does imply stability at in�nity for homology in
the situation at hand.
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It is worth noting that, under slightly weaker hypotheses, none of these prop-
erties holds. We provide some simple examples of locally �nite complexes, and
polyhedral manifolds (with non-compact boundaries) that violate each of the
above.

Example 1 Let E denote a wedge of two circles. Then the universal cover eE
of E is an inward tame 1-complex with in�nitely many ends.

Example 2 Let f : (S1; �) ! (S1; �) be degree 2 map, and let X be the
\inverse mapping telescope" of the system:

S1 f − S1 f − S1 f − � � �

Assemble a base ray from the mapping cylinder arcs corresponding to the base
point �. It is easy to see that X is inward tame and that �1 ("(X)) is repre-
sented by the system

Z �2 − Z �2 − Z �2 − � � �

which is not semistable. Hence, �1 -semistability does not follow from inward
tameness for one ended complexes. This example also shows that inward tame
complexes needn’t have stable H1 ("(X) ;Z).

Example 3 More generally, if

K0
f1 − K1

f2 − K3
f3 − � � �

is an inverse sequence of �nite polyhedra, then the inverse mapping telescope
Y of this sequence is inward tame. By choosing the polyhedra and the bonding
maps appropriately, we can obtain virtually any desired behavior in �1 ("(Y ))
and Hk ("(Y ) ;Z):

Example 4 By properly embedding the above complexes in Rn and letting
Mn be a regular neighborhood, we may obtain inward tame manifold examples
with similar bad behavior at in�nity. Of course, Mn will have noncompact
boundary.

We are now ready to prove Theorem 1.2. This will be done with a sequence of
three propositions|one for each of the bulleted items listed above. The �rst is
the simplest and may be deduced from Theorem 1.10 of [15]. It could also be
obtained later, as a corollary of Proposition 3.3. However, Proposition 3.3 and
its proof become cleaner if we obtain this result �rst. The proof is short and
rather intuitive.
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Proposition 3.1 Let Mn be an n-manifold with compact boundary that is
inward tame at in�nity. Then Mn has �nitely many ends. More speci�cally,
the number of ends is less than or equal to rank (Hn−1 (Mn;Z2)) + 1. (See the
remark below.)

Proof Inward tameness implies that each clean neighborhood of in�nity (in-
cluding Mn itself) is �nitely dominated and hence, has �nitely generated ho-
mology in all dimensions. We’ll show that Mn has at most k0 + 1 ends, where
k0 = rank (Hn−1 (Mn;Z2)) :

Let N be an clean neighborhood of in�nity, each of whose components is non-
compact. Since H0 (N ;Z2) has �nite rank, there are �nitely many of these
components fNigpi=1 . Our theorem follows if we can show that p is bounded
by k0 + 1.

Using techniques described in Section 2.2, we may assume that @Ni is non-
empty and connected for all i. Then, from the long exact sequence for the pair
(Ni; @Ni), we may deduce that for each i, rank (Hn−1 (Ni;Z2)) � 1. Hence,
rank (Hn−1 (N ;Z2)) � p
Let C = Mn −N . Then C is a compact codimension 0 submanifold of
Mn , and its boundary consists of the disjoint union of @Mn with @N: Thus,
rank (Hn−1 (@C;Z2)) = p + q , where q is the number of components in @Mn .
From the long exact sequence for the pair (C; @C) we may conclude that
rank (Hn−1 (C;Z2)) � p+ q − 1.

Now consider the following Mayer-Vietoris sequence:

! Hn−1 (@N ;Z2) ! Hn−1 (C;Z2)�Hn−1 (N ;Z2) ! Hn−1 (Mn;Z2)!
q qLp

i=1 Z2
Lk0

i=1 Z2

Since Z2 is a �eld, exactness implies that the rank of the middle term is no
greater than the sum of the ranks of the �rst and third terms. The �rst sum-
mand of the middle term has rank � p + q − 1 and the second summand has
rank � p. Hence 2p + q − 1 � p+ k0 . It follows that p � k0 + 1.

Remark 3 The number of ends of Mn may be less than rank (Hn−1 (Mn;Z2))
+1. Indeed, by \connect summing" copies of Sn−1 � S1 to Rn , one can make
the di�erence between these numbers arbitrarily large. The issue is that some
generators of Hn−1 (Mn;Z2) do not \split o� an end". To obtain strict equality
one should add 1 to the rank of the kernel of

� : Hn−1 (Mn;Z2)! H lf
n−1 (Mn;Z2)

where H lf denotes homology based on locally �nite chains.
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Before proving the remaining two propositions, we �x some notation and de-
scribe a \homotopy re�nement procedure" that will be applied in each of the
proofs. As noted earlier, (by applying Proposition 3.1) it su�ces to consider
the one ended case, so for the remainder of this section, Mn is a one ended
inward tame manifold with compact boundary.

Let fNig1i=0 be a nested co�nal sequence of 0-neighborhoods of in�nity and,
for each i � 0, let Ai = Ni − int(Ni+1). By inward tameness, we may (after
passing to a subsequence and relabelling) assume that (for each i � 0) there
exists a taming homotopy H i : Ni � [0; 1]! Ni satisfying:

i) H i
0 = idNi ,

ii) H i is �xed on @Ni , and
iii) H i

1 (Ni) � Ai − @Ni+1 .

Choose a proper embedding r : [0;1)! N0 so that, for each i, r ([i;1)) � Ni

and so that the image ray R0 intersects each @Ni transversely at the single
point pi = r (i). For i � 0, let Ri = r ([i;1)) � Ni ; and let �i denote
the arc r ([i; i + 1]) in Ai from pi to pi+1 . In addition, choose an embedding
t : Bn−1 � [0;1)! N0 whose image T0 is a regular neighborhood of R0 , such
that tjf0g�[0;1) = r , and so that, for each i, T0 intersects @Ni precisely in

the (n− 1)-disk Di = t(Bn−1 � fig). Let B0 � int
(
Bn−1

�
be an (n− 1)-ball

containing 0, T 00 = t (B0 � [0;1)) and D0i = t(B0 �fig). Then, for each i � 0,

Figure 1

Ti = t(Bn−1� [i;1)) and T 0i = t (B0 � [i;1)) are regular neighborhoods of Ri
in Ni intersecting @Ni in Di and D0i , respectively. See Figure 1.
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We now show how to re�ne each H i so that it respects the \base ray" Ri and
acts in a particularly nice manner on and over T 0i . Let ji : (Bn−1 � [i;1)) �
[0; 1]! Bn−1�[i;1) be a strong deformation retraction onto @

(
Bn−1 � [i;1)

�
with the following properties:

a) On B0 � [i;1), ji is the \radial" deformation retraction onto B0 � fig
given by ((b; s) ; u) 7! (b; s+ u (i− s)).

b) For (b; s) =2 B0 � [i;1), the track ji((b; s) � [0; 1]) of (b; s) does not
intersect B0 � [i;1).

c) The radial component of each track of ji is non-increasing, ie, if u1 � u2

then p(ji (b; s; u2)) � p
(
ji (b; s; u1)

�
where p is projection onto [i;1).

Figure 2 represents ji , wherein tracks of ji are meant to follow the indicated
flow lines.

Figure 2

De�ne J i : Ni � [0; 1] ! Ni to be t � ji � (t−1 � id) on Ti and the identity
outside of Ti . Then J i is a strong deformation retraction of Ni onto Ni −
t
�

�Bn−1 � (i;1)
�

. De�ne Ki : Ni � [0; 1]! Ni as follows:

Ki (x; t) =
�

J i(x; 2t) 0 � t � 1
2

J i1(H i
(
J i (x; 1) ; 2t− 1

�
) 1

2 � t � 1
.

This homotopy retains the obvious analogs of properties i)-iii). In addition, we
have

iv) Ki acts in a canonical manner on T 0i , and

v) tracks of points outside of T 0i do not pass through the interior of T 0i .

Proposition 3.2 Every one ended inward tame n-manifold Mn with compact
boundary has semistable fundamental group at in�nity.
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Proof For convenience, assume that n � 3. For n = 2 the result may be
obtained by applying well-known structure theorems for 2-manifolds, or by
modifying our proof slightly.

Let fNig1i=0 be a nested co�nal sequence of 0-neighborhoods of in�nity with
re�ned taming homotopies

�
Ki
}1
i=0

as constructed above. Other choices and
labels are also carried over from above. Note that, for each i,

�1 (Ai; pi)! �1 (Ni; pi) is surjective (y)

We will show that (for each i � 0) each loop in Ni+1 based at pi+1 can be
pushed (rel �i+1 ) to a loop in Ni+2 based at pi+2 via a homotopy contained
in Ni . This implies the existence of a diagram of type (�) from section 2 for
which the bonding homomorphisms in the bottom row are surjective|and thus,
�1 -semistability.

(Note In performing this push, the \rel �i+1" requirement is crucial. The
ability to push loops from Ni+1 into Ni+2 via a homotopy contained in Ni|
without regards to basepoints|would yield another well-known, but strictly
weaker, property called end 1-movability. See [2] for a discussion. Much of the
homotopy re�nement process described earlier is aimed at obtaining control
over the tracks of the base points.)

Let � be a chosen loop in Ni+1 based at pi+1 . By (y), we may assume that
� � Ai+1 − @Ni+2 . Let Li : @Ni+2 � [0; 1] ! Ni be the restriction of Ki .
Note that Li (@Ni+2 � f1g) � Ai−@Ni+1 and that, by condition (iv) above, Li

takes D0i+2�
�
0; 1

2

�
homeomorphically onto T 0i − T 0i+2 with D0i+2�

�
1
2 ; 1
�

being
flattened onto Di . In addition, Li(fpi+2g�

�
0; 1

4

�
) = �i+1 , Li(fpi+2g�

�
1
4 ;

1
2

�
) =

�i , and Li(pi+2;
1
4 ) = pi+1 . Without changing its values on (@Ni+2 � f0g) [

(D0i+2 �
�
0; 1

2

�
), we may adjust Li so that it is a non-degenerate PL mapping.

In particular, we may choose triangulations Γ1 and Γ2 of the domain and range
respectively so that, up to "-homotopy, Li may be realized as a simplicial map
sending each k -simplex of Γ1 onto a k -simplex of Γ2 . (See Chapter 5 of [14].)
Adjust � (rel pi+1 ) so that it is an embedded circle in general position with
respect to Γ2 . Then

(
Li
�−1 (�) is a closed 1-manifold in @Ni+2� (0; 1). Let �

be the component of
(
Li
�−1 (�) containing the point

(
pi+2;

1
4

�
. Since Li takes a

neighborhood of
(
pi+2;

1
4

�
homeomorphically onto a neighborhood of pi+1 , and

since no other points of � are taken near pi+1 (use condition v) from above),
then L restricts to a degree �1 map of � onto � . Now the natural deformation
retraction of @Ni+2� [0; 1] onto @Ni+2�f0g pushes � into @Ni+2�f0g while
sliding

(
pi+2;

1
4

�
along the arc fpi+2g �

�
0; 1

4

�
. Composing this push with Li

provides a homotopy of � (within Ni ) into @Ni+2 whereby pi+1 is slid along
�i+1 to pi+2 .
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Remark 4 The reader may have noticed that a general principle at work in
the proof of Proposition 3.2 is that \degree 1 maps between manifolds induce
surjections on fundamental groups". Instead of applying this directly, we used
a constructive approach to �nding the preimage of a loop. This allowed us to
handle orientable and non-orientable cases simultaneously. Proposition 3.3 is
based on a similar general principle regarding homology groups and degree 1
maps. However, instead of a uni�ed approach, we �rst obtain the result for
orientable manifolds by applying the general principle directly; then we use the
orientable result to extend to the non-orientable case. Those who prefer this
approach may use the proof of claim 1 from Proposition 3.3 as an outline to
obtain an alternative proof of Proposition 3.2 in the case that Mn is orientable.

Proposition 3.3 Let Mn be a one ended, inward tame n-manifold with com-
pact boundary and let R be a commutative ring with unity. Then Hj (" (Mn) ;R)
is stable for all i.

For the sake of simplicity, we will �rst prove Proposition 3.3 for R = Z. The
more general result will then obtained by an application of the universal coe�-
cient theorem. Alternatively, one could do all of what follows over an arbitrary
coe�cient ring. Before beginning the proof we review some of the tools needed

Let W be a compact connected orientable n-manifold with boundary. Assume
that @W = P [ Q, where P and Q are disjoint, closed, (n− 1)-dimensional
submanifolds of @W . We do not require that P or Q be connected or non-
empty. Then Poincar�e duality tells us that the cap product with an orientation
class [W ] induces isomorphisms

Hk (W;P ;Z)
\ [W ]−! Hn−k (W;Q;Z) .

If W 0 is another orientable n-manifold with @W 0 = P 0[Q0 , and f : (W;@W )!
(W 0; @W 0) is a map with f (P ) � P 0 and f (Q) � Q0 , then the naturality of
the cap product gives a commuting diagram:

Hk (W;P ;Z)
\ [W ]−! Hn−k (W;Q;Z) .

f� " # f�
Hk (W 0; P 0;Z)

\ f�[W ]−! Hn−k (W 0; Q0;Z)

(z)

If f is of degree �1, then both horizontal homomorphisms are isomorphisms,
and hence f� is surjective.

For non-orientable manifolds, one may obtain duality isomorphisms and a di-
agram like (z) by using Z2 -coe�cients. A more powerful duality theorem and
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corresponding version of (z) for non-orientable manifolds may be obtained by
using \twisted integer" coe�cients. This will be discussed after we handle the
orientable case.

Proof of Proposition 3.3 (orientable case with Z-coe�cients) Let Mn

be orientable and let fNig1i=0 be a sequence of neighborhoods of in�nity along
with the embeddings, rays, base points, subspaces and homotopies

�
Ki
}1
i=0

described earlier. For each j � 0, Hj (" (Mn) ;Z) is represented by

Hj (N0;Z) �1 − Hj (N1;Z) �2 − Hj (N2;Z) �3 − � � �

where all bonding maps are induced by inclusion.

Since each Ni is connected, H0 (" (Mn) ;Z) is pro-equivalent to

Z
�= Z

�= Z
�= � � �

and thus, is stable. Let j � 1 be �xed.

Claim 1 Hj (" (Mn) ;Z) is semistable.

We will show that, for each [�] 2 Hj (Ni+1), there is a [�0] 2 Hj (Ni+2) such

that � is homologous to �0 in Ni . Thus, im (�i+1)
�i+1 − im (�i+2) is surjective.

We may assume that � is supported in Ai+1 . We abuse notation slightly and
write [�] 2 Hj (Ai+1;Z). Let Li : @Ni+2 � [0; 1]! Ni be the restriction of Ki .
Note that Li (@Ni+2 � f1g) � Ai−@Ni+1 . By PL transversality theory (see [13]
or Section II.4 of [1]), we may|after a small adjustment that does not alter Li

on (@Ni+2�f0; 1g)[(Di� [0; 1])|assume that that Ci+1 � (Li)−1 (Ai+1) is an
n-manifold with boundary1. Let C�i+1 be the component of Ci+1 that contains
D0i �

�
0; 1

4

�
. Then Li takes @C�i+1 into @Ai+1 and, provided our adjustment

to Li was su�ciently small, Li is still a homeomorphism over T 00 \ Ai+1 . By
the local characterization of degree, Li jC�i+1

:
(
C�i+1; @C

�
i+1

�
! (Ai+1; @Ai+1)

is a degree 1 map. Thus, by an application of (z), [�] has a preimage [�] 2
Hj

(
C�i+1;Z

�
. Now C�i+1 � @Ni+2 � [0; 1], and within the larger space, � is

homologous to a cycle �0 supported in @Ni+2�f0g. Since Li takes @Ni+2�[0; 1]
into Ni , it follows that � is homologous to �0 � Li (�0) � @Ni+2 in Ni .

1Instead of using transversality theory, we could simply use the radial struc-
ture of regular neighborhoods to alter Li in a thin regular neighborhood of
(Li)−1 (Ai [Ni+2). Using this approach, we \fatten" the preimage of Ai [Ni+2 to a
codimension 0 submanifold, thus ensuring that (Li)−1 (Ai+1) is an n-manifold with
boundary.
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Claim 2 Hj (" (Mn) ;Z) is pro-monomorphic.

We’ll show that im (�i+2)
�i+1 − im (�i+3) is injective, for all i � 0. It su�ces

to show that each j -cycle � in Ni+3 that bounds a (j + 1)-chain γ in Ni+1 ,
bounds a (j + 1)-chain in Ni+2 . Let [γ0] be a preimage of [γ] under the excision
isomorphism

Hj+1 (Ai+1 [Ai+2; @Ni+3;Z)! Hj+1 (Ni+1;Ni+3;Z) .

Then �0 � @γ0 is homologous to � in Ni+3 , so it su�ces to show that �0 bounds
in Ni+2:

By passing to a subsequence if necessary, we may assume that the image of
@Ni+2 � [0; 1] under Ki lies in Ai [ Ai+1 [ Ai+2 − U , where U is a collar
neighborhood of @Ni+3 in Ai+2 . Then de�ne

f : (@Ni+2 � [0; 1]) [Ai+2 ! Ai [Ai+1 [Ai+2

to be Ki on @Ni+2� [0; 1] and the identity on Ai+2 . Arguing as in the proof of
Claim 1, we may|without changing the map on Ai+2 |make a small adjust-
ment to f so that C � f−1 (Ai+1 [Ai+2) is an n-manifold with boundary. Let
C� be the component that contains Ai+2 . Then f takes @Ni+3 onto @Ni+3 , and
P � @C�−@Ni+3 to @Ni+1 . Provided our adjustment was su�ciently small, f
is a homeomorphism over U , so f : (C�; @C�)! (Ai+1 [Ai+2; @Ni+1 [ @Ni+3)
is a degree 1 map Applying (z) to this situation we obtain a surjection

Hj+1 (C; @Ni+3;Z)� Hj+1 (Ai+1 [Ai+2; @Ni+3;Z) .

Let [�] be a preimage of [�0]. Utilizing the product structure on @Ni+2� [0; 1],
we may retract C� onto Ai+2 . The image �0 of � under this retraction is a
relative (j + 1)-cycle in (Ai+2; @Ni+3) with @�0 = @� . Thus, @�0 is homologous
to @γ0 = �0 , so �0 bounds in Ai+2 � Ni+2 as desired.

Before proceeding with the proof of the non-orientable case, we discuss some
necessary background. The proof just presented already works for non-orientable
manifolds if we replace the coe�cient ring Z with Z2 . To obtain the result
for Z-coe�cients (and ultimately an arbitrary coe�cient ring), we will utilize
homology with twisted integer coe�cients, which we will denote by eZ. The
key here is that, even for a non-orientable compact n-manifold with bound-
ary, Hn

�
W;@W ; eZ� �= Z. Thus, we have an orientation class [W ] and it may

be used to obtain a duality isomorphism|where homology is now taken with
twisted integer coe�cients. Furthermore, if a map f : (W;@W )! (W 0; @W 0) is
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orientation true (meaning that f takes orientation reversing loops to orienta-
tion reversing loops and orientation preserving loops to orientation preserving
loops), then we have a well de�ned notion of deg (f) 2 Z. These versions
of duality and degree yield an analogous version of diagram (z), which tells
us that degree �1 maps (appropriately de�ned) between compact (possibly
non-orientable) manifolds with boundary induce surjections on homology witheZ-coe�cients. See section 3.H of [10] or Chapter 2 of [18] discussions of homol-
ogy with coe�cients in eZ, and [12] for a discussion of degree of a map between
non-orientable manifolds.

As with the traditional de�nition of degree, this generalized version can be de-
tected locally. In particular, an orientation true map f : (W;@W )! (W 0; @W 0)
that is a homeomorphism over some open subset of W 0 has degree �1. See [12,
3.8].

For non-orientable W , let p : cW ! W be the orientable double covering
projection. Then there is a long exact sequence:

� � � ! Hk

�
W ; eZ�! Hk

�cW ;Z
�
p�! Hk (W ;Z)! Hk−1

�
W ; eZ�! � � �

This sequence is natural with respect to orientation true mappings f : W !W 0 .
See section 3.H of [10] for a discussion of this sequence.

Proof of Proposition 3.3 (non-orientable case with Z-coe�cients)
Let Mn be one ended, inward tame, and have compact boundary. If Mn

contains an orientable neighborhood of in�nity, we can simply disregard its
complement and apply the orientable case. Hence, we assume that fNig1i=0

is a nested co�nal sequence of 0-neighborhoods of in�nity, each of which is
non-orientable.

The �rst step in this proof is to observe that, if we use homology with eZ-
coe�cients, the proof used in the orientable case is still valid. A few points are
worth noting. First, the inclusion maps Ni ,! Ni+1 are clearly orientation true.
Similarly, since each @Ni is bicollared in Mn , orientation reversing [preserving]
loops in @Ni are orientation reversing [preserving] in Mn . Hence, the maps
Li : @Ni+2 � [0; 1] ! Ni (and restrictions to codimension 0 submanifolds) are
also orientation true. With this, and the additional ingredients discussed above,
we see that Hj

�
"(Mn); eZ� is stable for all j .

The second step is to consider the orientable double covering projection p :cMn !Mn . For each i, cNi = p−1(Ni) is the orientable double cover of Ni , and
thus, is connected. It follows that cMn is one ended, with

ncNi

o1
i=0

a co�nal
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sequence of 0-neighborhoods of in�nity. Furthermore, taming homotopies for
Mn may be lifted to obtain taming homotopies for cMn , so cMn is inward tame.
It follows from the orientable case that Hj

�
"(cMn);Z

�
is stable for all j .

Next we apply the long exact discussed above to each covering projection pi :cNi ! N . Together with naturality, this yields a long exact sequence of inverse
sequences: ...

...
...

...
# # # #

� � � ! Hk

�
N3; eZ� ! Hk

� bN3;Z
�
! Hk (N3;Z) ! Hk−1

�
N3; eZ� ! � � �

# # # #
� � � ! Hk

�
N2; eZ� ! Hk

� bN2;Z
�
! Hk (N2;Z) ! Hk−1

�
N2; eZ� ! � � �

# # # #
� � � ! Hk

�
N1; eZ� ! Hk

� bN1;Z
�
! Hk (N1;Z) ! Hk−1

�
N1; eZ� ! � � �

We may now apply Lemma 2.3 to conclude that Hj ("(Mn);Z) is stable for all
j .

Lastly, we generalize the above to the case of an arbitrary coe�cient ring.

Proof of Proposition 3.3 (R-coe�cients) Now let R be ring with unity.
By applying the Universal Coe�cient Theorem for homology (see [10, Cor.
3.A.4]) to obtain each row, we may get (for each j ) the following diagram:

...
...

...
...

...
# # # # #
0 ! Hj (N3;Z)⊗R ! Hj (N3;R) ! Tor(Hj−1 (N3;Z) ; R) ! 0
# # # # #
0 ! Hj (N2;Z)⊗R ! Hj (N2;R) ! Tor(Hj−1 (N2;Z) ; R) ! 0
# # # # #
0 ! Hj (N1;Z)⊗R ! Hj (N1;R) ! Tor(Hj−1 (N1;Z) ; R) ! 0

The second and fourth columns are stable by the Z-coe�cient case, so an
application of Lemma 2.3 yields stability of Hj ("(Mn);R) :

Remark 5 A variation on the above can be used to show that, for one ended
manifolds with compact boundary, inward tameness plus �1 -stability implies
�2 -stability. To do this, begin with a co�nal sequence fNig of (strong) 1-
neighborhoods of in�nity|see Theorem 4 of [7]. Then show that the inverse
sequence

H2

� eN0;Z
�
 H2

� eN1;Z
�
 H2

� eN2;Z
�
 � � �

Geometry & Topology, Volume 7 (2003)



Manifolds with non-stable fundamental groups at in�nity, II 275

is stable, where each eNi is the universal cover of Ni . This will require Poincar�e
duality for noncompact manifolds; otherwise, the proof simply mimics the proof
of Prop. 3.3. It follows from the Hurewicz theorem that

�2

� eN0; ~p0

�
 �2

� eN1; ~p1

�
 �2

� eN2; ~p2

�
 � � �

is stable, and hence, so is �2 (" (Mn)). As an application of this observation,
one may deduce the main result of Siebenmann’s thesis as a direct corollary of
Theorem 1.1|provided n � 7.

4 Proof of Theorem 1.3

In this section we will construct (for each n � 6) a one ended open n-manifold
Mn
� in which all clean neighborhoods of in�nity have �nite homotopy type, yet

�1("(Mn
� )) is not perfectly semistable. Hence Mn

� satis�es conditions (1) and
(3) of Theorem 1.1, but is not pseudo-collarable.

In the �rst portion of this section we present the necessary group theory on
which the examples rely. In the next portion, we give a detailed construction
of the examples and verify the desired properties.

4.1 Group Theory

We assume the reader is familiar with the basic notions of group presentations
in terms of generators and relators. We use the HNN-extension as our basic
building block. A more thorough discussion of HNN-extensions may be found
in [11] or [4].

Before beginning, we describe the algebraic goal of this section. We wish to con-
struct a special inverse sequence of �nitely presented groups that is semistable,
but not perfectly semistable. Later this sequence will be realized as the funda-
mental group at in�nity of a carefully constructed open manifold. The following
lemma indicates the strategy that will be used.

Lemma 4.1 Let

G0
 1 − G1

 2 − G2
 3 − G3

 4 − � � �

be an inverse sequence of groups with surjective but non-injective bonding ho-
momorphisms. Suppose further that no Gi contains a non-trivial perfect sub-
group. Then this inverse sequence is not perfectly semistable.
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Proof It is easy to see that this system is semistable but not stable. Assume
that it is perfectly semistable. Then|after passing to a subsequence, rela-
belling, and applying Lemma 2.1|we may assume the existence of a diagram:

G0

 1� G1

 2� G2

 3� � � �
-
f0

.
g0

-
f1

.
g1

-
f2

.
g2

H0

�1� H1

�2� H2 � � �
where each �i has a perfect kernel.

By the commutativity of the diagram, all of the fi ’s and gi ’s are surjections.
Moreover, Lemma 2.2 implies that fi (ker�i) = f1g, for all i � 1. The com-
bination of these facts tells us that each gi is an isomorphism. Since the Gi ’s
contain no nontrivial perfect subgroups, then neither do the Hi ’s. But then
each �i is an isomorphism, contradicting the non-stability of our original se-
quence.

Remark 6 Satisfying the hypotheses of Lemma 4.1 by itself is not di�cult. For
example, since abelian groups contain no nontrivial perfect subgroups, examples
such as

Z� Z� Z� Z� Z� Z� � � �

apply. However, Theorem 1.2 tells us that this inverse sequence cannot occur
as the fundamental group at in�nity of an inward tame open manifold. In-
deed, any appropriate inverse sequence should, at least, have the property that
abelianizing each term yields a stable sequence. Thus, our task of constructing
an appropriate \realizable" inverse sequence is rather delicate.

Let K be a group with presentation hgen(K)jrel(K)i and f�ig a collection of
monomorphisms �i : Li ! K from subgroups fLig of K into K . We de�ne
the group

G = hgen(K); t1; t2; � � � j rel(K); R1; R2; � � � i

where each Ri is the collection of relations
�
tilijt

−1
i = �i (lij) for all lij 2 Li

}
.

We call G the HNN group with base K, associated subgroups fLi; �i (Li)g, and
free part the group generated by ft1; t2; � � � g. We assume the basic properties
of HNN groups|such as the fact that the base group naturally embeds in the
HNN group. This and other basic structure theorems for subgroups of HNN-
extensions have existed for a long time and appear within many sources. Most
important for our purposes is the following which we have tailored to meet our
speci�c needs.
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Theorem 4.2 (see [11, Theorem 6]) Let G be the HNN group above. If H
is a subgroup of G having trivial intersection with the conjugates of each Li ,
then H is the free product of a free group with the intersections of H with
certain conjugates of K .

Let a and b be group elements. We denote by [a; b] the commutator of a and
b, ie, [a; b] = a−1b−1ab. Let S be a subset of elements of a group G. We denote
by fs1; s2; � � � ;Gg the subgroup of G generated by S where S = fs1; s2; � � � g.
If S and G are as above, then we denote by ncl fs1; s2; � � � ;Gg the normal
closure of S in G, ie, the smallest normal subgroup of G containing S:

We are now ready to construct the desired inverse sequence. Let G0 = ha0i be
the free group on one generator. Of course, G0 is just Z written multiplicatively.
For j � 1, let

Gj = ha0; a1; � � � ; aj j a1 = [a1; a0] ; a2 = [a2; a1] ; � � � ; aj = [aj ; aj−1]i

This presentation emphasizes that each ai (i � 1) is a commutator. (Hence,
each Gj abelianizes to Z.) We abuse notation slightly and do not distinguish
between the element ai 2 Gj−1 and ai 2 Gj : Let j � 1; another useful presen-
tation of Gj is

Gj =
D
a0; a1; � � � ; aj j a0a

2
1a
−1
0 = a1; a1a

2
2a
−1
1 = a2; � � � ; aj−1a

2
ja
−1
j−1 = aj

E
Now, Gj can be put in the form of an HNN group. In particular,

Gj = hgen(K); t1 j rel(K); R1i

where

K =
D
a1; a2; � � � ; aj j a1a

2
2a
−1
1 = a2; a2a

2
3a
−1
2 = a3; � � � ; aj−1a

2
ja
−1
j−1 = aj

E
;

t1 = a0 , L1 =
�
a2

1;Gj
}

, �1

(
a2

1

�
= a1 , and R1 is given by a0a

2
1a
−1
0 = a1 . The

base group, K , is obviously isomorphic to Gj−1 with that isomorphism taking
ai to ai−1 .

De�ne  j : Gj ! Gj−1 by sending ai to ai for 1 � i � j − 1, and aj to 1. By
inspection  j is a surjective homomorphism. Our goal is to prove:

Theorem 4.3 In the setting described above, the group Gj has no non-trivial
perfect subgroups.

Proof Our proof is by induction.
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Case j = 0 G0 = ha0i is an abelian group so that all commutators in G0 are
trivial. Thus, [H;H] = 1 for any subgroup H of G0 . Hence, H = 1 is the only
perfect subgroup of G0 .

Case j = 1 Consider G1 and  1 : G1 ! G0 .  1 :
〈
a0; a1ja0a

2
1a
−1
0 = a1

�
!

ha0i. We pause to observe for later use that G1 is an HNN group with base
group K = fa1;G1g. Since K embeds in G1 , then a1 has in�nite order in
G1: Now, G1 is one of the well-known Baumslag-Solitar groups. Its com-
mutator subgroup, [G1; G1], is precisely equal to ker ( 1). The substitution
bk = a−k0 a1a

k
0 along with the relations

bk = a−k0 a1a
k
0 = a

−(k−1)
0

(
a−1

0 a1a
1
0

�
ak−1

0 = a−(k−1)a2
1a
k−1 =

(
a−(k−1)a1a

k−1
�2

give ker ( 1) a presentation:〈
bk j bk = b2k−1;−1 < j <1

�
So, ker ( 1) is locally cyclic (every �nitely generated subgroup is contained in a
cyclic subgroup). In particular, it is abelian and contains no non-trivial perfect
subgroups. Now, suppose P is a perfect subgroup of G1 . Then, by Lemma
2.2,  1 (P ) is a perfect subgroup of G0 . By the case (j = 0),  1 (P ) = f1g, so
P � ker ( 1). But, we just observed, then, that P must be trivial.

Inductive Step We assume that Gj contains no non-trivial perfect subgroups
for 1 � j � k − 1 and prove that Gk has this same property. To this end, let
P be a perfect subgroup of Gk . Then,  k (P ) is a perfect subgroup of Gk−1 .
By induction,  k(P ) = 1. Thus, P � ker ( k).

As shown above, Gk , is an HNN-extension with base group K where

K =
〈
a1; a2; � � � ; ak j a1a

2
2a
−1
1 = a2; a2a

2
3a
−1
2 = a3; � � � ; ak−1a

2
ka
−1
k−1 = ak

�
�= Gk−1

By the inductive hypothesis, K has no perfect subgroups. Moreover, a1 2 K
still has in�nite order in both K (by induction) and Gk (since K embeds in
Gk ). Moreover, the HNN group, Gk , has the single associated cyclic subgroup,
L = fa2

1;Gkg, with conjugation relation a0a
2
1a
−1
0 = a1 . By the de�nition of

 k : Gk ! Gk−1 it is clear that ker ( k) = ncl
�
ak;Gk

}
.

Claim No conjugate of L non-trivially intersects ncl
�
ak;Gk

}
Proof of Claim If the claim is false, then L itself must non-trivially inter-
sect the normal subgroup, ncl fak;Gkg. This means that a2m

1 2 ncl fak;Gkg =
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ker ( k) for some integer m > 0. Since k � 2, then  k
(
a2m

1

�
=  k (a1)2m =

a2m
1 = 1 in Gk−1 , ie, a1 has �nite order in Gk−1 . This contradicts our obser-

vations above, thus proving the claim.

We continue with the proof of Theorem 4.3. Recall that P is a perfect subgroup
of ker ( k). It must also enjoy the property of trivial intersection with each
conjugate of L. We now apply Theorem 4.2 to the subgroup P to conclude
that P is a free product where each factor is either free or equal to P \ gKg−1

for some g 2 Gk .

Now, P projects naturally onto each of these factors so each factor is perfect.
However, non-trivial free groups are not perfect. Moreover, by induction, K
(or equivalently gKg−1 ) contains no non-trivial perfect subgroups. Thus, any
subgroup, P \ gKg−1 , is trivial. Consequently, P must be trivial.

4.2 Construction of Mn
�

The goal of this section is to construct a one ended open n-manifold Mn
� (n � 6)

with fundamental group system at in�nity equivalent to the inverse sequence

G0
 1 − G1

 2 − G2
 3 − G3

 4 − � � � (yy)
produced above. More importantly, this will be done in such a way that clean
neighborhoods of in�nity in Mn

� have �nite homotopy type|thereby proving
Theorem 1.3. Familiarity with the basics of handle theory, as can be found in
Chapter 6 of [14], is assumed throughout the construction.

The key to producing Mn
� will be a careful construction of a sequence

f(Ai;Γi;Γi+1)g1i=0

of compact n-dimensional cobordisms satisfying the following properties:

a) The left-hand boundary Γ0 of A0 is Sn−2 � S1; and (as indicated by
the notation), for all i � 1 the left-hand boundary of Ai is equal to the
right-hand boundary of Ai−1 . In particular, Ai−1 \Ai = Γi .

b) For all i � 0, �1(Γi; pi) �= Gi and Γi ,! Ai induces a �1 -isomorphism.

c) The isomorphisms between �1(Γi; pi) and Gi may be chosen so that we
have a commutative diagram:

Gi
 i+1 − Gi+1

#�= #�=
�1(Γi; pi)

�i+1 − �1(Γi+1; pi+1)
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Here �i+1 is the composition of homomorphisms

�1 (Γi; pi)
�=$ �1 (Ai; pi)

�̂i �1 (Ai; pi+1)
j# − �1 (Γi+1; pi+1)

where j# is induced by inclusion, the middle map is a \change of base
points isomorphism" with respect to a path �i in Ai between pi and
pi+1 , and the left-most isomorphism is provided by property b).

We will let
Mn
� = (Sn−2 �B2) [A0 [A1 [A2 [ � � �

where Sn−2 �B2 is glued to A0 along Γ0 = Sn−2 � S1 . Then for each i � 0;

Ni = Ai [Ai+1 [Ai+2 [ � � �

is a clean connected neighborhood of in�nity. Moreover, by properties b) and
c) and repeated application of the Seifert-VanKampen theorem, the inverse
sequence

�1 (N0; p0) �1 − �1 (N1; p1) �2 − �1 (N2; p2) �3 − � � �

is isomorphic to (yy).

Finally, we will need to show that clean neighborhoods of in�nity in Mn
� have

�nite homotopy type. This can be done only after the speci�cs of the construc-
tion are revealed.

Step 0 Construction of (A0;Γ0;Γ1) :

Let Γ0 = Sn−2 � S1 and p0 2 Γ0 . Keeping in mind that G0 = ha0i, we abuse
notation slightly by letting a0 also represent a generator of �1 (Γ0; p0) �= Z.
This gives a canonical isomorphism from G0 to �1 (Γ0; p0).

Let " be a small positive number and C 00 = Γ0 � [1− "; 1]. To the left-hand
boundary component of C 00 attach an orientable 1-handle h1

0 . Note that C 00[h1
0

and its left boundary component each have fundamental group that is free on
two generators{the �rst corresponding to a0 , and the second corresponding to a
circle that runs once through h1

0 . Denote this second generator by a1 . Keeping
in mind the presentation G1 = ha0; a1 j a1 = [a1; a0]i, attach to the left-hand
boundary component of C 00[h1

0 a 2-handle h2
0 along a regular neighborhood of

a loop corresponding to a−2
1 a−1

0 a1a0 . Let B0 = C 00 [ h1
0 [ h2

0 and let Γ1 denote
the left-hand boundary component of B0 . By avoiding the arc p0 � [1− "; 1]
when attaching h1

0 and h2
0 , we may let p1 = p0 � f1− "g 2 Γ1 . Clearly

�1 (B0; p1) �= G1 . By inverting the handle decomposition, we may view B0 as
the result of attaching an (n− 2)-handle and then an (n− 1)-handle to a small
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product neighborhood C1 of Γ1 . Since these handles have index greater than
2; Γ1 ,! B0 induces a �1 -isomorphism. Hence �1 (Γ1; p1) �= G1 . This gives us
a cobordism (B0;Γ1;Γ0) with the desired boundary components. However, it
is not the cobordism we are seeking.

Next attach a 2-handle k2
0 to B0 along a circle in Γ1 representing a1 . Note that

k2
0 and h1

0 form a canceling handle pair in C 00[h1
0[h2

0[k2
0 . Moreover, since a1

has been killed, h2
0 is now attached along a trivial loop in the left-hand boundary

of C 00 [ h1
0 [ k2

0 � C 00 . Provided that h2
0 was attached with the appropriate

framing (this can still be arranged if necessary), we may attach a 3-handle k3
0 to

C 00[h1
0[h2

0[k2
0 that cancels h2

0 . Therefore, C 00[h1
0[h2

0[k2
0[k3

0 � Γ0�[0; 1]. The
desired cobordism (A0;Γ0;Γ1) will be the complement of B0 in this product.
More precisely, A0 = C1 [ k2

0 [ k3
0 where C1 is a small product neighborhood

of Γ1 in B0 . By avoiding p1 when attaching k2 and k3 we may let p0 be the
left endpoint of the collar line of C1 having right end point corresponding to
p1 . A schematic diagram of this setup is given in Figure 3.

Figure 3

By Van Kampen’s theorem, it is clear that �1 (A0; p1) �= ha0i, and that the
inclusion induced homomorphism �1(Γ1; p1) ! �1(A0; p1) sends a0 to a0 and
a1 to 1. By inverting the cobordism, we may view A0 as the result of attaching
an (n− 3)- and an (n− 2)-handle to the right-hand boundary of C0 = Γ0 �
[0; "] . Hence, inclusion Γ0 ,! A0 induces the obvious �1 -isomorphism. It
follows that properties a)-c) are satis�ed by (A0;Γ0;Γ1).

Inductive Step Construction of (Aj;Γj ;Γj+1).
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Here we assume that j � 1 and that (Aj−1;Γj−1;Γj) has already been con-
structed. We will construct Aj from Γj in the same manner that we constructed
A0 from Γ0 .

Given that �1 (Γj; pj) �= Gj = ha0; a1; � � � ; aj j ai = [ai; ai−1] for all 1 � i � ji ,
we expand the fundamental group by attaching a 1-handle h1

j to the left-hand
boundary component of C 0j = Γj � [1− "; 1]. Let aj+1 denote the fundamental
group element of C 0j [ h1

j corresponding to a loop that runs once through h1
j .

Then attach to the left-hand boundary component of C 0j [ h1
j a 2-handle h2

j

along a regular neighborhood of a loop corresponding to a−2
j+1a

−1
j aj+1aj . This

yields a cobordism (Bj ;Γj+1;Γj) with �1 (Bj ; pj+1) �= Gj+1 and Γj+1 ,! Bj
inducing a �1 -isomorphism. Now attach a 2-handle k2

j to Bj along a circle in
Γj+1 representing aj+1 . Reasoning as in the base case, we may then attach a
3-handle k3

j to cancel h2
j and giving

C 0j [ h1
j [ h2

j [ k2
j [ k3

j � Γj � [0; 1] :

Let Cj+1 be a small product neighborhood of Γj+1 in Bj and let

Aj = Cj+1 [ k2
j [ k3

j : (#)

Again, the same reasoning used in the base case shows that (Aj;Γj ;Γj+1) sat-
is�es conditions a)-c).

Note In completing the proof of Theorem 1.3, we will utilize|in addition to
properties a-c)|speci�c details and notation established in the above construc-
tion.

It remains to prove the following:

Proposition 4.4 Each clean neighborhood of in�nity in Mn
� has �nite homo-

topy type.

Proof It su�ces to �nd one co�nal sequence of clean neighborhoods of in�nity
with this property. For each i � 1, let N 0i = Ni [ k2

i−1 , where Ni = Ai [Ai+1[
Ai+2 [ � � � and k2

i−1 is the 2-handle used in constructing Ai−1 (See (#).) We
will show that, for each i � 1, the inclusion

Γi [ k2
i−1 ,! N 0i (**)

is a homotopy equivalence. Hence, N 0i has �nite homotopy type.
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Given i � 1, let A0i = Ai[k2
i−1 and E0i = A0i[Bi . Note that E0i is not a subset

of Mn
� since Bi is not. We now have a cobordism (E0i;Γ

0
i;Γi) where (attaching

handles from right to left)

E0i = C 0i [ h1
i [ h2

i [ k2
i [ k3

i [ k2
i−1 � Γi � [0; 1] [ k2

i−1.

Here the left-hand boundary Γ0i may be obtained from Γi by performing surgery
on a regular neighborhood of a circle representing the element ai 2 �i (Γi; pi).

We may reorder handles so that k2
i−1 is attached �rst. (Sliding k2

i−1 past h2
i ,

k2
i and k3

i is standard; attaching k2
i−1 before h1

i requires a quick review of
our construction.) Let bk2

i−1 � int
(
k2
i−1

�
be a small regular neighborhood of

the core of k2
i−1 , extended along the product structure of C 0i to the right-hand

boundary Γi . See Figure 4(a). Carving from E0i the interior of this \thin"

Figure 4

2-handle bk2
i−1 , we obtain a cobordism (E00i ;Γ

0
i;Γ
00
i ) where Γ00i � Γ0i since Γ00i is

obtained from Γi by essentially the same surgery that produced Γ0i . See Figure
4(b). Furthermore, since Ai[Bi � Γi� [0; 1], it is easy to see that E00i is also a
product. The existing handle structure on E0i , provides a handle decomposition
E00i = C 00i [ h1

i [ h2
i [ k2

i [ k3
i where C 00i is a small product neighborhood of Γ00i .

Recalling that h2
i was attached along a circle in Γi representing a−2

i+1a
−1
i ai+1ai

where ai+1 represents a circle that runs once through h1
i , and noting that

(in Γ00i ) ai has been killed by surgery, we see that h1
i and h2

i have become a
canceling handle pair in E00i .

We may split E00i as A00i [ B00i where B00i = C 00i [ h1
i [ h2

i and A00i is obtained
from the left-hand component of B00i by attaching k2

i and k3
i . Alternatively,
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A00i = A0i − int
�ek2

i−1

�
where ek2

i−1 is the interior of a regular neighborhood of

the core of k2
i−1 extended to the right-hand boundary of A0i . (The 2-handleek2

i−1 should be thinner than k2
i−1 , but thicker than bk2

i−1 .) It has already been
established that E00i is a product. Since h1

i and h2
i form a canceling pair, B00i

is also a product. Thus, it follows from regular neighborhood theory that

A00i � Γ0i � [0; 1] :

This last identity will be key to the remainder of the proof.

Claim For each i � 1, A0i strong deformation retracts onto Γi [ k2
i−1 .

Proof of Claim It su�ces to show that Γi [ k2
i−1 ,! A0i is a homotopy

equivalence. Let bn−2
i−1 be a belt disk for k2

i−1 that intersects the thinner 2-
handle ek2

i−1 in a belt disk ebn−2
i−1 . By pushing in from the attaching region of

k2
i−1 we may collapse Γi [ k2

i−1 onto Γ0i [ b2i−1 . See Figure 5. Using a similar

Figure 5

move, we may collapse A0i onto A00i [ ebn−2
i−1 . Then, using the product structure

on A00i we may collapse A00i [ ebn−2
i−1 onto Γ0i [ bn−2

i−1 . Composing the resulting
homotopy equivalences shows that Γi [ k2

i−1 ,! A0i is a homotopy equivalence
and completes the proof of the claim.

It is now an easy matter to verify (**). Let i � 1 be �xed. We know that A0i
strong deformation retracts onto Γi [ k2

i−1 , and for each j > i, we may extend
(via the identity) the strong deformation retraction of A0j onto Γj [ k2

j−1 to a
strong deformation retraction of Aj−1 [Aj onto Aj−1 . By standard methods,
we may assemble these strong deformation retractions to a strong deformation
retraction of N 0i onto Γi [ k2

i−1 .
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5 An Open Question

Our work on pseudo-collars was partly motivated by [3], which the authors
advertise as a version of Siebenmann’s thesis for Hilbert cube manifolds. Their
result provides necessary and su�cient conditions for a Hilbert cube manifold
X to be \Z -compacti�able", ie, compacti�able to a space bX such that bX −X
is Z -set in bX .

Theorem 5.1 (Chapman and Siebenmann) A Hilbert cube manifold X ad-
mits a Z -compactification i� each of the following is satis�ed.

(a) X is inward tame at in�nity.

(b) �1(X) = 0.

(c) �1 (X) 2 lim −
1 fWh�1(XnA) j A � X compactg is zero.

Notice that conditions a) and b) are identical to conditions (1) and (3) of
Theorem 1.1. The obstruction in c) is an element of the \�rst derived limit" of
the indicated inverse system, where Wh denotes the Whitehead group functor.
See [3] for details.

It is not well-understood when conditions a)-c) imply Z -compacti�ability for
spaces that are not Hilbert cube manifolds. In [8], a polyhedron was con-
structed which satis�es the hypotheses of Theorem 5.1, but which fails to be
Z -compacti�able. However, it is unknown whether a �nite dimensional man-
ifold that satis�es these conditions can always be Z -compacti�ed. In trying
to answer this question, it seems worth noting that Chapman and Siebenmann
employed a two step procedure in proving their result. First they showed that
a Hilbert cube manifold satisfying conditions a) and b) is pseudo-collarable.
Next they used the pseudo-collar structure, along with condition c) and some
powerful Hilbert cube manifold techniques to obtain a Z -compacti�cation.

In contrast with the in�nite dimensional situation, the manifolds Mn
� con-

structed in this paper satisfy conditions a) and b) yet fail to be pseudo-collarable.
Furthermore, an inductive application of the exact sequence on page 157 of [16]
shows that each group Gi appearing in the canonical inverse sequence represen-
tative of �1 ("(Mn

� )) has trivial Whitehead group. It follows that �1 (Mn
� ) = 0.

Thus, the Mn
� ’s would appear to be ideal candidates for counterexamples to

an extension of Theorem 5.1 to the case of �nite dimensional manifolds. More
generally, we ask:

Question Can a Z -compacti�able open n-manifold fail to be pseudo-collarable?
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