
Geometry & Topology Monographs
Volume 2: Proceedings of the Kirbyfest
Pages 349{406

Structure of the mapping class groups of surfaces:
a survey and a prospect

Shigeyuki Morita

Abstract In this paper, we survey recent works on the structure of the
mapping class groups of surfaces mainly from the point of view of topol-
ogy. We then discuss several possible directions for future research. These
include the relation between the structure of the mapping class group and
invariants of 3{manifolds, the unstable cohomology of the moduli space of
curves and Faber’s conjecture, cokernel of the Johnson homomorphisms and
the Galois as well as other new obstructions, cohomology of certain in�nite
dimensional Lie algebra and characteristic classes of outer automorphism
groups of free groups and the secondary characteristic classes of surface
bundles. We give some experimental results concerning each of them and,
partly based on them, we formulate several conjectures and problems.
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1 Introduction

Let �g be a closed oriented surface of genus g � 2 and let Mg be its mapping
class group. This is the group consisting of path components of Di�+ �g , which
is the group of orientation preserving di�eomorphisms of �g . Mg acts on the
Teichmüller space Tg of �g properly discontinuously and the quotient space
Mg = Tg=Mg is the (coarse) moduli space of curves of genus g . Tg is known
to be homeomorphic to R6g−6 . Hence we have a natural isomorphism

H�(Mg;Q) �= H�(Mg;Q):

On the other hand, by a theorem of Earle{Eells [20], the identity component
of Di�+ �g is contractible for g � 2 so that the classifying space BDi�+ �g

ISSN 1464-8997

Copyright Geometry and Topology

349



is an Eilenberg{MacLane space K(Mg; 1). Therefore we have also a natural
isomorphism

H�(BDi�+ �g) �= H�(Mg):

Thus the mapping class group serves as the orbifold fundamental group of the
moduli space Mg and at the same time it plays the role of the universal mon-
odromy group for oriented �g{bundles. Any cohomology class of the mapping
class group can be considered as a characteristic class of oriented surface bun-
dles and, over the rationals, it can also be identi�ed as a cohomology class of
the moduli space.

The Teichmüller space Tg and the moduli space Mg are important objects
primarily in complex analysis and algebraic geometry. Many important re-
sults concerning these two spaces have been obtained following the fundamental
works of Ahlfors, Bers and Mumford. Because of the limitation of our knowl-
edge, we only mention here a survey paper of Hain and Looijenga [43] for recent
works on Mg , mainly from the viewpoint of algebraic geometry, and a book by
Harris and Morrison [53] for basic facts as well as more advanced results.

From a topological point of view, fundamental works of Harer [46, 47] on the
homology of the mapping class group and also of Johnson (see [63]) on the
structure of the Torelli group, both in early 80’s, paved the way towards modern
topological studies of Mg and Mg . Here the Torelli group, denoted by Ig , is
the subgroup of Mg consisting of those elements which act on the homology of
�g trivially.

Slightly later, the author began a study of the classifying space BDi�+ �g of
surface bundles which also belongs to topology. The intimate relationship be-
tween three universal spaces, Tg;Mg and BDi�+ �g described above, imply
that there should exist various interactions among the studies of these spaces
which are peculiar to various branches of mathematics including the ones men-
tioned above. Although it is not always easy to understand mutual viewpoints,
we believe that doing so will enhance individual understanding of these spaces.

In this paper, we would like to survey some aspects of recent topological study
of the mapping class group as well as the moduli space. More precisely, we
focus on a study of the mapping class group which is related to the structure of
the Torelli group Ig together with a natural action of the Siegel modular group
Sp(2g;Z) on some graded modules associated with the lower (as well as other)
central series of Ig . Here it turns out that explicit descriptions of Sp{invariant
tensors of various Sp{modules using classical symplectic representation theory,
along the lines of Kontsevich’s fundamental works in [85, 86], and also Hain’s
recent work [41] on Ig using mixed Hodge structures can play very important
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roles. These two points will be reviewed in section 4 and section 5, respectively.
In the �nal section (section 6), we describe several experimental results, with
sketches of proofs, by which we would like to propose some possible directions
for future research.

This article can be considered as a continuation of our earlier papers [113, 114,
117].
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2 Mg as an extension of the Siegel modular group
by the Torelli group

Let us simply write H for H1(�g;Z). We have the intersection pairing

� : H ⊗H−!Z
which is a non-degenerate skew symmetric bilinear form on H . The natural
action of Mg on H , which preserves this pairing, induces the classical repre-
sentation

�0 : Mg−!AutH:

If we �x a symplectic basis of H , then AutH can be identi�ed with the Siegel
modular group Sp(2g;Z) so that we can write

�0 : Mg−!Sp(2g;Z):

The Torelli group, denoted by Ig , is de�ned to be the kernel of �0 . Thus we
have the following basic extension of three important groups

1−!Ig−!Mg−!Sp(2g;Z)−!1: (1)

Associated to each of these groups, we have various moduli spaces. Namely the
(coarse) moduli space Mg of genus g curves for Mg , the moduli space Ag of
principally polarized abelian varieties for Sp(2g;Z) and the Torelli space Tg

for Ig . Here the Torelli space is de�ned to be the quotient of the Teichmüller
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space Tg by the natural action of Ig on it. Since Ig is known to be torsion
free, Tg is a complex manifold. We have holomorphic mappings between these
moduli spaces

Tg−!Mg−!Ag

where the �rst map is an in�nite rami�ed covering and the second map is
injective by the theorem of Torelli.

By virtue of the above facts, we can investigate the structure of Mg (or that
of Mg ) by combining individual study of Ig and Sp(2g;Z) (or Tg and Ag )
together with some additional investigation of the action of Sp(2g;Z) on the
structure of the Torelli group or Torelli space. Here it turns out that the sym-
plectic representation theory can play a crucial role. However, before reviewing
them, let us �rst recall the fundamental works of D Johnson on the structure of
Ig very briefly (see [63] for details) because it is the starting point of the above
method.

Johnson proved in [62] that Ig is �nitely generated for all g � 3 by constructing
explicit generators for it. Before this work, a homomorphism

� : Ig−!�3H=H

was introduced in [61] which generalized an earlier work of Sullivan [136] exten-
sively and is now called the Johnson homomorphism. Here �3H denotes the
third exterior power of H and H is considered as a natural submodule of �3H
by the injection

H 3 u 7−! u ^ !0 2 �3H

where !0 2 �2H is the symplectic class (in homology) de�ned as !0 =
P

i xi^yi
for any symplectic basis xi; yi (i = 1; � � � ; g) of H .

Let Kg � Mg be the subgroup of Mg generated by all Dehn twists along
separating simple closed curves on �g . It is a normal subgroup of Mg and is
contained in the Torelli group Ig . In [64], Johnson proved that Kg is exactly
equal to Ker � so that we have an exact sequence

1−!Kg−!Ig �−!�3H=H−!1: (2)

Finally in [65], he determined the abelianization of Ig for g � 3 in terms of cer-
tain combination of � and the totality of the Birman{Craggs homomorphisms
de�ned in [12]. The target of the latter homomorphisms are Z=2 so that the
�rst rational homology group of Ig (or more precisely, the abelianization of Ig
modulo 2 torsions) is given simply by � . Namely we have an isomorphism

� : H1(Ig;Q) �= �3HQ=HQ

where HQ = H ⊗Q.
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Problem 2.1 Determine whether the Torelli group Ig (g � 3) is �nitely pre-
sentable or not. If the answer is yes, give an explicit �nite presentation of it.

It should be mentioned here that Hain [41] proved that the Torelli Lie algebra
tg , which is the Malcev Lie algebra of Ig , is �nitely presentable for all g � 3.
Moreover he gave an explicit �nite presentation of tg for any g � 6 which turns
out to be very simple, namely there arise only quadratic relations. Here a result
of Kabanov [68] played an important role in bounding the degrees of relations.
More detailed description of this work as well as related materials will be given
in section 5.

On the other hand, in the case of g = 2, Mess [99] proved that I2 = K2 is an
in�nitely generated free group. Thus we can ask

Problem 2.2 (i) Determine whether the group Kg is �nitely generated or
not for g � 3.

(ii) Determine the abelianization H1(Kg) of Kg .

We mention that Kg is far from being a free group for g � 3. This is almost
clear because it is easy to construct subgroups of Kg which are free abelian
groups of high ranks by making use of Dehn twists along mutually disjoint
separating simple closed curves on �g . More strongly, we can show, roughly as
follows, that the cohomological dimension of Kg will become arbitrarily large
if we take the genus g su�ciently large. Let

�g(2) : Kg−!hg(2)

be the second Johnson homomorphism given in [115, 118] (see section 5 below
for notation). Then it can be shown that the associated homomorphism

�g(2)� : H�(hg(2))−!H�(Kg)

is non-trivial by evaluating cohomology classes coming from H�(hg(2)), under
the homomorphism �g(2)� , on abelian cycles of Kg which are supported in the
above free abelian subgroups.

In section 6.6, we will consider the cohomological structure of the group Kg from
a hopefully deeper point of view which is related to the secondary characteristic
classes of surface bundles introduced in [119].
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3 The stable cohomology of Mg and the stable ho-
motopy type of Mg

Let � : Cg!Mg be the universal family of stable curves over the Deligne{
Mumford compacti�cation of the moduli space Mg . In [122], Mumford de�ned
certain classes

�i 2 Ai(Mg)

in the Chow algebra (with coe�cients in Q) of the moduli space Mg by setting
�i = ��(c1(!)i+1) where ! denotes the relative dualizing sheaf of the morphism
� . On the other hand, in [107] the author independently de�ned certain integral
cohomology classes

ei 2 H2i(Mg;Z)

of the mapping class group Mg by setting ei = ��(ei+1) where

� : EDi�+ �g!BDi�+ �g

is the universal oriented �g{bundle and e 2 H2(EDi�+ �g;Z) is the Euler class
of the relative tangent bundle of � . As was mentioned in section 1, there exists a
natural isomorphism H�(Mg;Q) �= H�(Mg;Q) and it follows immediately from
the de�nitions that ei = (−1)i+1�i as an element of these rational cohomology
groups. The di�erence in signs comes from the fact that Mumford uses the
�rst Chern class of the relative dualizing sheaf of � while our de�nition uses
the Euler class of the relative tangent bundle. These classes �i; ei are called
tautological classes or Mumford{Morita{Miller classes.

In this paper, we use our notation ei to emphasize that we consider it as an
integral cohomology class of the mapping class group rather than an element of
the Chow algebra of the moduli space. A recent work of Kawazumi and Uemura
in [78] shows that the integral class ei can play an interesting role in a study
of certain cohomological properties of �nite subgroups of Mg .

Let

�: Q[e1; e2; � � � ]−! lim
g!1

H�(Mg;Q) (3)

be the natural homomorphism from the polynomial algebra generated by ei
into the stable cohomology group of the mapping class group which exists by
virtue of a fundamental result of Harer [47]. It was proved by Miller [102] and
the author [108], independently, that the homomorphism � is injective and we
have the following well known conjecture (see Mumford [122]).
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Conjecture 3.1 The homomorphism � is an isomorphism so that

lim
g!1

H�(Mg;Q) �= Q[e1; e2; � � � ]:

We would like to mention here a few pieces of evidence which support the above
conjecture. First of all, Harer’s explicit computations in [46, 49, 51] verify the
conjecture in low degrees. See also [4] for more recent development. Secondly,
Kawazumi has shown in [72] (see also [71, 73]) that the Mumford{Morita{Miller
classes occur naturally in his algebraic model of the cohomology of the moduli
space which is constructed in the framework of the complex analytic Gel’fand{
Fuks cohomology theory, whereas no other classes can be obtained in this way.
Thirdly, in [76, 77] Kawazumi and the author showed that the image of the
natural homomorphism

H�(H1(Ig);Q)Sp−!H�(Mg;Q)

is exactly equal to the subalgebra generated by the classes ei (see section 6.4 for
more detailed survey of related works). Here Sp stands for Sp(2g;Z). Finally,
as is explained in a survey paper by Hain and Looijenga [43] and also in our
paper [76], a combination of this result with Hain’s fundamental work in [41] via
Looijenga’s idea to use Pikaart’s purity theorem in [133] implies that there are
no new classes in the continuous cohomology of Mg , with respect to a certain
natural �ltration on it, in the stable range.

Now there seems to be a rather canonical way of realizing the homomorphism
� of (3) at the space level. To describe this, we �rst recall the cohomological
nature of the classical representation �0 : Mg!Sp(2g;Z). The Siegel modular
group Sp(2g;Z) is a discrete subgroup of Sp(2g;R) and the maximal compact
subgroup of the latter group is isomorphic to the unitary group U(g). Hence
there exists a universal g{dimensional complex vector bundle on the classifying
space of Sp(2g;Z). Let � be the pull back, under �0 , of this bundle to the
classifying space of Mg . As was explained in [7] (see also [108]), the dual
bundle �� can be identi�ed, on each family � : E!X of Riemann surfaces, as
follows. Namely it is the vector bundle over the base space X whose �ber on
x 2 X is the space of holomorphic di�erentials on the Riemann surface Ex .
In the above paper, Atiyah used the Grothendieck Riemann{Roch theorem to
deduce the relation

e1 = 12c1(��):

If we apply the above procedure to the universal family Cg!Mg , then we
obtain a complex vector bundle �� (in the orbifold sense) over Mg (in fact, more
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generally, over the Deligne{Mumford compacti�cation Mg ) which is called the
Hodge bundle. In [122], Mumford applied the Grothendieck Riemann{Roch
theorem to the morphism Cg!Mg and obtained an identity, in the Chow
algebra A�(Mg), which expresses the Chern classes of the Hodge bundle in
terms of the tautological classes �2i−1 with odd indices together with some
canonical classes coming from the boundary. From this identity, we can deduce
the relations

e2i−1 =
2i
B2i

s2i−1(��) (i = 1; 2; � � � ) (4)

in the rational cohomology of Mg . Here B2i denotes the 2i-th Bernoulli num-
ber and si(��) is the characteristic class of �� corresponding to the formal sumP

j t
i
j (sometimes called the i-th Newton class). We have also obtained the

above relations in [107] by applying the Atiyah{Singer index theorem [9] for
families of elliptic operators, along the lines of Atiyah’s argument in [7]. Since
�� is flat as a real vector bundle, all of its Pontrjagin classes vanish so that we
can conclude that the Chern classes of �� can be expressed entirely in terms of
the classes e2i−1 . Thus we can say that the totality of the classes e2i−1 of odd
indices is equivalent to the total Chern class of the Hodge bundle which comes
from the Siegel modular group.

Although the rational cohomology of Mg and Mg are canonically isomorphic
to each other, there seems to be a big di�erence between the torsion cohomology
of them. To be more precise, let

BDi�+ �g = K(Mg; 1)−!Mg (g � 2)

be the natural mapping which is uniquely de�ned up to homotopy, where the
equality above is due to a result of Earle and Eells [20] as was already mentioned
in the introduction. As is well known (see eg [46]), Mg is perfect for all g � 3
so that we can apply Quillen’s plus construction on K(Mg; 1) to obtain a
simply connected space K(Mg; 1)+ which has the same homology as that of
Mg . It is known that the moduli space Mg is simply connected. Hence, by the
universal property of the plus construction, the above mapping factors through
a mapping

K(Mg; 1)+−!Mg:

Problem 3.2 Study the homotopy theoretical properties of the above map-
ping K(Mg; 1)+−!Mg . In particular, what is its homotopy �ber ?

The classical representation �0 : Mg!Sp(2g;Z) induces a mapping

K(Mg; 1)+−!K(Sp(2g;Z); 1)+ (5)
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because Sp(2g;Z) is also perfect for g � 3. Homotopy theoretical properties
of this map (or rather its direct limit as g ! 1) have been studied by many
authors and they produced interesting implications on the torsion cohomology
of Mg (see [15, 16, 36, 138] as well as their references). A �nal result along these
lines was obtained by Tillmann. This says that K(M1; 1)+ is an in�nite loop
space and the natural map K(M1; 1)+!K(Sp(21;Z); 1)+ is that of in�nite
loop spaces (see [138] for details). See also [104] for a di�erent feature of the
above map, [142] for a homotopy theoretical implication of Conjecture 3.1 and
[128] for the etale homotopy type of the moduli spaces.

Let Fg be the homotopy �ber of the above mapping (5). Then, we have a map

Tg−!Fg:

Using the fact that any class ei is primitive with respect to Miller’s loop space
structure on K(M1; 1)+ , it is easy to see that the natural homomorphism

Q[e2; e4; � � � ]−!H�(Fg;Q)

is injective in a certain stable range and we can ask how these cohomology
classes behave on the Torelli space.

We would like to show that the classes e2i of even indices are closely related
to the Pontrjagin classes of the moduli space Mg and also of the Torelli space
Tg . To see this, recall that Tg is a complex manifold and Mg is nearly a
complex manifold of dimension 3g − 3. More precisely, as is well known it has
a �nite rami�ed covering fMg which is a complex manifold and we can write
Mg = fMg=G where G is a suitable �nite group acting holomorphically on fMg .
Hence we have the Chern classes

ci 2 H2i(fMg;Z) (i = 1; 2; � � � )

of the tangent bundle of fMg which is invariant under the action of G. Hence
we have the rational cohomology classes

coi 2 H2i(Mg;Q)

which is easily seen to be independent of the choice of fMg . We may call them
orbifold Chern classes of the moduli space. To identify these classes, we use the
Grothendieck Riemann{Roch theorem applied to the morphism � : Cg!Mg

��(ch(�)Td(!�)) = ch(�!(�))

where !� denotes the relative tangent bundle (in the orbifold sense) of � and �
is a vector bundle over Cg . If we take � to be the relative cotangent bundle !
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as in [122], then we obtain the relations (4) above. Instead of this, let us take
� to be !� . Since �!(!�) = −TMg by the Kodaira{Spencer theory, we have

cho(Mg) =− ��
(
ch(!�)Td(!�)

�
=− ��

(
exp e

e

1− exp−e
�

=− ��
n(

1 + e+ � � � + 1
n!
en + � � �

�(
1 +

1
2
e+

1X
k=1

(−1)k−1 Bk
(2k)!

e2k
�o

where e 2 H2(Cg;Q) denotes the Euler class of !� . From this, we can conclude

so2k−1(Mg) = −
n 1

(2k)!
+

1
(2k − 1)!

� 1
2

+
1

(2k − 2)!
B1

2
+

1
(2k − 4)!

� −B2

4!

+ � � � + 1
2
� (−1)k

Bk−1

(2k − 2)!
+ (−1)k−1 Bk

(2k)!

o
e2k−1

so2k(Mg) = −
n 1

(2k + 1)!
+

1
(2k)!

� 1
2

+
1

(2k − 1)!
B1

2
+

1
(2k − 3)!

� −B2

4!

+ � � � + 1
6
� (−1)k

Bk−1

(2k − 2)!
+ (−1)k−1 Bk

(2k)!

o
e2k:

The �rst few classes are given by

so1(Mg) = −13
12
e1; so2(Mg) = −1

2
e2; so3(Mg) = −119

720
e3:

Thus the orbifold Chern classes of Mg turn out to be, in some sense, indepen-
dent of g . The pull back of these classes to the Torelli space Tg are equal to
the (genuine) Chern classes of it because Tg is a complex manifold. Since the
pull back of e2i−1 to Tg vanishes for all i, we can conclude that s2i−1(Tg) = 0
and only the classes s2i(Tg) may remain to be non-trivial. As is well known,
these classes are equivalent to the Pontrjagin classes of Tg as a di�erentiable
manifold.

In view of the above facts, it may be said that the classifying map Mg!BU(3g−
3) of the holomorphic tangent bundle of Mg would realize the conjectural
isomorphism (3) at the space level (rigorously speaking, we have to use some
�nite covering of Mg ). Alternatively we could use the map

Mg!Ag �BSO(6g − 6)

where the second factor is the classifying map of the tangent bundle of Mg

as a real vector bundle. In short, we can say that the odd classes e2i−1 serve
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as Chern classes of the Hodge bundle while the even classes e2i embody the
orbifold Pontrjagin classes of the moduli space.

According to Looijenga [91], the Deligne{Mumford compacti�cation Mg can
also be described as a �nite quotient of some compact complex manifold. Hence
we have its orbifold Chern classes as well as orbifold Pontrjagin classes. On
the other hand, since Mg is a rational homology manifold, its combinatorial
Pontrjagin classes in the sense of Thom are de�ned.

Problem 3.3 Study the relations between orbifold Chern classes, orbifold
Pontrjagin classes and Thom’s combinatorial Pontrjagin classes of Mg . In
particular, study the relation between the corresponding charateristic numbers.

If we look at the basic extension (1) given in section 2, keeping in mind the
above discussions together with the Borel vanishing theorem given in [13, 14]
concerning the triviality of twisted cohomology of Sp(2g;Z) with coe�cients
in non-trivial algebraic representations of Sp(2g;Q), we arrive at the following
conjecture.

Conjecture 3.4 Any class e2i of even index is non-trivial in the rational co-
homology of the Torelli group Ig for si�ciently large g . Moreover the Sp{
invariant part of the rational cohomology of Ig stabilizes and we have an iso-
morphism

lim
g!1

H�(Ig;Q)Sp �= Q[e2; e4; � � � ]:

At present, even the non-triviality of the �rst one e2 is not known. One of
the di�culties in proving this lies in the fact that the rational cohomology of
Ig is in�nite dimensional in general. Mess observed this fact for g = 2; 3 and
recently Akita [1] proved that H�(Ig;Q) is in�nite dimensional for all g � 7.
His argument can be roughly described as follows. He compares the orbifold
Euler characteristic of Mg given by Harer{Zagier in [52] with that of Ag given
by Harder [45] to conclude that the Euler number of Tg , if de�ned, cannot
be an integer because the latter number is much larger than the former one.
On the other hand, it seems to be extremely di�cult to construct a family of
Riemann surfaces such that its monodromy does not act on the homology of the
�ber wheras the moduli moves in such a way that the classes e2i are non-trivial
(see a recent result of I Smith described in [2] for example). Perhaps completely
di�erent approaches to this problem along the lines of works of Jekel [59] or
Klein [82] might also be possible.
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4 Symplectic representation theory

As was explained in section 2, it is an important method of studying the struc-
ture of the mapping class group to combine those of the Siegel modular group
Sp(2g;Z) and the Torelli group Ig together with the action of the former group
on the structure of the latter group. More precisely, there arise various rep-
resentations of the algebraic group Sp(2g;Q) in the study of Mg . For ex-
ample, the rational homology group HQ = H1(�g;Q) of the surface �g is
the fundamental representation of Sp(2g;Q) and Johnson’s result implies that
H1(Ig;Q) �= �3HQ=HQ is also a rational representation of it. Hereafter, the
representation �3HQ=HQ will be denoted by UQ . Thus the classical represen-
tation theory of Sp(2g;Q) can play crucial roles.

On the other hand, as was already mentioned in the introduction, Kontsevich
[85, 86] used Weyl’s classical representation theory to describe invariant tensors
of various representation spaces which appear in low dimensional topology in
terms of graphs. In this section, we adopt this method to describe invariant
tensors of various Sp{modules related to the mapping class group as well as
the Torelli group.

As is well known, irreducible representations of Sp(2g;Q) can be described as
follows (see a book by Fulton and Harris [29]). Let sp(2g;C) be the Lie algebra
of Sp(2g;C) and let h be its Cartan subalgebra consisting of diagonal matri-
ces. Choose a system of fundamental weights Li : h!R (i = 1; � � � ; g) as in [29].
Then for each g{tuple (a1; � � � ; ag) of non-negative integers, there exists an irre-
ducible representation with highest weight (a1 + � � �+ag)L1 +(a2 + � � �+ag)L2 +
� � �+agLg . In [29], this representation is denoted by Γa1;��� ;ag . In this paper, fol-
lowing [6] we use the notation [a1 + � � �+ag; a2 + � � �+ag; � � � ; ag] for it. In short,
irreducible representations of Sp(2g;C) are indexed by Young diagrams whose
number of rows are less than or equal to g . These representations are all ratio-
nal representations de�ned over Q so that we can consider them as irreducible
representations of Sp(2g;Q). For example HQ = Γ1 = [1]; UQ = Γ0;0;1 = [111]
(which will be abbreviated by [13] and similarly for others with duplications)
and SkHQ = Γk = [k] where SkHQ denotes the k -th symmetric power of HQ .

Recall from section 2 that !0 2 H⊗2 denotes the symplectic class de�ned as
!0 =

P
i(xi⊗ yi− yi⊗xi) for any symplectic basis x1; � � � ; xg; y1; � � � ; yg of H .

As is well known, !0 is the generator of (H⊗2
Q )Sp . Also the intersection pairing

� : H ⊗H!Q serves as the generator of Hom(H⊗2
Q ;Q)Sp .
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4.1 Invariant tensors of H⊗2k
Q and its dual

It is one of the classical results of Weyl that any invariant tensor of H⊗2k
Q ,

namely any element of (H⊗2k
Q )Sp can be described as follows. A linear chord

diagram C with 2k vertices is a decomposition of the set of labeled vertices
f1; 2; � � � ; 2k − 1; 2kg into pairs f(i1; j1); (i2; j2); � � � ; (ik; jk)g such that i1 <
j1; i2 < j2; � � � ; ik < jk (cf Bar-Natan [10], see also [34]). We connect two
vertices in each pair (is; js) by an edge so that C becomes a graph with k
edges. We de�ne sgnC by

sgnC = sgn
�

1 2 � � � 2k − 1 2k
i1 j1 � � � ik jk

�
:

It is easy to see that there are exactly (2k− 1)!! linear chord diagrams with 2k
vertices. For each linear chord diagram C , let

aC 2 (H⊗2k
Q )Sp

be the invariant tensor de�ned by permuting the tensor product (!0)⊗k in such
a way that the s-th part (!0)s goes to (HQ)is ⊗ (HQ)js , where (HQ)i denotes
the i-th component of H⊗2k

Q , and multiplied by the factor sgnC . We also
consider the dual element

�C 2 Hom(H⊗2k
Q ;Q)Sp

which is de�ned by applying the intersection pairing � on each two components
corresponding to pairs (is; js) of C and multiplied by sgnC . Namely we set

�C(u1 ⊗ � � � ⊗ u2k) = sgnC
kY
s=1

uis � ujs (ui 2 HQ):

Let us write
D‘(2k) = fCi; i = 1; � � � ; (2k − 1)!!g

for the set of all linear chord diagrams with 2k vertices.

Lemma 4.1 dim(H⊗2k
Q )Sp = dim Hom(H⊗2k

Q ;Q)Sp = (2k − 1)!! for k � g .

Proof Let x1; � � � ; xg; y1; � � � ; yg be a symplectic basis of H . There are 2g
members in this basis while if k � g , then there are only 2k (� 2g) positions
in the tensor product H2k

Q . It is now a simple matter to construct (2k − 1)!!
elements �j in H2k

Q such that
(
�Ci(�j)

�
(Ci 2 D‘(2k)) is the identity matrix.

Hence the elements f�Cigi are linearly independent. By the obvious duality, the
Sp{invariant components of tensors faCigi are also linearly independent.
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Remark The stable range of the Sp{invariant part of H⊗2k
Q , which is k � g ,

is twice the stable range of the irreducible decomposition of it, which is k � g
2 .

A similar statement is true for other Sp{modules related to the mapping class
group, eg, ��(�3HQ) and ��UQ (see Remark at the end of section 4.2).

Let C;C 0 2 D‘(2k) be two linear chord diagrams with 2k vertices. Then the
number �C(aC0) is given by

�C(aC0) = sgn(C;C 0)(2g)r

where r is the number of connected components of the graph C [ C 0 and
sgn(C;C 0) = �1 is suitably de�ned. If k � g , then Lemma 4.1 above implies
that the matrix

(
�Ci(aCj )

�
is non-singular. If we go into the unstable range,

degenerations occur and it seems to be not so easy to analyze them. However,
the �rst degeneration turns out to be remarkably simple and can be described
as follows.

Proposition 4.2 If g = k − 1, then the dimension of Sp{invariant part of
H⊗2k
Q is exactly one less than the stable dimension. Namely

dim(H⊗2k
Q )Sp = (2k − 1)!! − 1

and the unique linear relation between the elements aC (C 2 D‘(2k)) is given
by X

C2D‘(2k)

aC = 0:

Sketch of proof For k = 1 the assertion is empty and for k = 2 we can
check the assertion by a direct computation. Using the formula for the number
�C(aC0) given above, it can be shown thatX

C2D‘(2k)

�C0(aC) = 2kg(g − 1) � � � (g − k + 1)

for any C 0 2 D‘(2k). Hence
P

C2D‘(2k) aC = 0 for g � k − 1. On the other
hand, we can inductively construct (2k − 1)!! − 1 elements in (H⊗2k

Q )Sp which
are linearly independent for g = k − 1.

Remark After we had obtained the above Proposition 4.2, a preprint by Mi-
hailovs [101] appeared in which he gives a beautiful basis of (H⊗2k

Q )Sp for all
genera g . Members of his basis are linearly ordered and the above element
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P
C2D‘(2k) aC appears as the last one for g = k . (More precisely, his last ele-

ment !k in his notation is equal to k! times our element above.) In particular,
the dimension formula above follows immediately from his result. We expect
that we can use his basis in our approach to the Faber’s conjecture (see section
6.4 for more details).

4.2 Invariant tensors of ��(�3HQ) and ��UQ

In our paper [118], we described invariant tensors of ��(�3HQ) and ��UQ (or
rather those of their duals) in terms of trivalent graphs. It turns out that they
are speci�c cases of Kontsevich’s general framework given in [85, 86]. Here
we briefly summarize them. These descriptions were utilized in [118, 76] to
construct explicit group cocycles for the characteristic classes e 2 H2(Mg;�;Q)
and ei 2 H2i(Mg;Q) (see section 6.4 for more details).

As is well known, �2k(�3HQ) can be considered as a natural quotient as well as
a subspace of H⊗6k

Q . More precisely, let p : H⊗6k
Q !�2k(�3HQ) be the natural

projection and let i : �2k(�3HQ)!H⊗6k
Q be the inclusion induced from the

embedding

�3HQ 3 u1 ^ u2 ^ u3 7!
X
�

sgn� u�(1) ⊗ u�(2) ⊗ u�(3) 2 H⊗3
Q

and the similar one �2kH⊗3
Q � H⊗6k

Q , where � runs through the symmetric
group S3 of degree 3. Then for each linear chord diagram C 2 D‘(6k), we
have the corresponding elements

p�(aC) 2 (�2k(�3HQ))Sp; i�(�C) 2 Hom(�2k(�3HQ);Q)Sp:

Out of each linear chord diagram C 2 D‘(6k), let us construct a trivalent graph
ΓC having 2k vertices as follows. We group the labeled vertices f1; 2; � � � ; 6kg
of C into 2k classes f1; 2; 3g; f4; 5; 6g; � � � ; f6k−2; 6k−1; 6kg and then join the
three vertices belonging to each class to a single point. This yields a trivalent
graph which we denote by ΓC . It can be easily seen that if two linear chord dia-
grams C;C 0 yield isomorphic trivalent graphs ΓC ; ΓC0 , then the corresponding
elements coincide

p�(aC) = p�(aC0); i�(�C) = i�(�C0):

On the other hand, it is clear that we can lift any trivalent graph Γ with 2k
vertices to a linear chord diagram C such that Γ = ΓC . Hence to any such
trivalent graph Γ , we can associate invariant tensors

aΓ 2 (�2k(�3HQ))Sp; �Γ 2 Hom(�2k(�3HQ);Q)Sp
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by setting aΓ = p�(aC) and �Γ = 1
(2k)! i

�(�C) where C 2 D‘(6k) is any lift of
Γ .

Now let G2k be the set of isomorphism classes of connected trivalent graphs
with 2k vertices and let G =

‘
k�1 G2k be the disjoint union of G2k for k � 1.

Let Q[aΓ ;Γ 2 G] be the polynomial algebra generated by the symbol aΓ for
each Γ 2 G .

Proposition 4.3 The correspondence G2k 3 Γ 7! aΓ 2 (�2k(�3HQ))Sp de-
�nes a surjective algebra homomorphism

Q[aΓ ;Γ 2 G]−!(��(�3HQ))Sp

which is an isomorphism in degrees � 2g
3 . Similarly the correspondence G2k 3

Γ 7! �Γ 2 Hom(�2k(�3HQ);Q)Sp de�nes a surjective algebra homomorphism

Q[�Γ ;Γ 2 G]−!Hom(��(�3HQ);Q)Sp

which is an isomorphism in degrees � 2g
3 .

Next we consider invariant tensors of ��UQ and its dual. We have a natural
surjection p : �3HQ!UQ and this induces a linear map p� : ��(�3HQ)!��UQ .
If a trivalent graph Γ 2 G2k has a loop, namely an edge whose two endpoints are
the same, then clearly p�(aΓ ) = 0. Thus let G0

2k be the subset of G2k consisiting
of those graphs without loops and let G0 =

‘
k G0

2k . For each element Γ 2 G0 , let
bΓ = p�(aΓ ). Also let q : �3HQ!�3HQ be the Sp{equivariant linear map de-
�ned by q(�) = �− 1

2g−2C�^!0(� 2 �3HQ) where C : �3HQ!HQ is the contrac-
tion. Since q(HQ) = 0, it induces a homomorphism q : UQ!�3HQ and hence
q : �2kUQ!�2k(�3HQ). Now for each element Γ 2 G0

2k , let �Γ : �2kUQ!Q be
de�ned by �Γ = �Γ � q .

Proposition 4.4 The correspondence G0
2k 3 Γ 7! bΓ 2 (�2kUQ)Sp de�nes a

surjective algebra homomorphism

Q[bΓ ;Γ 2 G0]−!(��UQ)Sp

which is an isomorphism in degrees � 2g
3 . Similarly the correspondence G0

2k 3
Γ 7! �Γ 2 Hom(�2kUQ;Q)Sp de�nes a surjective algebra homomorphism

Q[�Γ ;Γ 2 G]−!Hom(��UQ;Q)Sp

which is an isomorphism in degrees � 2g
3 .
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Since �3HQ �= UQ �HQ , there is a natural decomposition

�2k(�3HQ) �= �2kUQ � (�2k−1UQ ⊗HQ)� � � � � (UQ ⊗ �2k−1HQ)� �2kHQ

and it induces that of the corresponding Sp{invariant parts. Hence we can also
decompose the space of invariant tensors of ��(�3HQ) and its dual according to
the above splitting. In fact, Proposition 4.4 gives the ��UQ{part of Proposition
4.3. We can give formulas for other parts of the above decomposition which are
described in terms of numbers of loops of trivalent graphs. We refer to [77] for
details.

Remark As is described in the above propositions, the stable range of the Sp{
invariant part of �2k(�3HQ) and �2kUQ is 2k � 2g

3 . This range coincides with
Harer’s improved stability range of the homology of the mapping class group
given in [50]. It turns out that this is far more than just an accident. In fact,
this fact will play an essential role in our approach to the Faber’s conjecture
(see section 6.4 and [120] for details).

4.3 Invariant tensors of hg;1

In this subsection, we �x a genus g and we write Lg;1 = �kLg;1(k) for the free
Lie algebra generated by H . Also we consider the module

hg;1(k) = Ker(H ⊗ Lg;1(k + 1)!Lg;1(k + 2))

which is the degree k summand of the Lie algebra consisting of derivations of
Lg;1 which kill the symplectic class !0 2 Lg;1(2) (see the next section section 5
for details). We simply write LQg;1 and hQg;1(k) for Lg;1(k)⊗Q and hg;1(k)⊗Q
respectively. We show that invariant tensors of hQg;1(2k) or its dual, namely
any element of hQg;1(2k)Sp or Hom(hQg;1(2k);Q)Sp can be represented by a linear
combination of chord diagrams with (2k + 2) vertices. Here a chord diagram
with 2k vertices is a partition of 2k vertices lying on a circle into k pairs where
each pair is connected by a chord. Chord diagrams already appeared in the
theory of Vassiliev knot invariants (see [10]) and they played an important role.
In the following, we will see that they can play another important role also in
our theory.

To show this, we recall a well known characterization of elements of LQg;1(k)
in H⊗kQ . There are several such characterizations which are given in terms of
various projections H⊗kC !Lg;1(k)⊗C (see [135]). Here we adopt the following
one.
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Lemma 4.5 Let Sk be the symmetric group of degree k and let �i = (12 � � � i)
2 Sk be the cyclic permutation. Let pk = (1−�k)(1−�k−1) � � � (1−�2) 2 Z[Sk]
which acts linearly on H⊗kQ . Then p2

k = kpk and an element � 2 H⊗kQ belongs

to LQg;1(k) if and only if pk(�) = k� . Moreover LQg;1(k) = Im pk .

If we consider LQg;1(k+1) as a subspace of H⊗(k+1)
Q , then the bracket operation

HQ ⊗ LQg;1(k + 1)−!LQg;1(k + 2)

is simply given by the correspondence u ⊗ � 7! u ⊗ � − � ⊗ u (u 2 HQ; � 2
LQg;1(k+1)). Hence it is easy to deduce the following characterization of hQg;1(k)

inside H⊗(k+2)
Q .

Proposition 4.6 An element � 2 H
⊗(k+2)
Q belongs to hQg;1(k) � H

⊗(k+2)
Q if

and only if the following two conditions are satis�ed. (i) (1⊗ pk+1)� = (k+ 1)�
and (ii) �k+2� = � .

We can construct a basis of (HQ ⊗ LQg;1(2k + 1))Sp as follows. Recall that we
write D‘(2k) for the set of linear chord diagrams with 2k vertices so that it
gives a basis of (H⊗2k

Q )Sp for k � g (see Lemma 4.1). By Lemma 4.5, we have

HQ ⊗ LQg;1(2k + 1) = Im(1⊗ p2k+1)

where we consider 1⊗p2k+1 as an endomorphism of HQ⊗(HQ⊗H⊗2k
Q ). Let C0

be the edge which connects the �rst two of the (2k+ 2) vertices corresponding
to HQ ⊗ (HQ ⊗ H⊗2k

Q ). For each element C 2 D‘(2k), consider the disjoint
union eC = C0

‘
C which is a linear chord diagram with (2k + 2) vertices.

Hence we have the corresponding invariant tensor

a
C̃
2 (HQ ⊗ (HQ ⊗H⊗2k

Q ))Sp:

Let ‘C = 1⊗ p2k+1(aC̃). Then by Proposition 4.6, ‘C is an element of (HQ ⊗
LQg;1(2k + 1))Sp .

Proposition 4.7 If k � g , then the set of elements f‘C ;C 2 D‘(2k)g forms
a basis of invariant tensors of HQ ⊗LQg;1(2k + 1). In particular

dim(HQ ⊗ LQg;1(2k + 1))Sp = (2k − 1)!!
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Sketch of Proof It can be shown that the elements in f‘C ;C 2 D‘(2k)g
are linearly independent because if we express ‘C as a linear combination of
the standard basis of (H⊗(2k+2)

Q )Sp given in Lemma 4.1, then we �nd ‘C =
a
C̃

+ other terms. On the other hand, we can show that the projection under
1 ⊗ p2k+1 of any member of this standard basis can be expressed as a linear
combination of ‘C .

Now we consider invariant tensors of hQg;1(2k). Associated to any element C 2
D‘(2k) we have the corresponding invariant tensor ‘C 2 (HQ⊗LQg;1(2k+ 1))Sp .
Consider the element

�C =
2k+2X
i=1

�i2k+2‘C :

By Proposition 4.6 (in particular condition (ii)), �C belongs to hQg;1(2k) and it
is clear from the above argument that these elements span the whole invariant
space hQg;1(2k)Sp . More precisely the cyclic group Z=(2k+2) of order 2k+2 acts
naturally on (HQ⊗LQg;1(2k+ 1))Sp and hQg;1(2k)Sp is nothing but the invariant
subspace of this action. Although there does not seem to exist any simple
formula for the dimension of this invariant subspace, this procedure gives a
method of enumerating all the elements of it.

Here is another approach to this problem which might be practically better than
the above, in particular in the dual setting. We simply use two conditions (i),
(ii) in Proposition 4.6 in the opposite way. Namely we �rst consider condition
(ii). Recall that any linear chord diagram C with (2k + 2) vertices gives rise
to an Sp{invariant map

�C : H⊗(2k+2)
Q −!Q:

Let us write Ci for �i2k+2C (i = 1; � � � ; 2k + 2). Then, in view of condition (ii)

above, the restrictions of �Ci to the subspace hQg;1(2k) � H
⊗(2k+2)
Q are equal

to each other for all i. This means that, instead of linear chord diagram C ,
we may assume that all of the vertices of C are arranged on a circle. But then
we obtain a usual chord diagram. Thus we can say that any chord diagram C
with (2k+ 2) vertices de�nes an element of Hom(hQg;1(2k);Q)Sp . In the case of
Vassiliev knot invariant, the linear space spanned by chord diagrams with 2k
vertices, which is denoted by GkDc in [10], modulo the (4T) relation serves as
the set of Vassiliev invariants of order k . In our case, the linear space spanned
by chord diagrams with (2k+2) vertices, namely Gk+1Dc , modulo the relations
coming from condition (i) above can be identi�ed with Hom(hQg;1(2k);Q)Sp (and
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also its dual). In particular, we have a surjection

Gk+1Dc−!Hom(hQg;1(2k);Q)Sp:

In section 6.2, we will show experimental results which have been obtained by
explicit computations applying this method.

5 Graded Lie algebras related to the mapping class
group

In this section, we introduce various graded Lie algebras which are related to
the mapping class group. We begin by recalling the de�nition of the Johnson
homomorphisms briefly (see [63, 115, 118] for details). LetMg;1 be the mapping
class group of �g relative to an embedded disk D2 � �g and let Mg;� be the
mapping class group of �g relative to the base point � 2 D2 . We write �0

g

for �g n IntD2 so that �1�0
g is a free group of rank 2g . Let � 2 �1�0

g be the
element represented by a simple closed curve on �0

g which is parallel to the
boundary. Then as is well known, we have natural isomorphisms due originally
to Nielsen

Mg
�= Out+ �1�g; Mg;� �= Aut+ �1�g

Mg;1
�= f’ 2 Aut�1�0

g;’(�) = �g:

By virtue of this, any �ltration on the fundamental groups of surfaces induces
those of the corresponding mapping class groups. In particular, the lower central
series induces natural �ltrations. More precisely, let Γk(G) denote the k -th
term in the lower central series of a group G, where Γ0(G) = G and Γk(G) =
[G;Γk−1(G)] for k � 1. We set

Mg;1(k) = f’ 2Mg;1;’(γ)γ−1 2 Γk(�1�0
g) for any γ 2 �1�0

gg
Mg;�(k) = f’ 2Mg;�;’(γ)γ−1 2 Γk(�1�g) for any γ 2 �1�gg

and
Mg(k) = �(Mg;�(k))

where � : Mg;�!Mg is the natural projection. Thus we obtain a natural �l-
tration fM(k)gk on each of the three types of mapping class groups. It is
easy to see that the �rst one M(1) is nothing but the Torelli group, namely
Ig;1;Ig;� or Ig . Now we can say that the Johnson homomorphism is the one
which describes the associated graded quotients of the mapping class groups,
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with respect to these �trations, explicitly in terms of derivations of graded Lie
algebras associated to the lower central series of the fundamental groups of
surfaces.

Let us simply write H for H1(�g;Z) as before and let Lg;1 = �kLg;1(k) be
the free graded Lie algebra generated by H . As is well known, Lg;1 is the
graded Lie algebra associated to the lower central series of �1�0

g , namely we
have natural isomorphisms Lg;1(k) �= Γk−1(�1�0

g)=Γk(�1�0
g) (see [95]). Let

!0 2 �2H = Lg;1(2) be the symplectic class and let I = �k�2Ik be the ideal of
Lg;1 generated by !0 . Then a result of Labute [87] says that the quotient Lie
algebra Lg = Lg;1=I serves as the graded Lie algebra associated to the lower
central series of �1�g . Now we de�ne

hg;1(k) = Ker(H ⊗ Lg;1(k + 1)!Lg;1(k + 2))
�= Ker(Hom(H;Lg;1(k + 1))!Lg;1(k + 2))

hg;�(k) = Ker(H ⊗ Lg(k + 1)!Lg(k + 2))
�= Ker(Hom(H;Lg(k + 1))!Lg(k + 2))

where the second isomorphisms in each of the terms above are induced by the
Poincar�e duality H� �= H . In our previous papers [115, 118], Lg;1;Lg have
been denoted by L0;L and also hg;1(k); hg;�(k) have been denoted by H0

k;Hk ,
respectively.

Then the k -th Johnson homomorphisms

�g;1(k) : Mg;1(k)−!hg;1(k)
�g;�(k) : Mg;�(k)−!hg;�(k)

are de�ned by the correspondence

Mg;1(k) 3 ’ 7! �g;1(k)(’) = f[γ] 7! [’(γ)γ−1]g 2 Hom(H;Lg;1(k + 1))

(γ 2 �1�0
g) for Mg;1 and similarly for Mg;� . Here [γ] 2 H denotes the

homology class of γ 2 �1�0
g and [’(γ)γ−1] denotes the class of ’(γ)γ−1 2

Γk(�1�0
g) in Lg;1(k + 1) = Γk(�1�0

g)=Γk+1(�1�0
g). It can be shown that

Ker �g;1(k) =Mg;1(k + 1); Ker �g;�(k) =Mg;�(k + 1)

so that we have isomorphisms

Mg;1(k)=Mg;1(k + 1) �= Im �g;1(k) � hg;1(k)
Mg;�(k)=Mg;�(k + 1) �= Im �g;�(k) � hg;�(k):

Next we consider the �ltration fMg(k)gk of the usual mapping class group
Mg . As is mentioned above, Mg(k) = �(Mg;�(k)) and it was proved in [5]
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that �1�g\Mg;�(k) = Γk−1(�1�g). Hence we have a natural injection Lg(k) �
hg;�(k). We de�ne the k -th Johnson homomorphism

�g(k) : Mg(k)−!hg(k)

by setting �g(k)(’) = �g;�(k)( ~’) mod Lg(k) (’ 2 Mg(k)) where hg(k) =
hg;�(k)=Lg(k) and ~’ 2Mg;�(k) is any lift of ’.

Thus we obtain three graded modules

hg;1 =
1M
k=1

hg;1(k); hg;� =
1M
k=1

hg;�(k); hg =
1M
k=1

hg(k)

and it turns out that they have natural structures of graded Lie algebras over Z.
The relations between these three graded Lie algebras hg;1; hg;�; hg are described
simply by the following two short exact sequences

0−!jg;1−!hg;1−!hg;�−!0
0−!Lg−!hg;�−!hg−!0

where

jg;1 =
1M
k=2

jg;1(k); jg;1(k) = Ker(Hom(H; Ik+1)!Ik+2))

and Lg = Lg;1=I is the graded Lie algebra associated to the lower central series
of �1�g as before.

Sometimes it is useful to consider the tensor products with Q of the modules
appearing above. Let us denote them by attaching a superscript Q to the
original Z{form. For example LQg;1 = Lg;1 ⊗ Q and hQg;1 = hg;1 ⊗ Q which we
already used in section 4. In these terminologies, hQg;1; h

Q
g;� are nothing but the

graded Lie algebras consisting of derivations of LQg;1;LQg with positive degrees
which kill the symplectic class !0 and hQg is equal to the quotient of hQg;� by
inner derivations. We omit the degree 0 part hQg;1(0) = hQg;�(0) = hQg (0) =
sp(2g;Q) because it is the Lie algebra of the rational form of Mg;1=Mg;1(1) =
Mg;�=Mg;�(1) =Mg=Mg(1) = Sp(2g;Z).

Now consider projective limits of nilpotent groups

Ng;1 = lim − k�1Ig;1=Mg;1(k); Ng;� = lim − k�1Ig;�=Mg;�(k)

Ng = lim − k�1Ig=Mg(k)

which are associated to the �ltrations M(k) on the corresponding mapping
class groups. We can tensor these groups with Q to obtain pronilpotent Lie
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groups NQg;1;N
Q
g;�;NQg . Let us write ng;1; ng;�; ng for their Lie algebras and also

let Gr ng;1;Gr ng;�;Gr ng be their associated graded Lie algebras, respectively.
Then the Johnson homomorphism induces embeddings of graded Lie algebras

Gr ng;1 � hQg;1; Gr ng;� � hQg;�; Gr ng � hQg
(in fact, these embeddings are de�ned at the level of Z{forms). More precisely,
we can identify n(k) with Im �Q(k) so that we can write Gr n = Im �Q � hQ
for any type of decorations fg; 1g; fg; �g; g . It is a very important problem to
idetify these Lie subalgebras inside the Lie algebras of derivations.

The cohomological structure of the �rst type hQg;1 of the above three graded Lie
algebras was investigated by Kontsevich in his celebrated papers [85, 86] where
he considered three types of Lie algebras ‘g; ag; cg which consist of derivations
of certain Lie, associative, and commutative algebras. In fact our hQg;1 is nothing
but the Lie subalgebra ‘+g of ‘g consisting of elements with positive degrees.
There are natural injections hg;1 � hg+1;1 so that we can make the direct limit

hQ1 = lim
g!1

h
Q
g;1

which is equal to the positive part ‘+1 of ‘1 in Kontsevich’s notation. In section
6.5, we will apply one of Kontsevich’s results in the above cited papers to our hQ1
and obtain de�nitions of certain (co)homology classes of outer automorphism
groups OutFn of free groups Fn of rank n � 2.

The second graded Lie algebra, which we consider in this paper, is the Torelli
Lie algebra which is, by de�nition, the Malcev Lie algebra of the Torelli group.
The structure of the Torelli Lie algebra has been extensively studied by Hain
in [39, 41]. Here we summarize his results briefly for later use in section 6 (see
the above papers for details). We write tg;1; tg;�; tg for the Torelli Lie algebras
which correspond to three types of the Torelli groups Ig;1;Ig;�;Ig , respectively
(Hain uses the notation t1g for tg;� ).

In the above, we considered certain surjective homomorphisms

Ig;1−!Ng;1; Ig;�−!Ng;�; Ig−!Ng
from each type of the Torelli groups to a tower of torsion free nilpotent groups.
Roughly speaking, the Malcev completion of the Torelli group (or more gener-
ally of any �nitely generated group) is de�ned to be the projective limit of such
homomorphisms. Since any �nitely generated torsion free nilpotent group N
can be canonically embedded into its Malcev completion N ⊗Q which is a Lie
group over Q, the Malcev completion of the Torelli groups can be described by
certain homomorphisms

Ig;1−!Tg;1; Ig;�−!Tg;�; Ig−!Tg
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from the Torelli groups into pronilpotent Lie groups over Q. They are charac-
terized by the universal property that for any homomorphism � : I!N from
the Torelli group into a pronilpotent group N , there exists a unique homomor-
phism �� : T !N such that � = �� � � where � : I!T is the homomorphism
given above (we omit the subscripts). Since any nilpotent Lie group is deter-
mined by its Lie algebra, the pronilpotent group T is determined by its Lie
algebra t which is a pronilpotent Lie algebra over Q. These are the de�ni-
tions of the pronilpotent Lie algebras tg;1; tg;�; tg which we would like to call the
Torelli Lie algebras. Let Gr t = �kt(k) be the graded Lie algebra associated to
the lower central series of t and also let Gr I be the graded Lie algebra (over
Z) associated to the lower central series of the Torelli group I . Then a general
fact about the Malcev completion implies that there is a natural isomorphism
Gr t �= (Gr I)⊗Q. In particular, we have an isomorphism

t(k) �= (Γk−1(I)=Γk(I))⊗Q:

Now by the universal property of the Malcev completion, there is a uniquely
de�ned homomorphism T !N which induces a morphism t!n. This induces
a homomorphism Gr t!Gr n of the associated graded Lie algebras. Thus we
obtain homomorphisms

tg;1(k)!ng;1(k) � hQg;1(k); tg;�(k)!ng;�(k) � hQg;�(k);

tg(k)!ng(k) � hQg (k):

In fact, Johnson already observed in [63] that the (k−1)-th term Γk−1(Ig;1) of
the lower central series of Ig;1 is contained in Mg;1(k) so that there is a natural
homomorphism

Γk−1(Ig;1)=Γk(Ig;1)−!Mg;1(k)=Mg;1(k + 1) � hg;1(k)

which is de�ned over Z.

The third (and the �nal) Lie algebra, denoted by ug , is the one introduced by
Hain in [39]. It lies, in some sense, between the Torelli Lie algebra t and n. We
have the following commutative diagram

1 −−−! Ig −−−! Mg −−−! Sp(2g;Z) −−−! 1??y ??y ??y
1 −−−! Ng ⊗Q −−−! Gg −−−! Sp(2g;Q) −−−! 1

(6)

where Gg is the Zariski closure of the image of lim −Mg=Mg(k) in the auto-
morphism group of the Malcev Lie algebra of �1�g . Hain applied the relative
Malcev completion (see [42]), which is due to Deligne, to the mapping class
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group Mg relative to the classical representation Mg!Sp(2g;Q). Roughly
speaking, it is the projective limit of representations like in (6) where Gg is re-
placed by an algebraic group de�ned over Q such that the image of Mg there
is Zariski dense and Ng ⊗ Q is replaced by a unipotent subgroup. It has the
form

1−!Ug−!Eg−!Sp(2g;Q)−!1

where Eg is a proalgebraic group and Ug is a prounipotent group. Ug is called
the prounipotent radical of the relative Malcev completion of the mapping class
group. Let ug be the Lie algebra of Ug . There are also decorated versions of
these groups. By the de�nition, we have canonical homomorphisms

Tg−!Ug−!N ⊗Q

and their Lie algebra version

tg−!ug−!ng:

Now we can state two fundamental results of Hain as follows. The �rst one
gives a complete description of the relation between the Lie algebras t and u.

Theorem 5.1 (Hain [39]) Assume that g � 3. Then the natural homomor-
phisms Tg;1!Ug;1 , Tg;�!Ug;� , Tg!Ug are all surjective and the kernel of each
is a central subgroup isomorphic to Q.

Equivalent statement can be given for the associated Lie algebras t; u. The
second result is the explicit presentation of the Torelli Lie algebra t. Let U =
�3H=H and let UQ be U ⊗Q as before. Then the Johnson homomorphism

�Qg (1) : Ig−!UQ

induces a homomorphism between the second cohomology groups

�Qg (1)� : �2UQ−!H2(Ig;Q)

and Hain determined the kernel of this homomorphism as follows.

Proposition 5.2 (Hain [41]) Let �Qg (1) : Ig−!UQ be as above. Then

Ker �Qg (1)� = [22] + [0] � �2UQ = [16] + [14] + [12] + [2212] + [22] + [0]

where the decomposition of �2UQ is valid for g � 6.
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The fact that [22] + [0] is contained in the kernel was essentially proved in our
papers [111, 112], though in a more primitive way. In fact, we obtained the
secondary invariant d1 2 H1(Kg;Q) (see section 6.6 below for details) from the
vanishing of the trivial summand [0] in H2(Ig;Q) which turned out to be closely
related to the Casson invariant. Hain proved the above result in a systematic
way. In particular, the non-triviality in H2(Ig;Q) of other summands than
[22] + [0] was shown by constructing explicit abelian cycles of Ig on which they
take non-zero values.

Theorem 5.3 (Hain [41]) If g � 3, then tg is isomorphic to the completion
of its associated graded Lie algebra Gr tg . Moreover if g � 6, then it has a
presentation

Gr tg = L(UQ)=([16] + [14] + [12] + [2212])

where L(UQ) denotes the free Lie algebra generated by UQ = [13].

Hain obtained similar presentations for other Lie algebras tg;1; tg;�; ug;1; ug;�; ug
as well. Although these presentations are very simple, the proof requires deep
and powerful techniques in Hodge theory. One of the main ingredients is to put
mixed Hodge structures on ug and then on tg which depend on a �xed complex
structure on the reference surface. One important consequence of this is that
after tensoring with C, they are canonically isomorphic to their associated
graded Lie algebras.

Thus for the study of the structure of the mapping class group, it is enough to
investigate the morphisms

tg(k)−!ug(k)−! Im �Qg (k)

between the three graded Lie algebras Gr tg;Gr ug and �k Im �Qg (k) � hQg .
Another important consequence of Hain’s work is that Im �Qg = �k Im �Qg (k) is
generated by degree one summand Im �Qg (1) = [13].

6 A prospect on the structure of the mapping class
group

In this section, we would like to describe some of the various aspects of the
structure of the mapping class group which seem to deserve further investigation
in the future. More precisely, we consider the following topics.
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6.1 Structure of the graded Lie algebra hg;1

6.2 Description of the Sp{invariant part of hQg;1(6)

6.3 Kernel of tg! Im �Qg and invariants of 3{manifolds

6.4 Cocycles for the Mumford{Morita{Miller classes

6.5 Cohomology of the graded Lie algebra hQ1 and OutFn

6.6 Secondary characteristic classes of surface bundles

6.7 Bounded cohomology of the mapping class group

6.8 Representations of the mapping class group

6.1 Structure of the graded Lie algebra hg;1

We consider the structure of the graded Lie algebra

hg;1 =
1M
k=1

hg;1(k)

(see section 5). Recall that this is the graded Lie algebra consisting of deriva-
tions, with positive degrees, of the free graded Lie algebra Lg;1 = �kLg;1(k)
which kill the symplectic class !0 2 Lg;1(2) = �2H . We omit the degree 0 part
hg;1(0)⊗Q which is isomorphic to sp(2g;Q).

As was explained in section 5, this Lie algebra serves as the target of the Johnson
homomorphisms

�g;1(k) : Mg;1(k)=Mg;1(k + 1)−!hg;1(k)

so that the main problem is to describe the image

Im �g;1 � hg;1
as a Lie subalgebra of hg;1 . It is one of the basic results of Johnson that

Im �g;1(1) = hg;1(1) = �3H:

Here we mention two important topological applications obtained by Hain in
his fundamental work in [41]. One is that the graded Lie algebra Im �Qg;1 (the
superscript Q will mean that we take the operation ⊗Q as before) is gen-
erated by the degree one summand Im �Qg;1(1) = �3HQ , which was already
mentioned in section 5. The other is that the natural map Mg;1(k)=Mg;1(k +
1)!Mg;�(k)=Mg;�(k+ 1) is surjective after tensoring with Q (and hence is an
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isomorphism for k 6= 2). As is mentioned in [41], this is an answer to a problem
raised by Asada{Nakamura in [6] where they pointed out the possibility that
j
Q
g;1(4) = [2] might be outside of Im �Qg;1(4). This possibility is now settled by

Hain to be true as follows. It is easy to see that jg;1(2) = Z and it is contained
in Im �g;1(2). However this is the whole of the intersection of Im �g;1 with the
ideal jg;1 . Namely we have jg;1(k) \ Im �g;1(k) = f0g for all k � 3. Note that
Im �g;� contains Lg as a natural Lie subalgebra which corresponds to the inner
derivations of Lg , as was already mentioned in section 5.

In our paper [115], we introduced certain Sp{equivariant mappings

Tr(2k + 1): hg;1(2k + 1)−!S2k+1H (k = 1; 2; � � � )
such that they are surjective (after tensoring with Q) and vanish on Im �g;1 as
well as on [hg;1; hg;1]. We can also show that it vanishes on the ideal jg;1 . Thus
the traces descend to Sp{equivariant mappings

Tr(2k + 1): hg(2k + 1)−!S2k+1H (k = 1; 2; � � � ):
These mappings are called traces because they were de�ned using the trace of
some matrix representation of hg;1(2k + 1).

We can summarize the above as follows. The ideal jg;1 and the image Im �g;1 of
the Johnson homomorphism are almost disjoint from each other and both are
contained in the kernel of the traces. Thus the next problem is to determine
how large is the remaining part of the Lie algebra hg;1 .

After we had found the traces, Nakamura [126] discovered another obstruction
to the surjectivity of �g;1 which has its origin in number theory. More precisely,
it is related to theories of outer Galois representations of the absolute Galois
group over Q initiated by Grothendieck, Ihara and Deligne and developed by
many people (see [38, 57, 18, 19, 127] and references in them). Roughly speak-
ing, Nakamura proved that certain graded Lie algebra, which arises in the above
theories, appears in the cokernel of Johnson homomorphisms. In particular, he
concluded that the dimension of the cokernel of the Johnson homomorphism

�Qg;� : (Mg;�(2k)=Mg;�(2k + 1)) ⊗Q−!hQg;�(2k)

is greater than or equal to a number rk which is the free Z‘{rank of a certain
Galois group Gal(Q(k + 1)=Q(k)) associated to the outer representation of
Gal(Q=Q) on some nilpotent quotient of the pro-‘ fundamental group of P1 n
f0; 1;1g (see [126] for details). Thus it may depend on the prime ‘. However
it is conjectured that rk is the dimension of the degree k part of the free graded
Lie algebra over Q which is generated by one free generator �k of degree k for
each odd k > 1 (Deligne’s motivic conjecture). As Nakamura mentions in his
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paper cited above, the appearance of these Galois obstructions, in its primitive
form, was predicted by Takayuki Oda and some closely related work was done
by M. Matsumoto. Certain estimates of these numbers have been obtained by
Ihara [56], M. Matsumoto [96], Tsunogai [141] and others.

Next we consider the images of the Johnson homomorphisms

�g(k) : Mg(k)=Mg(k + 1)!hg(k)

for low degrees. The following results have been obtained.

Im �Qg (1) = [13]

Im �Qg (2) = [22]

Im �Qg (3) = [312]

([61])
([111, 41])
([6, 41])

Nakamura made a list of irreducible decompositions of the Sp{modules hQg;1(k)
for small k by a computer calculation. Utilizing it, we made rather long explicit
computations of the Lie bracket Im �Qg;1(1) ⊗ Im �Qg;1(3)!hQg;1(4), in the frame-
work of symplectic representation theory, and obtained the following result.

Proposition 6.1 We have

Im �Qg (4) = [42] + [313] + [23] + [31] + [2] (g � 4)

and the cokernel of the homomorphism �Qg;1(4) : (Mg;1(4)=Mg;1(5))⊗Q!hQg;1(4)
is isomorphic to [2] + [212] where [2] = jQg;1(4).

The following list describes the structure of hQg;1(k) for degrees k � 4.

k j
Q
g;1(k) LQg (k) Im �Qg (k) Cok �Qg (k) n Tr Tr

1 [1] [13]
2 [0] [12] [22]
3 [21] [312] [3]
4 [2] [31][212][2] [42][313][23][31][2] [212]

Here the term Cok �Qg (k) n Tr means that we exclude the trace component
from the cokernel of the homomorphism �Qg (k). Thus the summand [212] in
h
Q
g;1(4) is not contained in Im �Qg (4) and it should be considered as a new type

of obstruction for the surjectivity of �Qg;1 other than the ideal jg;1 , the traces
and the Golois obstructions. In the next degree 5, we found yet another new
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obstruction. More precisely, at least one copy of [13] � hQg;1(5) cannot be hit
by �Qg;1(5) and this leads us to the non-triviality of H4(OutF4;Q) as will be
shown in section 6.5.

Thus the cokernels of the Johnson homomorphisms seem to grow rapidly ac-
cording as the degree increases and it will require many more studies before we
can �gure out the precise form of Im �Qg;1 inside hQg;1 . We mention that Kont-
sevich gave the irreducible decomposition of hQg;1 as an Sp{module in [85, 86]
and it would be desirable to identify Im �Qg;1 as an explicit Sp{submodule of it.

6.2 Description of Sp{invariant part of hQg;1(6)

In this subsection, we describe the Sp{invariant part hQg;1(6)Sp of the degree 6
summand of the graded Lie algebra hQg;1 to illustrate our method. Here we only
give an outline of our computation rather than the details.

We have an exact sequence

0−!hg;1(6)−!H ⊗ Lg;1(7)−!Lg;1(8)−!0:

By Proposition 4.7, we know that dim(HQ ⊗ LQg;1(7))Sp = 15 and it can be
shown that dimLQg;1(8)Sp = 10. Hence dim hQg;1(6)Sp = 5 in the stable range.
Also it can be shown that dim jQg;1(6)Sp = 2. Alternatively, we can use the
method described after Proposition 4.7 as follows. The set of chord diagrams
with 4 chords has 18 elements. If we divide the vector space G4Dc spanned
by it by the (4T) relation, then the dimension reduces to 6 (see [10]). For
our purpose, instead of (4T) relation, we have to put the relation coming from
condition (i) of Proposition 4.6. Then we �nd by an explicit computation that

dim hQg;1(6)Sp =

8><>:
5 (g � 3)
4 (g = 2)
1 (g = 1):

We can also give a basis f�i; i = 1; � � � ; 5g of Hom(hQg;1(6);Q)Sp in terms of lin-
ear combinations of chord diagrams. Now we consider the following 5 elements
f�i; i = 1; � � � ; 5g in hQg;1(6)Sp . We choose the �rst two elements �1; �2 to be a
basis of jQg;1(6)Sp . On the other hand, we know that hQg;1(3) = [21] + [312] + [3]
where [21] = LQg (3), [312] = Im �Qg (3) and [3] is the trace component (see the
table in section 6.1). It turns out that the unique trivial summand [0] in each
of �2[21];�2[312] and �2[3] survives in hQg;1(6)Sp under the bracket operation
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�2h
Q
g;1(3)!hQg;1(6). We set �3; �4; �5 to be the images in hQg;1(6)Sp of these el-

ements in the above order. We see that �3 is a generator of LQg (6)Sp �= Q.
Clearly �4 is contained in Im �Qg (6)Sp . Also it turns out that we can construct
the �rst two elements �1; �2 by taking brackets of suitable elements from hQg;1(1)
and [3] � hQg;1(3). This is one of the supporting pieces of evidence for Conjec-
ture 6.10 given in section 6.5 below. Now explicit computation shows that
det(�i(�j)) 6= 0. Hence f�ig forms a basis of hQg;1(6)Sp .

Summing up, we have the following table for the dimensions of Sp{invariant
part of hQg;1(6) corresponding to the ideal jQg;1 , inner derivations LQg , Johnson
image Im �Qg and the remaining part Cok �Qg (for g � 3).

j
Q
g;1(6)Sp LQg (6)Sp Im �Qg (6)Sp Cok �Qg (6)Sp total

2 1 1 1 5

We can also see from the above table that the dimension of Cok �Qg (6) is exactly
equal to one. Hence it should be equal to Nakamura’s Galois obstruction given
in [126] which is in fact independent of ‘.

The way of degeneration is interesting also here. More precisely, if we set g = 1,
then it turns out that any of the three elements �3; �4; �5 goes to a unique non-
trivial element in hQ1;1(6)Sp �= Q (up to non-zero scalars). Observe here that if
g = 1, then the Torelli group is trivial, the ideal j1;1 coincides with the whole of
h1;1 and the traces are all trivial. However the forgetful mapping hg;1!h1;1 is
not a Lie algebra homomorphism so that there is no contradiction here. It may
be said that, in genus one, topology disappears and only arithmetic remains.

The above is only a special case of degree 6 summand. However we can see
already here a glimpse of some general phenomena. Namely the elements
�3; �4; �5 can be de�ned for all degrees 4k + 2 and turn out to be non-trivial in
h
Q
g;1(4k + 2)Sp . For example �4 is de�ned to be the image of the Sp{invariant

part of �2[2k + 1; 12] in Im �Qg;1(4k + 2) where [2k + 1; 12] � Im �Qg;1(2k + 1) is
the summand given in [6]. The elements �5 for all k > 1 were constructed in
a joint work with Nakamura in which we are trying to understand the Galois
obstructions topologically.

6.3 Kernel of tg! Im �Qg and invariants of 3{manifolds

As is well known, there are close connections between the mapping class group
and 3 dimensional manifolds. More precisely, the Heegaard decomposition of
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3{manifolds gives rise to a direct correspondence between the two objects and
the construction of surface bundles over the circle with a given monodromy from
the mapping class group yields another such relation. Also the genus 1 mapping
class group plays a crucial role in the theory of Dehn surgery along framed links
in 3{manifolds, particularly in S3 by virtue of Kirby’s fundamental result [79].
Hence any invariant of 3{manifolds naturally has certain e�ect on the structure
of the mapping class group.

Until the discovery of the Casson invariant for homology 3{spheres in 1985, the
Rohlin invariant was almost the unique invariant for 3{manifolds. Motivated
mainly by Witten’s influential work in [144], the theory of topological invariants
of 3{manifolds has been continually and rapidly developing. See [134, 83, 80,
123, 130, 88] as well as their references. It is beyond the scope of this article
to review these developments. In the following, we would like to focus on those
results which have direct relation with the structure of the mapping class group.

If we are given a 3{manifold M together with an embedded oriented surface
�g � M , then we can associate a new manifold M’ to each element ’ 2 Mg

by cutting M along �g and pasting it back together by ’. In the cases where
M is an integral homology sphere and ’ belongs to the Torelli group Ig , the
resultant manifold M’ is again an integral homology sphere. Hence, given any
topological invariant � of homology 3{spheres, with values in a module A,
we can de�ne a mapping � : Ig!A by setting �(’) = �(M’). Birman and
Craggs [12] �rst studied such mappings for the case of the Rohlin invariant �.
Johnson [60] extended their results to obtain a complete enumeration of so-
called Birman{Craggs homomorphisms. This result played an important role
in his determination of the abelianization of the Torelli group in [65]. In our
papers [111, 112], we studied the case of the Casson invariant � and in particular
we obtained an interpretation of � in terms of the secondary characteristic
classes of surface bundles (see [119] and section 6.6 below). This work has been
generalized in two di�erent ways. One is due to Lescop [89] where she obtained,
among other things, a closed formula which expresses how the Casson{Walker{
Lescop invariant behaves under the cut and paste operation on 3{manifolds.
The other is given by a series of works of Garoufalidis and Levine [32, 33]
where they generalized our results cited above extensively. More precisely, we
considered the e�ect of Casson invariant on the structure of the Torelli group
Ig while they considered all of the �nite type invariants of homology 3{spheres
introduced by Ohtsuki [129, 130]. In particular, they proved that Ohtsuki’s
�ltration of the space of homology 3{spheres can be described in terms of
the lower central series of the Torelli group. As a corollary to this statement,
they proved that any primitive type 3k invariant � gives rise to a non-trivial
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homomorphism
� : tg(2k)−!Q:

Recall from section 5 that we have a series of homomorphisms

tg(k)−!ug(k)−! Im �Qg (k)

and we know by Hain [39] that tg(k) �= ug(k) for all k 6= 2 and that tg(2) =
ug(2)+[0]. Thus the main problem concerning the above series is the following.

Problem 6.2 Determine whether the homomorphism tg(k)! Im �Qg (k) is in-
jective (and hence an isomorphism) for k 6= 2 or not.

The results of Garoufalidis and Levine mentioned above show that the above
problem is crucial also from the point of view of the theory of invariants of 3{
manifolds. We mention that, extending earlier results of Johnson [63], Kitano
[81] proved that the k -th Johnson homomorphism �g;1(k) : Mg;1(k)!hg;1(k)
exactly mesures the higher Massey products of mapping tori which are associ-
ated to elements of the subgroupMg;1(k). Hence if Problem 6.2 will be a�rma-
tively solved, it would imply that the �nite type invariants can be described in
terms of the original Casson invariant together with the Massey products. This
might sound unlikely from the point of view of 3{manifolds invariants. Also
the author learned from J Murakami that the restriction, to the Torelli group,
of the projective representation of Mg associated to the LMO invariant given
in [88, 124] gives rise to a unipotent representation (after suitable truncations).
Hence it should be described by the Torelli Lie algebra tg . This also increases
the importance of Problem 6.2.

Although Hain [41] obtained a presentation of the Torelli Lie algebra tg (see
section 5), it is by no means easy to determine tg(k) (k = 1; 2; � � � ) explicitly
by using it. One way to compute them is to apply Sullivan’s theory [137] of 1{
minimal models to the Torelli group Ig which can be described as follows. First
of all we know by Johnson [61] that tg(1) = UQ = [13]. It was a consequence of
the results of [111, 112] that tg(2) contains at least [22] + [0] where the trivial
summand [0] reflects the influence of the Casson invariant on the structure of
the Torelli group. We have an isomorphism

tg(2)� �= Ker(�2
tg(1)�!H2(Ig)):

As was already mentioned in section 5 (Proposition 5.2), Hain [41] determined
the right hand side to be precisely equal to [22] + [0] and he concluded that

tg(2) = [22] + [0] (g � 3):

The next case, namely the case of degree 3 is given by the following result.
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Proposition 6.3 We have isomorphisms

tg(3) �= ug(3) �= Im �g(3) = [312] (g � 6):

Sketch of Proof Sullivan’s theory [137] implies that tg(3) can be identi�ed
with the kernel of the following homomorphism

Ker

( 
tg(1)� ⊗ tg(2)�

�2tg(2)�

!
d−!
 

�3
tg(1)�

�2
tg(1)� ⊗ tg(2)�

!)
−!H2(Ig)

where d � 0 on tg(1)� and d : tg(2)�!�2tg(1)� is the natural injection. The
di�erential d : �2tg(2)�!�2tg(1)� ⊗ tg(2)� is given by d(� ^ �) = d� ⊗ � −
d� ⊗ � (�; � 2 tg(2)�). It is easy to deduce from this fact that it is injective.
Therefore tg(3)� is isomorphic to the kernel of the following mapping

Ker(tg(1)� ⊗ tg(2)�!�3tg(1)�)−!H2(Ig)
which is given by the Massey triple product. Hain proved in [41] that all of the
higher Massey products of Ig vanishes for g � 6. Hence passsing to the dual,
we see that tg(3) is determined by the following exact sequence

�3tg(1)−!tg(1) ⊗ tg(2)
[ ; ]−!tg(3)−!0:

Here the �rst mapping is given by

�3tg(1) 3 u ^ v ^ w 7! u⊗ [v;w] + v ⊗ [w; u] + w ⊗ [u; v] (u; v;w 2 tg(1))

and the image of which in tg(3) under the bracket operation is trivial because
of the Jacobi identity. The irreducible decomposition of tg(1) ⊗ tg(2) = [13] ⊗
([22] + [0]) is given by

tg(1)⊗tg(2) = ([321]+[3212]+[2213]+[312]+[32]+[213]+[221]+[21]+[13])+[13]:

Explicit computations, corresponding to each summand in the above decompo-
sition, show that the mapping �3tg(1)!tg(1)⊗ tg(2) hits any summand except
[312]. Since we already know that Im �Qg (3) = [312], the result follows.

If we inspect the above proof carefully, we �nd that it was not necessary to use
Hain’s vanishing of Massey triple products of Ig for g � 6. It turns out that the
computation itself contains a proof of the vanishing of them. However for higher
degrees k = 4; 5; � � � , Hain’s result considerably simpli�es the computations. By
using this method, we can continue the computation for higher degrees. For
example the degree 4 summand tg(4) can be determined by the following exact
sequence

�2
tg(1)⊗ tg(2)−!

(
tg(1)⊗ tg(3)

�
� �2

tg(2)
[ ; ]−!tg(4)−!0:

Shigeyuki Morita

Geometry and Topology Monographs, Volume 2 (1999)

382



Here the �rst mapping is given by

(u ^ v)⊗ w 7! u⊗ [v;w] − v ⊗ [u;w] − [u; v] ^w 2
(
tg(1)⊗ tg(3)

�
� �2

tg(2)

where (u; v 2 tg(1); w 2 tg(2)) and the above element vanishes in tg(4) again
by the Jacobi identity. Although our computation is not �nished yet, we see no
signs of non-trivial kernel for tg(k)! Im �Qg (k) (k = 4; 5; 6) so far.

We can also ask how other invariants of homology 3{spheres, for example var-
ious Betti numbers of Floer homology [28] or in�nitely many homology cobor-
dism invariants the existence of which is guaranteed by a remarkable result of
Furuta [31], will influence the structure of the Torelli group. Also it seems to
be a challenging problem to seek those invariants of homology 3{spheres which
reflect semi-simple informations, rather than the nilpotent ones, of the Torelli
group.

6.4 Cocycles for the Mumford{Morita{Miller classes

In our paper [116], we constructed certain representations �1 of the mapping
class groups Mg;�;Mg and obtained the following commutative diagram

Mg;�
�1−−−! 1

2�3H o Sp(2g;Z)??y ??y
Mg −−−!

�1

1
2�3H=H o Sp(2g;Z):

By making use of a standard fact concerning the cohomology of a group which
is a semi-direct product, we deduced the existence of the following diagram

Hom(��(�3HQ);Q)Sp
��1−−−! H�(Mg;�;Q)x?? x??

Hom(��UQ;Q)Sp −−−!
��1

H�(Mg;Q):

(7)

If we combine this with Proposition 4.3 and Proposition 4.4 (see section 4.2),
then we obtain the following commutative diagram (which is de�ned at the
cocycle level)

Q[�Γ ;Γ 2 G]
��1−−−! H�(Mg;�;Q)x?? x??

Q[�Γ ;Γ 2 G0] −−−!
��1

H�(Mg;Q):

(8)
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It was proved in [118] that the images of ��1 in (8) contain all of the character-
istic classes e; ei (i = 1; 2; � � � ). However the problem of determining whether
the images contain new classes or not remained open. This problem was soon
solved by the introduction of generalized Mumford{Morita{Miller classes due
to Kawazumi in [75]. There is a remarkable work of Looijenga [93] in which
he determined the stable cohomology of Mg with coe�cients in any �nite di-
mensional irreducible representation of Sp(2g;Q). In [74], Kawazumi used the
above generalized classes to give a di�erent basis for some of these twisted co-
homology groups, thereby adding a topological flavor to Looijenga’s result. We
also mention that Ivanov [58] obtained a stability theorem for twisted cohomol-
ogy groups of mapping class groups (for a surface with at least one boundary
component).

Let us de�ne R�(Mg) to be the subalgebra of H�(Mg;Q) generated by the
classes ei . Similarly we de�ne R�(Mg;�) to be the subalgebra of H�(Mg;�;Q)
generated by the classes e; ei . We may call them the tautological algebra of the
mapping class groups. These are just the reduction to the rational cohomol-
ogy of the original tautological algebras R�(Mg);R�(Cg) of the moduli spaces
which are de�ned to be subalgebras of the individual Chow algebras generated
by the classes �i and c1(!) (see [26, 43, 53]).

Theorem 6.4 (Kawazumi{Morita [76, 77]) For any g , the images of ��1 in (8)
coincide with the tautological algebras R�(Mg;�) and R�(Mg) of the mapping
class groups.

Thus the homomorphisms ��1 in (7) have rather big kernel. For the lower ho-
momorphism ��1 , Garoufalidis and Nakamura [34] have given an interpretation
of this fact in the framework of symplectic representation theory by showing an
isomorphism (

��U�Q=([2
2])
�Sp �= Q[e1; e2; � � � ]

which holds in the stable range, where ([22]) denotes the ideal of ��U�Q gener-
ated by [22] � �2U�Q . Their result can be generalized to the case of the upper
��1 so that we have an isomorphism(

��(�3H�Q)=([22] + [12])
�Sp �= Q[e; e1; e2; � � � ]

which holds also in the stable range. Here [12] is a certain diagonal summand in
�2(�3H�Q), which has three copies of [12], described explicitly in [118]. However
these results are, at present, valid only in the stable range while Theorem 6.4
is true in all degrees. If we pass to the dual context, namely if we consider the
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homomorphism

(�1)� : H�(Mg;Q)−!H�(
1
2

�3H=H o Sp(2g;Z);Q)

induced by �1 on homology, then we �nd that those cycles in (��UQ)Sp which
come from the moduli space must have fairly restricted types. In particular,
Faber’s result below (Theorem 6.7) implies that the subspace of (�2g−4UQ)Sp

generated by the moduli cycles is one dimensional and a similar statement is
valid for (�2g−2(�3HQ))Sp . Hence we can de�ne fundamental cycles

�g;� 2 (�2g−2(�3HQ))Sp; �g 2 (�2g−4UQ)Sp

which are well de�ned up to scalars and which should be expressed in terms of
certain linear combinations of Sp{invariant tensors aΓ ; bΓ described in section
4.

Starting from basic works on the Chow algebras of the moduli spaces M3;M4

in [23, 24], Faber made numerous explicit computations concerning the tauto-
logical algebra of the moduli spaces. Based on them, he proposed the following
beautiful conjecture about the structure of the tautological algebra R�(Mg)
(see [26] for details, in particular for the precise description of part (3) below).

Conjecture 6.5 (Faber [26])

(1) The tautological algebra R�(Mg) of the moduli space Mg \behaves like"
the cohomology algebra of a nonsingular projective variety of dimension
g−2. More precisely, it vanishes in degrees > g−2, is one dimensional in
degree g− 2 and the natural pairing Ri(Mg)�Rg−2−i(Mg)!Rg−2(Mg)
is perfect. It also satis�es the Hard Lefschetz and the Hodge Positivity
properties with respect to the class �1 .

(2) The [g3 ] classes �1; � � � ; �[ g
3

] generate the algebra with no relations in
degrees � [g3 ].

(3) There exist explicit formulas for the proportionalities in degree g − 2.

Several supporting pieces of evidence for this conjecture have been obtained.

Theorem 6.6 (Looijenga [92]) The tautological algebra R�(Mg) is trivial in
degrees > g − 2 and Rg−2(Mg) is at most one dimensional. Similarly R�(Cg)
is trivial for � > g − 1 and Rg−1(Cg) is at most one dimensional.

We mention that Jekel [59] proved the vanishing eg = 0 2 H2g(Mg;�;Q) by
making use of a certain representation Mg;�!Homeo+ S

1 (cf [109]). This
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gives a purely topological proof of a part of Looijenga’s result above. Using the
results of Mumford in [122] as well as those of Witten [145] and Kontsevich [84]
combined with Looijenga’s theorem above, Faber proved the following.

Theorem 6.7 (Faber [25]) �g−2 is non-zero on Mg so that Rg−2(Mg) is one
dimensional.

It follows immediately that Rg−1(Cg) is also one dimensional.

The above results are obtained mainly in the framework of algebraic geometry.
Here we would like to describe a topological approach to Faber’s conjecture
which has fairly di�erent feature. Naturally we can obtain relations only in the
rational cohomology algebra rather than the Chow algebra. However we hope
that this approach would have its own meaning.

Our method is very simple. Namely, associated to any unstable relation in
H�(�3HQ)Sp or in H�(UQ)Sp , we can obtain a polynomial relation in the tau-
tological algebra R�(Mg;�) or R�(Mg) by applying Theorem 6.4. For example,
we can apply Proposition 4.2 to obtain a series of non-trivial relations as follows.
We know by this proposition that there is a unique relation

X
C2D‘(6k)

aC = 0 (9)

in (H6k
Q )Sp for g = 3k − 1. Fortunately, this relation survives in (�2kUQ)Sp

under the natural projection H6k
Q !�2kUQ . Hence passing to the dual, the

relation
P

C �C = 0 gives rise to a polynomial relation in R2k(M3k−1) which
expresses the class ek as a polynomial in lower ei ’s. It turns out that this
relation is exactly the same as Faber’s relation mentioned in [26] up to a factor
of some powers of 2. The associated generating function appears, in our context,
as a result of enumeration of certain trivalent graphs. One of the merits of our
method is that once we obtain a relation in R�(Mg) for some g , we can obtain
associated relations for all genera < g . This is because of the following reason.
Although the mapping H1(�g;Q)!H1(�g−1;Q), which is induced by collapsing
the last handle, is not very natural from the point of view of algebraic geometry,
it does induce a natural mapping

(H⊗2k
g )Sp(2g;Q)−!(H⊗2k

g−1 )Sp(2g−2;Q)

where Hg and Hg−1 stand for H1(�g;Q) and H1(�g−1;Q) respectively. For
example, the relation (9) which is the unique relation for g = 3k − 1 continues
to hold for all g < 3k − 1. In this way, using the unique relation (9) above, we
can prove the following theorem.
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Theorem 6.8 The tautological algebra R�(Mg) of Mg is generated by the
�rst [g3 ] Mumford{Morita{Miller classes

e1; e2; � � � ; e[ g
3

]:

Moreover there are explicit formulas which express any class ej (j > [g3 ]) as a
polynomial in the above classes.

This theorem gives an a�rmative solution (at the level of rational cohomology)
to a part of Faber’s conjecture (Conjecture 6.5). Details will be given in a
forthcoming paper [120]. We expect that we can obtain further relations in
R�(Mg) as well as in R�(Mg;�) by this method. We also expect that the
explicit form of the fundamental cycle �g mentioned above should be closely
related to part (3) of Conjecture 6.5.

Concerning the (co)homology of the moduli space Mg , there is another well
known conjecture due to Witten and Kontsevich (see [84]) which says that
certain natural cycles of Mg constructed by them should be expressed in terms
of the Mumford{Morita{Miller classes. The �rst case was a�rmatively solved
by Penner in [131] and Arbarello and Cornalba made considerable progress on
this problem in [3]. We expect that there would exist certain connection between
their method in the framework of algebraic geometry with our approach given
above which uses symplectic representation theory. Penner [132] described a
related conjecture in the context of his new model of a universal Teichmüller
space.

Also there is a problem concerning the unstable cohomology of Mg or Mg .
Harer and Zagier pointed out in [52] that their determination of the orbifold
Euler characteristic of Mg implies that there must exist many unstable co-
homology classes. However it seems that the unstable class constructed by
Looijenga [90] for genus 3 moduli space is the only known explicit example.

Problem 6.9 Construct unstable cohomology classes of Mg explicitly.

6.5 Cohomology of the graded Lie algebra hQ1 and OutFn

Here we consider the (co)homology of the graded Lie algebra

hg;1 =
1M
k=1

hg;1(k):
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First we would like to know the abelianization of hg;1 . The �rst Johnson homo-
morphism together with the traces induce a graded Lie algebra homomorphism

(�g;1(1);�k Tr(2k + 1)): hg;1−!�3H �
(M
k�1

S2k+1H
�

which is surjective after tensoring with Q where the target is considered as an
abelian Lie algebra. As in section 5, let us consider the direct limit

h1 = lim
g!1

hg;1; h
Q
1 = lim

g!1
h
Q
g;1:

It is easy to see that the Johnson homomorphism �g;1(1) and the traces Tr(2k+
1) are all compatible with respect to the inclusions hg;1 � hg+1;1 . Namely the
following diagram is commutative

hg;1 −−−! �3Hg �
(L

k�1 S
2k+1Hg

�??y ??y
hg+1;1 −−−! �3Hg+1 �

(L
k�1 S

2k+1Hg+1

�
where Hg denotes the module H corresponding to the genus g . In view of
the explicit computations in low degrees we have done so far, it seems to be
reasonable to make the following conjecture.

Conjecture 6.10 The abelianization of the Lie algebra hQg;1 is given by �g;1(1)
and the traces, so that we have an isomorphism

H1(hQg;1) = hQg;1=[h
Q
g;1; h

Q
g;1] �= �3HQ �

(M
k�1

S2k+1HQ
�
:

A similar statement is true for hQ1 .

If this conjecture were true, then any element in hQg;1 , including the Galois
obstructions, can be described by taking brackets of suitable elements of �3HQ
and S2k+1HQ . Regardless of whether the above conjecture is true or not, we
have a homomorphism

H�c
(
�3HQ �

(M
k�1

S2k+1HQ
��
−!H�c (hQg;1)

where H�c denotes the continuous cohomology, in the usual sense (cf [85]), of
graded Lie algebras which are in�nite dimensional but each degree k summand
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is �nite dimensional for all k . The Sp{invariant part of the above homomor-
phism can be written as

H�c
(
�3HQ �

(M
k�1

S2k+1HQ
��Sp

�=
(
��(�3H�Q)⊗ ��(S3H�Q)⊗ ��(S5H�Q)⊗ � � �

�Sp−!H�c (hQ1)Sp:

(10)

where H�c (hQ1)Sp denotes the inverse limit of the Sp{invariant part of the con-
tinuous cohomology of the graded Lie algebras hQg;1 which stabilizes. The Lie
algebra hQg;1 contains Im �Qg;1 as a natural Lie subalgebra and by restriction and
passing to the limit, we obtain a series of homomorphisms

H�c (hQ1)Sp−!H�c (Gr n1)Sp �= H�c (n1)Sp �= lim
g!1

H�(Ng;1)Sp

−! lim
g!1

H�(Mg;1):
(11)

Here n1 = limg!1 ng;1 (ng;1(k) �= Im �Qg;1(k) � hQg;1(k)) and the second iso-
morphism is due to Hain [41] where he showed that ng;1 has a mixed Hodge
structure (depending on a �xed complex structure on the reference surface)
so that there is a canonical isomorphism of ng;1 with Gr ng;1 after tensoring
with C. For the last homomorphism, see [118]. Since Tr(2k + 1) is trivial on
Im �g;1(2k+ 1) for any k (see [115]), the composition of (10) with (11) is trivial
on any Sp{invariant which contains the trace component S2k+1H�Q . Hence, the
moduli part of the homomorphism (10) is given by

��(�3H�Q)Sp−!H�c (hQ1)Sp:

As was explained in [43, 76] (see also section 2), a combination of our result
[76] with that of [41] implies that the image of the above homomorphism can
be identi�ed with the polynomial algebra

Q[e1; e2; � � � ] � lim
g!1

H�(Mg;1;Q):

Then it is a natural question to ask the geometric meaning of the remaining
part of the homomorphism (10). This can be answered by invoking important
work of Kontsevich [85, 86], which we now briefly review.

As was mentioned in section 5, our hQ1 is the degree positive part of his Lie
algebra ‘1 described in the above cited papers. The homology group H�(‘1)
has a natural structure of a commutative and cocommutative Hopf algebra,
where the multiplication comes from the sum operation ‘1 � ‘1!‘1 . Also it
can be decomposed as

H�(‘1) �= H�(sp(21;Q)) ⊗H�(hQ1)Sp:
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By making use of his theory of graph cohomology together with a result of
Culler{Vogtmann [17], he proved the following remarkable theorem.

Theorem 6.11 (Kontsevich [85, 86]) There exists an isomorphism

PHk(‘1) �= PHk(sp(21;Q)) �
M
n�2

H2n−2−k(OutFn;Q)

where PHk denotes the primitive part of the k{dimensional homology and
OutFn denotes the outer automorphism group of the free group of rank n.
More precisely, for each even degree 2n (n > 0) with respect to the grading of
‘1 , there exists an isomorphism

PHk(‘1)2n
�= H2n−k(OutFn+1;Q):

Passing to the dual, we also have an isomorphism

PHk
c (hQ1)Sp2n

�= H2n−k(OutFn+1;Q):

Let us observe here that if Conjecture 6.10 were true, then H1(hQ1)Sp = 0
so that we can conclude H2n−3(OutFn;Q) = 0 for any n � 2 by the above
theorem of Kontsevich. We have checked that this is the case up to n = 4.
We mention that Culler{Vogtmann proved, in the above paper, that the virtual
cohomological dimension of OutFn is equal to 2n − 3.

Now we apply Theorem 6.11 to the homomorphism (10). We know that there
is a copy S3HQ = [3] � hQg;1(3) which goes to S3HQ bijectively by the trace
Tr(3).

Proposition 6.12 The homomorphism

�2S3HQ 3 � ^ � 7−! [�; �] 2 hQg;1(6) (�; � 2 S3HQ)

is injective.

Sketch of Proof It is easy to see that the irreducible decomposition of the
module �2S3HQ = �2[3] is given by

�2S3HQ = [51] + [4] + [32] + [22] + [12] + [0]:

Then the result follows from rather long explicit computations, in the framework
of symplectic representation theory, of the Lie bracket �2[3]!hQg;1(6).
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Recall that similar homomorphism

�2(�3HQ)−!hQg;1(2)

has a big kernel (Hain [41], see also [118] for the case of one boundary com-
ponent). Thus we �nd that the behaviour of the trace component is fairly
di�erent from that of the moduli part. In particular, the pull back of any class
in H2(S3HQ) to the subalgebra of hQg;1 generated by S3HQ is trivial. However
if we consider the interaction of the trace component with the moduli part, the
situation changes. In fact, we obtain the following result.

Proposition 6.13 The pull back of the Sp{invariant part H2(S3HQ)Sp �= Q
to H2

c (hQ1)Sp by the trace Tr(3) is a non-trivial primitive element.

Sketch of Proof By Proposition 6.12, there is a chain u =
P

i(ai; bi) 2
C2(hQg;1) such that ai; bi 2 S3HQ � hQg;1(3) and @u is a non-zero element of
h
Q
g;1(6)Sp . On the other hand, explicit computation shows that there is a chain
v =

P
j(a
0
j ; b
0
j) 2 C2(hQg;1) such that a0j 2 h

Q
g;1(1); b0j 2 h

Q
g;1(5) and @v = @u.

We can arrange the above elements so that the 2{cycle u − v is in fact an
Sp{invariant one. Thus it de�nes an element of H2(hQ1)Sp6 on which the coho-
mology class in question takes a non-zero value. The primitivity follows from
the property of the trace.

If we combine the above result with Thoerem 6.11, we can conclude the non-
triviality of H4(OutF4;Q). This seems to be consistent with a recent re-
sult of Hatcher{Vogtmann [54] in which they proved that H4(AutF4;Q) �= Q
(Vogtmann informed us that she obtained an isomorphism H4(AutF4;Q) �=
H4(OutF4;Q) by a computer calculation).

If we use higher traces Tr(2k+1) in the above consideration, we obtain in�nitely
many classes in H2

c (hQ1)Sp and these in turn give rise to a series of certain
homology classes in

H4k(OutF2k+2;Q) (k = 1; 2; � � � ):

It seems highly likely that all of these classes are non-trivial. Also by combining
various trace components as well as the moduli part at the same time, we can
de�ne many primitive (co)homology classes of the Lie algebra ‘1 .
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6.6 Secondary characteristic classes of surface bundles

Chern classes and Pontrjagin classes are representatives of characteristic classes
of vector bundles and they play fundamental roles in diverse branches of math-
ematics. We may call these classes primary characteristic classes. In some cases
where these primary classes vanish, there arise various theories of so-called sec-
ondary characteristic classes. For example, we have the theory of characteristic
classes of foliations, characteristic classes of flat bundles, the theory of Chern
and Simons and also that of Cheeger and Simons and so on.

In the case of surface bundles, it is natural to call the classes ei the primary
characteristic classes. As was mentioned in section 3, the odd classes e2i−1

come from the Siegel modular group Sp(2g;Z) via the classical representation
�0 : Mg!Sp(2g;Z). Hence these classes (with rational coe�cients) vanish on
the Torelli group Ig . It is a fundamental question concerning the cohomology
of Ig whether even classes e2i are non-trivial on it or not (see Conjecture 3.4).
On the other hand, it was proved in [118] that any class ei , including the cases
of even i, vanish on the subgroup Kg of the mapping class group Mg , which is
the subgroup generated by all Dehn twists along separating simple closed curves
on �g (see section 2). The proof of this fact goes roughly as follows. As was
recalled in section 6.4, in our paper [118] we have constructed certain natural
cocycles for ei and by the very de�nition they vanish on Kg . Thus there are
two reasons with di�erent sources that the odd classes e2i−1 vanish on Kg .

By making use of this fact, we can de�ne the secondary characteristic classes of
surface bundles. One way to do so can be described as follows. For each e2i−1 ,
choose two cocycles c; c0 both of which represent e2i−1 such that c comes from
the Siegel modular group while c0 is a cocycle constructed in [118] using the
linear representation �1 described there. Since these two cocycles are cohomol-
ogous to each other, there exists a cochain

d 2 C4i−3(Mg;Q)

such that �d = c− c0 . Now both of c; c0 are 0 on Kg so that if we restrict d to
Kg , it is a cocycle. Hence we can de�ne a cohomology class

di 2 H4i−3(Kg;Q)

to be the class of the cocycle d 2 Z4i−3(Kg;Q). It can be shown that the
cohomology class of [d] does not depend on the choices of the cocycles c; c0

modulo the indeterminacy

Im
(
H4i−3(Mg;Q)−!H4i−3(Kg;Q)

�
:
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We remark that if Conjecture 3.1 were true, then the above indeterminacy
vanishes, at least in the stable range, so that di would be uniquely de�ned.

We know that the �rst one
d1 : Kg−!Q

can be de�ned uniquely. Here we describe the precise formula for it. Let
� 2 Z2(Mg;Z) be Meyer’s signature cocyle given in [100] which is in fact
de�ned on Sp(2g;Z). It represents −1

3e1 . On the other hand in [110, 114] we
gave another cocycle for e1 . More precisely, in the notation of section 6.4 the
cocycle

c0 =
1

2g + 1
(−3�Γ1 + (2g − 2)�Γ2)

represents e1 (see [44] for an interpretation of this result as well as others from
the point of view of algebraic geometry). Here Γ1 is the trivalent graph which
has 2 vertices and 2 loops while Γ2 is the trivalent graph with 2 vertices and
without loops (namely the theta graph). The above two cocycles are cohomol-
ogous to each other so that there exists a mapping

d1 : Mg−!Q (g � 2)

such that �d1 = −3� − c0 . Since Mg is perfect for g � 3 and H1(M2) = Z=10,
the above map d1 is uniquely de�ned. Also since the restriction of both of �
and c0 to the subgroup Kg is trivial, we obtain a homomorphism

d1 : Kg−!Q:
This is the de�nition of our secondary class d1 2 H1(Kg;Q).

Theorem 6.14 (Morita [112]) Let ’ 2 Kg be a Dehn twist along a separat-
ing simple closed curve on �g such that it divides �g into two compact surfaces
of genus h and g − h. Then the value of the secondary class d1 2 H1(Kg;Q)
on it is given by

d1(’) =
12

2g + 1
h(g − h):

Moreover d1 is the generator of H1(Kg;Q)Mg �= Q for all g � 2.

In our paper [112], the coe�cient of h(g − h) in the above formula for d1(’)
was not mentioned. However it is easy to deduce it from the results obtained
there. In [119] we gave an interpretation of d1 in terms of Hirzebruch’s signature
defect of certain framed 3{manifolds. Generalizing this, we obtained another
more geometrical de�nition of higher secondary classes di 2 H4i−3(Kg;1;Q).
We expect that these two de�nitions of di would coincide for all i.
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Remark Hain informed us the following interesting facts. In the above theo-
rem, the number h(g−h) appeared in relation to the Dehn twist ’. About the
same time, the same number appeared in the works of Jorgenson [67] and Went-
worth [143]. In fact, it plays the role of the principal factor in their asymptotic
formula of Faltings delta function around the divisor �h , which is associated
to ’, of the Deligne{Mumford compacti�cation Mg . This number plays one
more important role also in a recent work of Moriwaki [121] where he obtained
a certain inequality related to the cone of positive divisors on Mg . In fact, Hain
has an interpretation that these phenomena are more than just a coincidence.
Kawazumi is also trying to develop a theory related to d1 . From the topolog-
ical point of view, we may say that they are the manifestation of the Casson
invariant in the geometry of the moduli space of curves. We expect that there
should exist very rich structures here which deserve future investigations.

Conjecture 6.15 All of the secondary classes di 2 H4i−3(Kg;Q) are uniquely
de�ned and non-trivial if g is su�ciently large. Moreover we have an isomor-
phism

lim
g!1

H�(Kg;Q)Mg �= EQ(d1; d2; d3; � � � ):

There has been rapid progress in the theory of the moduli space Mg related to
the primary charactersitic classes �i or ei , namely from the celebrated works
of Witten [145] and Kontsevich [84] to the recent developments reaching to the
Gromov{Witten invariants (see [27, 35] and references in them). In contrast
with this, the secondary classes di seem to be beyond the reach of any explicit
study at present, except for the �rst one. In relation to the �rst class d1 , it
seems to be a challenging problem to try to generalize the genus one story
given in Atiyah’s paper [8] to the cases of higher genera in various ways. We
believe that the higher classes di will also eventually play an important role in
hopefully deeper geometrical study of the moduli space.

6.7 Bounded cohomology of Mg

In this subsection we consider the mapping class group from the viewpoint of
Gromov’s bounded cohomology (see [37]). Recall that the bounded cohomology
(with coe�cients in R) of a group Γ , denoted by H�b (Γ ), is de�ned to be
the cohomology of the subcomplex of the ordinary R{valued cochain complex
C�(Γ ;R) consisting of all cochains

c : Γ � � � � � Γ−!R
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which are bounded as functions. We have a natural homomorphism

H�b (Γ )−!H�(Γ ;R)

and it reflects algebraic as well as geometric properties of the group Γ rather
closely. For example if Γ is amenable, then H�b (Γ ) is trivial in positive degrees
while if Γ is the fundamental group of a closed negatively curved manifold,
then the above map (except for degree one part) is known to be surjective by
an argument due to Thurston (see [37]).

Problem 6.16 Study the bounded cohomology of the mapping class group
Mg . More precisely, determine the kernel as well as the image of the natural
map H�b (Mg)!H�(Mg;R).

In particular, we may ask whether the characteristic class ei 2 H2i(Mg) can
be represented by a bounded cocycle or not. It was remarked in [109] that
Gromov’s general result in [37] implies that any odd class e2i−1 can be repre-
sented by a bounded cocycle. This is because, as mentioned in section 3, these
classes are pull backs of some classical characteristic classes of Sp(2g;Z) which
is a discrete subgroup of Sp(2g;R). It seems to be natural to conjecture that
even classes e2i can also be represented by bounded cocycles. One evidence for
this was given in [109] where we proved that any surface bundle with amenable
monodromy group has trivial characteristic classes as it should be if ei were
all bounded cohomology classes. Meyer’s signature cocycle given in [100] is an
explicit bounded cocycle which represents −1

3e1 (see [111]) but no other explicit
bounded cocycle has been constructed for higher odd classes. We mention here
that the cocycles for ei constructed in [118, 76] using trivalent graphs are far
from being bounded.

Problem 6.17 Construct explicit bounded cocycles of Mg which represent
the characteristic classes ei for i > 1.

The particular case of degree 2, namely the map

H2
b (Mg)−!H2(Mg;R)

already deserves further investigation. Harer’s determination of H2(Mg) in
[46] together with Meyer’s result [100] mentioned above implies that the above
map is surjective. If g = 1, then M1 = SL(2;Z) so that H2(SL(2;Z);R) = 0
while it is well known that H2

b (SL(2;Z)) is in�nite dimensional. If g = 2, then
we know that H2(M2;R) = 0 because M2 is contractible by a result of Igusa
[55].
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Proposition 6.18 The two dimensional bounded cohomology H2
b (M2) of the

genus 2 mapping class group is non-trivial.

Proof We consider the cochain d1 2 C1(Mg;Q) described in section 6.6.
If g = 2, then U = 0 so that �d1 = −3� where � 2 Z2(M2) is Meyer’s
signature 2{cocycle for the genus 2 mapping class group. Since H1(M2;Q) =
0, d1 is uniquely determined by the above equality. Observe that d1 is not
a bounded cochain because d1 : K2!Q is a non-trivial homomorphism. We
can now conclude that the bounded cohomology class [� ] 2 H2

b (M2) is non-
trivial.

Remark Meyer’s signature cocycle has been investigated from various points
of view, see work of Y. Matsumoto [98] for the case of g = 2, Endo [21] and
Morifuji [106] for the cases of hyperelliptic mapping class groups and Morifuji
[105] and Kasagawa [69, 70] for certain geometric aspects of it.

Epstein and Fujiwara [22] proved that the second bounded cohomology of any
Gromov hyperbolic group is in�nite dimensional. Although the mapping class
group is not a Gromov hyperbolic group, because it contains many free abelian
subgroup of rather high ranks, it was proved by Tromba [139] and Wolpert
[146] (see also [147]) that the sectional curvature of the Teichmüller space with
respect to the Weil{Petersson metric is negative.

Conjecture 6.19 The mapping H2
b (Mg)!H2(Mg;R) is not injective for all

g . More strongly, H2
b (Mg) would be in�nite dimensional.

We recall the following de�nition which is relevant to the above problem.

De�nition 6.20 ([97]). A group Γ is said to be uniformly perfect if there
exists a natural number N such that any element γ 2 Γ can be expressed as a
product of at most N commutators.

Recall that Mg is known to be perfect for all g � 3 (see [46]).

Conjecture 6.21 The mapping class group Mg is not uniformly perfect for
all g � 3.

It was proved in [97] that if Γ is a uniformly perfect group, then the mapping
H2
b (Γ )!H2(Γ ;R) is injective. Hence if the former part of Conjecture 6.19

were true, then Conjecture 6.21 is also true. In the case of g = 2, M2 is not
perfect. However it is also known that its abelianization is �nite, namely we
have H1(M2) �= Z=10. The following result is a companion of Proposition 6.18.
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Proposition 6.22 There is no natural number N such that any element in
the commutator subgroup of the genus 2 mapping class group can be expressed
as a product of at most N commutators.

Proof If we assume the contrary, then it would follow that the value of the
cochain d1 is bounded. But as was mentioned above, this is not the case.

6.8 Representations of the mapping class group

In this subsection, we consider various representations of the mapping class
group. First we mention the Magnus representation of the Torelli group. Let
Mg;1 be the mapping class group of �g relative to an embedded disk D � �g as
before and let Z[Γ ] be the integral group ring of Γ = �1(�g n IntD). Following
a general theory of so-called Magnus representation described in Birman’s book
[11], the author de�ned in [115] a mapping

� : Mg;1−!GL(2g;Z[Γ ])

and considered various properties of it. It is easy to see that this mapping is
injective. However it is not a homomorphism in the usual sense but is rather
a crossed homomorphism. To obtain a genuine homomorphism, we have to
restrict this mapping to the Torelli group Ig;1 � Mg;1 and reduce the coe�-
cients to Z[H] which is induced by the abelianization Γ!H . Then we obtain
a homomorphism

� : Ig;1−!GL(2g;Z[H])

(see Corollary 5.4 of [115]).

Problem 6.23 Determine whether the representaion � : Ig;1−!GL(2g;Z[H])
described above is injective or not.

Here we would like to mention that Moody proved in [103] that the Burau
representation of the braid group Bn is not faithful for su�ciently large n
while it seems to be still unknown whether the Gassner representation of the
pure braid group is faithful or not.

The augmentation ideal of Z[H] induces a �ltration of Ig;1 . It is easy to see
that this �ltration is strictly coarser than fMg;1(k)gk�1 which was described
in section 5. It would be interesting to study how they di�er from each other.

Besides the Magnus representation, we have now various representations of the
mapping class group associated to newly developed theories which are related
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to low dimensional topology. For example, we have projective representations
of Mg arising from the conformal �eld thoery (see [144, 140, 83], see also
[148, 30] for certain explicit studies of them) or from the theory of universal
perturbative invariants of 3{manifolds (see [88, 124, 125]). We also have Jones
representations [66] of the hyperelliptic mapping class group and the Prym
representations of certain subgroups of Mg given by Looijenga [94]. It seems
that there are only a few results which clarify how these representations are
related to the structure of the mapping class group.

Problem 6.24 Study various properties of the above representations of the
mapping class group. In particular, determine the kernel as well as the image
of them.
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