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Foliation Cones
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Abstract David Gabai showed that disk decomposable knot and link
complements carry taut foliations of depth one. In an arbitrary sutured
3{manifold M , such foliations F , if they exist at all, are determined up to
isotopy by an associated ray [F] issuing from the origin in H1(M ;R) and
meeting points of the integer lattice H1(M ;Z). Here we show that there
is a �nite family of nonoverlapping, convex, polyhedral cones in H1(M ;R)
such that the rays meeting integer lattice points in the interiors of these
cones are exactly the rays [F] . In the irreducible case, each of these cones
corresponds to a pseudo-Anosov flow and can be computed by a Markov
matrix associated to the flow. Examples show that, in disk decomposable
cases, these are e�ectively computable. Our result extends to depth one a
well known theorem of Thurston for �bered 3-manifolds. The depth one
theory applies to higher depth as well.

AMS Classi�cation 57R30; 57M25, 58F15

Keywords Foliation, depth one, foliated form, foliation cycle, endperi-
odic, pseudo-Anosov

1 Introduction

By theorems of Waldhausen [31] and Thurston [30], the classi�cation of �bra-
tions � : M ! S1 which are transverse to @M is reduced to a �nite problem
for compact 3{manifolds. Indeed, the �brations F correspond one{one, up to
isotopy, to certain \�bered" rays [F] � H1(M ;R). More generally, the isotopy
classes of C2 foliations F without holonomy correspond one{one to \foliated"
rays [F] = ft[!]gt�0 , where ! is a closed, nonsingular 1{form de�ning a foli-
ation isotopic to F [19, 2]. These rays �ll up the interiors of a �nite family
of convex, polyhedral cones subtended by certain top dimensional faces of the
unit ball B � H1(M ;R) of the Thurston norm. The foliated rays that meet
nontrivial points of the integer lattice H1(M ;Z) are the �bered rays.
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In this paper, we consider sutured 3{manifolds (M;γ) that admit taut, trans-
versely oriented depth one foliations F . We will decompose @M = @�M [@tM
so that the compact leaves of F are the components of the \tangential bound-
ary" @�M and F is transverse to the \transverse boundary" @tM . In the
language of sutured manifolds [12], @tM = γ and @�M = R(γ). The depth
one foliation �bers M0 = M r @�M over S1 with noncompact �bers. Typi-
cally, these sutured manifolds will result from cutting the complement E(�) of
a k{component link � along a Seifert surface S . In the resulting sutured mani-
fold (MS(�); γ), two copies of S make up @�MS(�) and @tMS(�) consists of k
annuli. In more general examples, @tM has toral and/or annular components.

In [4], we showed that such depth one foliations correspond one{one, up to
isotopy, to \depth one foliated" rays [F] � H1(M ;R). Here we will show that
there is a �nite family of convex, polyhedral cones in H1(M ;R), with disjoint
interiors, such that the rays through integer lattice points in the interiors of the
cones are exactly the depth one foliated rays. Examples at the end of the paper
will illustrate the fact that this cone structure is often e�ectively computable.

In [5], we exhibited families of depth one knot complements E(�) in which
the foliation cones could be described by a norm on H1(MS(�);R), but our
examples will show that such a description is generally impossible. Instead, the
dynamical properties of flows transverse to the foliations will be exploited in
analogy with Fried’s determination of the �bered faces of the Thurston ball [11].
To show that the number of cones is �nite, we will use branched surfaces in the
spirit of Oertel’s determination of the faces of the Thurston ball [21].

Again all rays in the interiors of these cones correspond to taut foliations F
having holonomy only along @�M , but those not meeting the integer lattice
H1(M ;Z) will have everywhere dense noncompact leaves. We conjecture that
the isotopy class of such a foliation is also uniquely determined by the foliated
ray [F].

The following theorem is meant to cover both the case of �brations and that of
foliations of depth one. Accordingly, the term \proper foliated ray" replaces the
terms \�bered ray" and \depth one foliated ray" in the respective cases. Here
and throughout the paper, H1(M) denotes de Rham cohomology and explicit
reference to the coe�cient ring R is omitted.

Theorem 1.1 Let (M;γ) be a compact, connected, oriented, sutured 3{
manifold. If there are taut, transversely oriented foliations F of M having
holonomy (if at all) only on the leaves in @�M , then there are �nitely many
closed, convex, polyhedral cones in H1(M), called foliation cones, having dis-
joint interiors and such that the foliated rays [F] are exactly those lying in the
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interiors of these cones. The proper foliated rays are exactly the foliated rays
through points of the integer lattice and determine the corresponding foliations
up to isotopy.

In the �bered case, @�M = ; and the theorem is due to Waldhausen and
Thurston.

Remark It will be necessary to allow the possibility that the entire vector
space H1(M ;R) is a foliation cone, this happening if and only if M = S � I is
the product of a compact surface S and a compact interval I (Proposition 3.7).
This is the one case in which the vertex 0 of the cone lies in its interior. The
foliated class 0 will correspond to the product foliation and f0g will be a
(degenerate) proper foliated ray.

The proof of the theorem is reduced to the hyperbolic case where the Handel{
Miller theory of pseudo-Anosov endperiodic homeomorphisms pertains. (This
theory is unpublished, but cf [9]). Determining the pseudo-Anosov monodromy
for one foliation F gives rise to symbolic dynamics from which the parameters
for the foliation cone containing [F] are easily read. In the case of foliations
arising from disk decompositions [13], if the disks can be chosen in M from the
start, this procedure is quite e�ective. Indeed, the disks of the decomposition
typically split up in a natural way into the rectangles of a Markov partition
associated to the pseudo-Anosov monodromy. This partition determines a �-
nite set of \minimal loops" transverse to F which span the \tightest" cone of
transverse cycles in H1(M). The dual of this cone is the maximal foliation cone
containing [F].

The authors thank Sergio Fenley for explaining to us many details of the
Handel{Miller theory (Section 5) and for a key step in the proof of Theorem 5.8.
Research by the �rst author was partially supported by N.S.F. Contract DMS{
9201213 and that of the second author by N.S.F. Contract DMS{9201723.

2 Higher depth foliations

Before proving Theorem 1.1, we indicate briefly its pertinence to taut foliations
of �nite depth k > 1 and smoothness class at least C2 . To avoid technical
problems, we assume that @tM = ;. The C2 hypothesis guarantees that all
junctures are compact, hence that (M;F) is homeomorphic to a C1{foliated
manifold [6, Main Theorem, page 4].
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Remark The concept of a \juncture" is explained in [6, Section 2] and will
have important use in this paper.

Let S � M be the compact lamination consisting of all leaves of F on which
other leaves accumulate. While S can have in�nitely many leaves, no real
generality is lost by assuming it only has �nitely many leaves. Indeed, it is
possible to \blow down" �nitely many foliated interval bundles in F to produce
a foliation with S �nite-leaved. The new foliation still has all junctures compact,
hence can be taken to be of class C1 .

There are in�nitely many ways to complete S to a depth k foliation. More
precisely, consider any one of the components U of M rS, an open, connected,
F{saturated set which is �bered over S1 by FjU . The completion of U relative
to a Riemannian metric on M is a (generally noncompact) manifold bU with
boundary on which F induces a depth one foliation bF . As in [7, Theorem 1],
we write bU = K [ V1 [ � � � [ Vn;

where K is a compact, connected, foliated, sutured manifold (called the \nu-
cleus") and Vi �= Bi � I is a noncompact, connected, foliated interval bundle
(called an \arm"), 1 � i � n. Here, @tK has exactly n components Ai = @tVi ,
1 � i � n. The assumption that @tM = ; implies that these components are
annuli. By choosing K su�ciently large, one guarantees that the foliation of
each Vi is the product foliation. This last assertion is due to compactness of
the junctures. Of course, bFjK is of depth one. Each depth one foliation of K
which is trivial (that is, a product) at @tK determines a depth one foliation ofbU , trivial in the arms. The depth one foliations of K that are trivial at @tK
will be called @t{trivial.

In order to classify the @t{trivial depth one foliations of K , one �rst replaces
K with the manifold K 0 obtained by gluing a copy of D2 � I to each annular
component of @tK . The @t{trivial depth one foliations of K correspond bijec-
tively to the depth one foliations of K 0 with sole compact leaves the components
of @K 0 . Furthermore, there is a canonical splitting

H1
c (K r @tK) = H1(K 0)� V;

where V is spanned by the Poincar�e duals of the components of @tK . Thus, the
foliation cones in H1(K 0) can be viewed as \foliation cones" in H1

c (K r @tK).
Obviously, these are not full dimensional in the latter space, but they classify
the @t{trivial depth one foliations and will be called the @t{trivial foliation
cones of K .
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In order to classify all depth one foliations of bU , one must allow an in�nite
exhaustion

K0 � K1 � � � � � Kr � � � � � bU
by the potential nuclei. An inductive limit process then leads to a �nite family
of \foliation cones" C � RN � H1

c (bU ), where C ranges over the @t{trivial
foliation cones of K0 and 0 � N � 1. We omit the details.

Finally, under the assumption that S has �nitely many leaves, this analysis
only needs to be carried out for �nitely many open, saturated sets U .

3 Reducing the sutured manifold

Let M be a compact, connected, sutured 3{manifold. A depth one foliation
determines a foliated class [!] 2 H1(M) which is represented by a foliated form
! 2 A1(M0). This is to be a closed, nonsingular 1{form which blows up at @�M
in such a way that the foliation F0 , de�ned by ! on M0 , can be completed to a
foliation F of M , integral to a C0 plane �eld, by adjoining the components of
@�M as leaves. We will say that ! \blows up nicely" at @�M . The depth one
condition implies that this form has period group of rank one. More generally,
foliated forms of higher rank de�ne foliations F tangent to @�M and such that
each leaf of FjM0 is dense in M and is without holonomy. It can be shown
that all smooth foliations of M having holonomy only along the boundary leaves
are C0 isotopic to foliations de�ned by foliated forms (Corollary 4.4). In case
M �= S � I , we also allow exact foliated forms.

In order to prove Theorem 1.1, it will be necessary to \completely reduce" M . If
T �M is a compact, properly imbedded surface, let N(T ) be a closed, normal
neighborhood of T in M and denote by N0(T ) the corresponding open, normal
neighborhood of T . If T1 and T2 are disjoint, properly imbedded surfaces, we
always choose N(T1) and N(T2) to be disjoint.

De�nition 3.1 Let T � M be a properly imbedded, incompressible torus
or annulus. If T is an annulus, require that one component of @T lie on an
inwardly oriented component of @�M and the other component of @T on an
outwardly oriented one. Then T is a reducing surface if it is not isotopic through
surfaces of the same type to a component of @tM .

If T � M is a reducing surface, we regard M 0 = M r N0(T ) as a (possibly
disconnected) sutured manifold, @tM 0 being the union of @tM and the two
copies of T in @M 0 .
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De�nition 3.2 If T � M is a reducing surface, then fTg is a reducing fam-
ily. Inductively, a reducing family is a �nite collection fT1; : : : ; Trg of disjoint
reducing surfaces such that fT1; : : : ; Tr−1g is a reducing family and Tr is a
reducing surface in whichever component of M r

Sr−1
i=1 N0(Ti) it lies. A max-

imal reducing family is called a completely reducing family. If M contains no
reducing family, it is said to be completely reduced.

If M contains a reducing family, it contains a completely reducing family. In
the following sections, we are going to prove Theorem 1.1 for the completely
reduced case. Here, we will show that this is su�cient.

Theorem 3.3 If the conclusion of Theorem 1.1 is true for completely reduced,
sutured 3{manifolds, it is true for arbitrary connected, sutured 3{manifolds M .

Theorem 3.3 is proven by induction on the number r of elements of a completely
reducing family in M . If r = 0, there is nothing to prove. The inductive step
is given by the following lemmas.

Lemma 3.4 Let T �M be a reducing surface, M 0 = M rN0(T ). If M 0 has
two components and if the conclusion of Theorem 1.1 holds for each of these
components, it holds for M .

Proof Indeed, �x an identi�cation N(T ) = T � [−1; 1] and let M 0+ (respec-
tively, M 0−) be the component of M 0 meeting N(T ) along T�f1g (respectively,
T � f−1g). Set M� = M 0� [N(T ). Then

M− [M+ = M

M− \M+ = N(T )

and Mayer{Vietoris gives an exact sequence

0! H1(M ;R) i! H1(M−)�H1(M+)
j! H1(N(T )):

Here, we use the conventions that

i([!]) = ([!jM−]; [!jM+])
j([�]; [�]) = [�jN(T )] − [�jN(T )]:

If ! is a foliated form, the fact that T is incompressible allows us to assume
that ! t T [24, 30] so that i([!]) is a pair of foliated classes. By the inductive
hypothesis, i[!] 2 int(C−�C+) for foliation cones C� in H1(M�). Conversely,
the Mayer{Vietoris sequence implies that every class [!] carried into int(C− �
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C+) is represented by a foliated form obtained by piecing together foliated
forms !� representing classes in int(C�). In order to make the cohomologous
forms !�jN(T ) agree, one uses a theorem of Blank and Laudenbach [19]. It
follows that the connected components of the set of foliated classes in H1(M ;R)
are exactly the interiors of a family of convex, polyhedral cones of the form
i−1(C− � C+).

We turn to the case that M 0 is connected. Again identify N(T ) = N � [−1; 1],
but realize M 0 as M r fT � (−1=2; 1=2)g. Set

N− = T � [−1;−1=2]
N+ = T � [1=2; 1]

and note that

M 0 [N(T ) = M

M 0 \N(T ) = N− [N+:

The Mayer{Vietoris theorem gives the exact sequence

H1(M ;R) i! H1(M 0)�H1(N(T ))
j! H1(N−)�H1(N+):

One easily checks that the kernel of i is spanned by the class that is Poincar�e
dual to [T ] 2 H2(M;@M) and arguments analogous to the above prove the
following.

Lemma 3.5 If M 0 is connected and the conclusion of Theorem 1.1 holds for
M 0 , then it holds for M .

Theorem 3.3 follows. We turn to some further simplifying conditions.

Lemma 3.6 In Theorem 1.1, no generality is lost in assuming that no com-
ponent of @�M is an annulus or torus.

Proof Indeed, let F be de�ned by a closed, nonsingular 1{form ! which blows
up nicely at @�M . By the well understood structure of foliation germs along
toral and annular leaves, any such leaves in the boundary can be perturbed in-
wardly by an arbitrarily small isotopy to become transverse to F . Equivalently,
! is replaced by a nonsingular, cohomologous form, di�ering from ! only in
small neighborhoods of these boundary leaves and transverse to them. The
former toral leaves are now components of @tM and the former annular leaves
are incorporated into transverse boundary components. The foliated classes are
unchanged.
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Proposition 3.7 The sutured manifold M has the form S � I if and only if
every class in H1(M) is a foliated class. That is, H1(M) is an entire foliation
cone.

Proof Suppose that M = S � I and identify the compact interval as I =
[−1; 1]. Let � : [−1; 1] ! [0; 1] be smooth, strictly positive on (−1; 1), and
C1{tangent to 0 at �1. Each class [γ] 2 H1(S � I) can be represented by
a closed form γ = ! + �(t)−1dt on M0 = S � (−1; 1), where ! is constant
in the coordinate t of (−1; 1). This form is nonsingular and blows up at the
boundary. The normalized form �(t)! + dt, while not closed, is de�ned and
integrable on all of M , determines the same foliation as γ on M0 and has
the two components of S � f�1g as compact leaves. If ! is not exact, this
foliation has nontrivial holonomy exactly on these boundary leaves, de�ning
a foliation of the type we are studying. Note that γ is exact if and only
if the form ! is exact, in which case the boundary leaves also have trivial
holonomy. Thus, Reeb stability, coupled with Haefliger’s theorem [15] that the
union of compact leaves is compact, implies that the foliation is isomorphic
to the product foliation. In any event, the entire vector space H1(M) is the
unique foliation cone. Conversely, suppose that the entire vector space is a
foliation cone. In particular, 0 is a foliated class. It is clear that the foliations
having nontrivial holonomy exactly on @�M correspond to nontrivial foliated
classes, so Reeb stability and Haefliger’s theorem again imply that the foliation
corresponding to 0 must be isomorphic to the product foliation on a manifold
of the form S � I .

Proposition 3.8 In Theorem 1.1, it can be assumed without loss of generality
that @�M 6= ;.

Indeed, if @�M = ;, the foliations we are studying are without holonomy, the
case of Theorem 1.1 already covered by the results of Waldhausen and Thurston.
In summary:

Theorem 3.9 The proof of Theorem 1.1 is reduced to the case that M is
completely reduced, @�M 6= ; has no toral or annular components and M is
not a product S � I .

The hypotheses in Theorem 3.9 will now be �xed as the ongoing hypotheses in
this paper.
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4 The transverse structure cycles

Let L be a 1{dimensional foliation of M , integral to a nonsingular C0 vector
�eld (\leafwise C1") which is transverse to @�M and tangent to @tM . On
the annular components of @tM , it is assumed that L induces the product
foliation by compact intervals. Let Z be the union of those leaves of L which
do not meet @�M . It is evident that Z is a compact, 1{dimensional lamination
of M0 . This lamination is nonempty. Indeed, if some leaf ‘ of L issues from
one component of @�M but never reaches another, the asymptote of ‘ in M
will be a nonempty subset of Z. Thus, if Z = ;, every leaf of L issues from
a component of @�M and ends at another, implying that M �= S � I . This
contradicts one of our ongoing hypotheses (Theorem 3.9). We call Z the \core
lamination" of L. The following useful observation is left as an exercise.

Lemma 4.1 The foliation L can be modi�ed in a neighborhood of @�M ,
leaving Z unchanged, so that LjM0 is integral to a continuous vector �eld
v which is smooth near @�M and extends smoothly to @�M so as to vanish
identically there.

We will apply the Schwartzmann{Sullivan theory of asymptotic structure cy-
cles [27, 29] to the core lamination Z. For this, the fact that the leaves of Z are
integral to a vector �eld which is at least continuous on M will be essential.
It is not clear that we can signi�cantly strengthen this regularity condition for
the endperiodic, pseudo-Anosov flows that will be needed in the next section.

Let � be a transverse, bounded, nontrivial, holonomy invariant measure on Z.
Since the 1{dimensional leaves of the core lamination Z have at most linear
growth, such a measure exists by a theorem of Plante [22]. In standard fashion,
1{forms ! on M or M0 can be integrated against � in a well de�ned way. In
local flow boxes, one integrates ! along the plaques of Z and then integrates the
resulting plaque function against �. Using a partition of unity, one assembles
these local integrals into a global one which is well de�ned because of the
holonomy invariance of �. The resulting bounded linear functional

� : A1(M)! R

is a \structure current" of Z in the sense of Sullivan [29]. The structure currents
of Z form a closed, convex cone with compact base in the Montel space of all
1{currents on M .

For a current �, de�ned as above by a transverse invariant measure, it is easily
seen that �(df) = 0, for all smooth functions f . That is, � is a structure cycle
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for Z. The proof uses the fundamental theorem of calculus (a.k.a. Stokes’s
theorem) on plaques of Z and makes essential use of the fact that Z does not
meet @�M . Sullivan has proven (op.cit.) that the transverse invariant measures
are exactly the structure cycles and form a closed, convex subcone CZ in the
cone of structure currents of Z. The natural map of closed currents to homology
classes carries CZ onto a closed, convex cone CZ � H1(M) with compact base.
Each ray of the possibly in�nite dimensional cone CZ is mapped one{one onto
a ray of CZ , but CZ is only �nite dimensional.

De�nition 4.2 The dual cone DZ to CZ consists of all [!] 2 H1(M ;R) such
that �(!) � 0, 8 � 2 CZ .

Let F be a taut, transversely oriented foliation of M , smooth in M0 , integral
to a C0 2{plane �eld on M , having the components of @�M as sole compact
leaves and having nontrivial holonomy exactly on these compact leaves. We
say that the tautly foliated, sutured manifold (M;F) is \almost without holon-
omy". Remark that foliations de�ned by foliated forms are of this type, but
the converse is not quite true. By a theorem of Sacksteder [25], FjM0 admits a
transverse, continuous, holonomy invariant measure � which is �nite on com-
pact sets. By our hypothesis that the leaves in @�M are exactly the ones with
nontrivial holonomy, such a nontrivial holonomy transformation must have no
�xed points in M0 , hence � becomes unbounded near @�M . One should think
of � as a \C0 foliated form".

Suppose that the one dimensional foliation L is transverse to F . As is well
known, � has well de�ned line integrals in M0 and

R
� d� depends only on the

homology class of a loop � . Thus, � is a cocycle and can play a role analogous
to that of a closed 1{form, allowing us to integrate � against the structure cycle
� of Z in a well de�ned way. This integral is clearly positive, proving the \only
if" part of the following.

Theorem 4.3 The one dimensional foliation L is transverse to a foliation F
which is almost without holonomy if and only if no nontrivial structure cycle
of Z bounds. In this case, the dual cone DZ has nonempty interior and every
element of intDZ is a foliated class, represented by a foliated form which is
transverse to L.

Proof We prove the \if" part and the subsequent assertions. By [29, Theorem
I.7, part iv], the hypothesis that no nontrivial structure cycle bounds implies
that intDZ 6= ; and that each class in this open cone has a representative form
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! 2 A1(M) which is transverse to Z. We must replace ! with a form e! = !+dg
such that g 2 C1(M0), dg blows up nicely at @�M and e! 2 A1(M0) is
transverse to LjM0 . Remark that dg blows up nicely at @�M if dg is unbounded
in a neighborhood V of @�M and the smooth foliation of V \M0 by the level
sets of g can be completed to a foliation of V integral to a C0 plane �eld by
adjoining the components of @�M as leaves. Since ! is bounded on the compact
manifold M , it is clear that e! will blow up nicely at the boundary, hence be a
foliated class, and that [!] = [e!].

Let v be a C0 vector �eld to which LjM0 is integral and which extends by
0 to a continuous �eld on M . By Lemma 4.1, we assume that v is smooth
in a neighborhood V of @�M . Let S− be the union of the inwardly oriented
components of @�M and S+ the union of the outwardly oriented ones. We can
assume that the part of V bordering S− is parametrized by the local v{flow
as S− � [−1; 0) and the part bordering S+ as S+ � (0;1]. In particular, the
�bers fxg � [−1; 0) (respectively, fxg � (0;1]) are subarcs of leaves of L,
8x 2 S− (respectively, 8x 2 S+ ). Let W � V be a neighborhood of @�M
such that W � V .

De�ne f 2 C1(S− � (−1; 0)) so that f(x; t) = f(t) everywhere,

f(t) =

(
t; t � −1;
0; −1

2 � t;

and so that f 0(t) � 0 on (−1; 0). De�ne f analogously on S+ � (0;1) and
extend these de�nitions by 0 to a smooth function f on all of M0 . Remark
that df(v) � 1 in V \M0 , hence the form df clearly blows up nicely at @�M .

There is an open neighborhood U of Z in M0 such that !(v) > 0 on U . Let
z 2 M0 r Z and let ‘z denote a compact subarc of the leaf of L through
z which has z in its interior and exactly one end in @�M . For de�niteness,
assume this end lies in S− . There are open neighborhoods Vz and Uz of ‘z ,
V z � Uz , and a smooth �eld wz on M which approximates v arbitrarily well
on Vz , approximates the direction of v arbitrarily well on Uz [ V , agrees with
v on W and vanishes identically on Mr (Uz [V ). Let �z

t be the flow of wz . If
x 2W \ Vz near S− and �z 2 R are such that the z = �z

�z(x), choose tz > �z
and let

dfz = ��−tz(df):

Thus, we can assume that dfz(v) � 0 on M0 and > 1=2 on (Vz [W )\M0 . By
compactness of M and boundedness of ! , �nd �nitely many points zi 2M0rZ,
1 � i � r , and a constant c > 0 such that fU; Vzigri=1 is an open cover of M
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and e! = ! + dg = ! + c
rX
i=1

dfzi

is a closed form, strictly positive on vjM0 which blows up at @�M . In fact, we
have guaranteed that dg is a constant multiple of df near @�M , so e! blows up
nicely at @�M .

Examples show that, if FjM0 is dense-leaved, the invariant measure � may not
be absolutely continuous, let alone smooth, in which case F is not de�ned by a
foliated form. Although these foliations are not the primary focus of this paper,
we note the following.

Corollary 4.4 The foliation F is C0 isotopic to a foliation eF de�ned by a
foliated form e! .

Indeed, [�] 2 DZ , so Theorem 4.3 provides a foliated form e! representing this
same class. We take eF to be the foliation de�ned by e! and �nd an isotopy of
F along L to eF , using the continuous measures on the leaves of L induced by
� and e! . For details, see [2, Section 2].

It will be important to characterize a particularly simple spanning set of CZ ,
the so called \homology directions" of Fried [11, page 260]. Assuming that
LjM0 has been parametrized as a nonsingular C0 flow �t , select a point x 2 Z
and let Γ denote the �{orbit of x. If this is a closed orbit, it de�nes a structure
cycle which we will denote by Γ. If it is not a closed orbit, let Γ� = f�t(x) j
0 � t � �g. Let �k " 1 and set Γk = Γ�k . After passing to a subsequence, we
obtain a structure current

Γ = lim
k!1

1
�k

Z
Γk

:

Lemma 4.5 A structure current Γ, obtained as above, is a structure cycle.

Proof By compactness of Z, we can again pass to a subsequence so as to
assume that the points ��k(x) all lie in the same flowbox B , k � 1. Thus,
we can close up Γk to a loop Γ�k by adjoining an arc in B from xk to x.
These arcs can be kept uniformly bounded in length, hence the sequence of
singular cycles (1=�k)Γ�k (generally not foliation cycles) also converges to Γ.
These approximating singular cycles are called \long, almost closed orbits" of
�t . Since the space of cycles is a closed subspace of the space of currents, this
proves that Γ is a cycle.
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De�nition 4.6 All structure cycles Γ, obtained as above, and their homology
classes are called homology directions of Z.

An elementary application of ergodic theory proves the following (cf [29, Propo-
sition II.25]).

Lemma 4.7 Any structure cycle � 2 CZ can be arbitrarily well approximated
by �nite linear combinations

Pr
i=1 aiΓi of homology directions. If � 6= 0, the

coe�cients ai are strictly positive and their sum is bounded below by a constant
b� > 0 depending only on �.

While much of the Schwartzmann{Sullivan theory requires that L be at least
leafwise C1 , this lemma suggests how to de�ne the cones CZ and DZ , even
for the case in which the transverse foliation L is only C0 . Indeed, the long,
almost closed orbits (and the honest closed orbits) are de�ned, they are singular
homology cycles, their classes in H1(M) form a bounded set and limit classes as
above, taken over sequences for which �k " 1, are called homology directions.
The closure of the set of positive linear combinations of homology directions
forms a convex cone CZ � H1(M) and DZ � H1(M) is the dual cone. While
results such as Theorem 4.3 become problematic in this context, we will always
be in a position to identify these cones with ones coming from leafwise C1 data.

In what follows, the foliation F will be of depth one and the transverse foliations
L and L0 may only be C0 .

Lemma 4.8 Let L and L0 be two 1{dimensional foliations transverse to F .
Suppose that the respective core laminations Z and Z0 are C0{isotopic by an
isotopy ’t : Z ,! M , ’0jZ = idZ and ’1(Z) = Z0 , such that ’t(x) lies in the
same leaf of F for 0 � t � 1, 8x 2 Z. Then CZ = CZ0 .

Proof Parametrize the two foliations as flows using the same transverse in-
variant measure for F . Since F is leafwise invariant under the isotopy, the flow
parameter is preserved and the long, almost closed orbits of Z are isotoped to
the long, almost closed orbits of Z0 . Homotopic singular cycles are homologous
and the assertions follow.

Note that we do not require this to be an ambient isotopy. The property
that points of Z remain in the same leaf of F throughout the isotopy will be
indicated, as above, by saying that F is leafwise invariant by ’t .

The following is proven using the well understood structure of depth one folia-
tions in neighborhoods of @�M .
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Lemma 4.9 If L and L0 are two transverse foliations which induce the same
�rst return map f on a noncompact leaf L0 of F , then, without changing this
property, one can modify L0 in an arbitrarily small neighborhood of @�M to
agree with L in a smaller neighborhood.

Lemma 4.10 Let L and L0 be two 1{dimensional foliations transverse to F
and inducing the same �rst return map f : L0 ! L0 on some leaf L0 of FjM0 .
Then Z0 is isotopic to Z by a C0 isotopy leaving F leafwise invariant, hence
CZ = CZ0 and DZ = DZ0 .

Proof Parametrize the two foliations, using the same transverse invariant mea-
sure for F , so as to obtain flows �t and �0t , both carrying leaves L of F to
leaves �t(L) = �0t(L) of F , and such that

�1jL0 = f = �01jL0:

We choose a compact, connected submanifold K � L0 , separating all the ends
of L0 , with Z � intK . By Lemma 4.9, we lose no generality in assuming
that L and L0 coincide near @�M , so we can choose K larger, if necessary,
to guarantee that �t(@K) = �0t(@K), 0 � t � 1. These properties imply that
�t(K) = �0t(K), 0 � t � 1. De�ne

’t : K ! K; 0 � t � 1;
’t = �0−t � �tjK;

a loop in Homeo 0(K) based at ’0 = ’1 = idK . Here, Homeo 0(K) denotes the
identity component of the group of homeomorphisms of K (with the compact{
open topology). Since no end of L0 has a neighborhood of the form R � I or
R � S1 (a consequence of our ongoing hypotheses), we can choose K to have
negative Euler characteristic. Theorems of M. E. Hamstrom [16, 17, 18] then
imply that the group Homeo 0(K) is simply connected (see the remark below),
so there is a homotopy ’st in Homeo 0(K), 0 � s � 1, �xing the basepoint,
with ’0

t = ’t and ’1
t = idK , 0 � t � 1. This de�nes a continuous deformation

of
�tjK = �0t � ’0

t to �0t � ’1
t = �0tjK

which slides points along the leaves of F . This restricts to a C0 isotopy of

Z �
[

0�t�1

�t(K) to Z0 �
[

0�t�1

�0t(K)

and everything now follows by Lemma 4.8.
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Remark The theorem of Hamstrom, cited in the above proof, is that the
group Homeo 0(K;@K) which �xes @K 6= ; pointwise is homotopically trivial.
This is true whether or not �(K) is negative. The assumption of negative Euler
characteristic implies that �1(K;x) is free on at least two generators, in which
case one shows that any loop ’ on Homeo 0(K), based at the identity, is base
point homotopic to a loop in the subgroup Homeo 0(K;@K). It follows that
Homeo 0(K) is simply connected. Indeed, for each point x 2 K , ’ de�nes a
loop ’x on K based at x and the assignment x 7! ’x is continuous in the
compact{open topology. It follows rather easily that, for each x 2 K and each
loop �x on K based at x, the composed loop �x’x�

−1
x is base point homotopic

to ’x . This can only be true if ’x is homotopically trivial, 8x 2 K . Using this
fact for each x 2 @K , one constructs the desired homotopy of ’ in Homeo 0(K):
We remark that the group Di�0(K) is also known to be homotopically trivial [8]
as is the group of piecewise linear homeomorphisms [28].

Because of this lemma, we may write Cf for CZ and Df for DZ , where f is
the �rst return homeomorphism induced by L on a depth one leaf. We can also
use Zf to denote the isotopy class of the core laminations corresponding to f .
Here, the isotopies should preserve each leaf of F .

Lemma 4.11 Let f : L0 ! L0 be the �rst return homeomorphism induced
on a depth one leaf L0 of F by a transverse, 1{dimensional foliation L. If
g : L0 ! L0 is a homeomorphism isotopic to the identity, then Cf = Cgfg−1 .

Indeed, in standard fashion, the isotopy gt , g0 = g and g1 = id, induces an
isotopy of L to L0 , leaving F leafwise invariant, such that L0 induces �rst
return map gfg−1 on L0 .

The set Z = Z \ L0 is exactly the set of points which never cluster at ends
of L0 under forward or backward iteration of the monodromy f . Assume
that the dynamical system (Z; f) admits a Markov partition fR1; : : : ; Rng (in
particular, these are imbedded rectangles in L0 that cover Z and have disjoint
interiors) and let (�A; �A) be the associated symbolic dynamical system. Here,
an n� n incidence matrix A = [aij ] of 0’s and 1’s determines a closed subset

�A � f1; 2; : : : ; ngZ;

a sequence � = fikg1k=−1 being an element of �A if and only if aikik+1
= 1,

8 k . This is a compact, metrizable, totally disconnected space and the shift
map �A is a homeomorphism. In the usual scheme, there is a semiconjugacy

’ : (�A; �A)! (Z; f)
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de�ned by

’(�) = ’(� � � ; i−1; i0; i1; � � � ) =
1\

k=−1
f−k(Rik) = R�:

This assumes that the in�nite intersection R� of rectangles f−k(Rik) degener-
ates to a singleton, but we are going to allow this set to be either a singleton,
a nondegenerate arc, or a nondegenerate rectangle. We will still require that

Z =
[
�2�A

R�;

but each symbol sequence

� = (� � � ; i−1; i0; i1; � � � ) 2 �A

will represent all the points in R� . Remark that a boundary point of R� might
be represented by distinct sequences in �A .

The closed orbits Γ of �t determine periodic orbits of f in Z , hence correspond
to periodic orbits of �A . A point � 2 �A has periodic �A{orbit if and only
if � itself breaks down into a bi-in�nite sequence of a repeated �nite string
i0; : : : ; iq−1 , called a period of �A . In this case, � is called a periodic point.
Given a periodic point �, the Brouwer �xed point theorem implies that there is
at least one corresponding periodic f {orbit fx; f(x); : : : ; f q(x) = xg, x 2 R� ,
and a corresponding closed leaf Γ� = f�t(x)gt2R of Z.

Let � = fikg1k=−1 2 �A and suppose that iq = i0 for some q > 0. Let x 2 R� .
Then there is a corresponding singular cycle Γq formed from the orbit segment
γq = f�t(x)g0�t�q and an arc � � Ri0 from �q(x) = f q(x) to x. Also, since
iq = i0 , there is a periodic element �0 2 �A with period i0; : : : ; iq−1 and a
corresponding closed leaf Γ�0 = Γ0 of Z.

Lemma 4.12 The singular cycle Γq and closed leaf Γ0 , obtained as above,
are homologous. In particular, the homology class of Γq depends only on the
periodic element �0 .

Proof The loop Γ0 is the orbit segment f�t(x0)g0�t�q , for a periodic point

x0 2 Ri0 \ f−1(Ri1) \ � � � \ f−q(Riq) = R0:

Remark that x 2 R0 also. Let � 0 be an arc in the subrectangle R0 � Ri0 from
x to x0 and set � 00 = f q(� 0), an arc in f q(R0) from f q(x) to x0 . Since iq = i0 ,
f q(R0) � Ri0 and the cycle � + � 0 − � 00 in the rectangle Ri0 is homologous

John Cantwell and Lawrence Conlon

Geometry and Topology Monographs, Volume 2 (1999)

50



to 0. That is, we can replace the cycle Γq = γq + � by the homologous cycle
γq− � 0+ � 00 . Finally, a homology between this cycle and Γ0 is given by the map

H : [0; 1] � [0; q]!M;

de�ned by parametrizing � 0 on [0; 1] and setting

H(s; t) = �t(� 0(s)):

If no proper, cyclicly consecutive substring of a �A{period i0; : : : ; iq−1 also
occurs as a period, we say that the period is minimal. It is elementary that
there are only �nitely many minimal periods. Those closed leaves Γ of Z that
correspond to minimal periods in the symbolic system will be called minimal
loops in Z. The following is an easy consequence of Lemma 4.12.

Corollary 4.13 Every closed leaf Γ of Z is homologous in M to a linear
combination of the minimal loops in Z with non-negative integer coe�cients.
Furthermore, every homology direction can be arbitrarily well approximated by
positive multiples of closed leaves of Z.

This corollary and Lemmas 4.7 and 4.12 give the following important result.

Theorem 4.14 Suppose that the dynamical system (Z; f) admits a Markov
partition. Then the cone Cf � H1(M) is the convex hull of �nitely many rays
through classes [Γi], 1 � i � r , where the structure cycles Γi are minimal
loops in Z. Consequently, the dual cone Df is polyhedral and both Cf and Df
depend only on the symbolic dynamics.

5 Pseudo-Anosov endperiodic maps

We continue with the hypotheses and notation of the preceding section. Fix a
noncompact leaf L of F and let f : L! L be the �rst return map de�ned by a
transverse 1{dimensional foliation Lf . It is standard that f is an endperiodic
homeomorphism [9]. Here, we use the well understood structure theory of depth
one leaves, writing

L = K [ U+ [ U−;

where K is a compact, connected subsurface, called the core of L, U� falls
into a disjoint union of �nitely many closed neighborhoods of isolated ends
of L and K meets U� only along common boundary components. The set
U+ is called the neighborhood of attracting ends and has the property that
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f(U+) � U+ . The neighborhood U− of repelling ends has the property that
U− � f(U−). The core is not unique since it can always be made larger by
adjoining a suitable piece of U� . Set K \ U� = @�K . While fn(@+K) su�ers
only bounded distortion as n!1, it generally becomes unboundedly distorted
as n! −1, the situation being reversed for fn(@−K).

The attracting ends fei+gri=1 of L are permuted by f , as are the repelling ends
fej−gkj=1 . The set of cycles of these permutations corresponds one-to-one to the

set of components of @�M . Let fei1+ ; ei2+ ; : : : ; e
iq
+g be a cycle corresponding to

the tangential boundary component F and let U i1+ ; U
i2
+ ; : : : ; U

iq
+ be the corre-

sponding components of U+ which are neighborhoods of these ends. One can
choose the above data so that

f(U ij+ ) = U
ij+1

+ ; 1 � j < q;

f(U iq+ ) � U i1+ :

There is a fundamental domain F 0 � U i1+ for the action of the semigroup
ffng1n=0 on the union of these neighborhoods. This domain F 0 is homeomorphic
to a manifold obtained by cutting F along the juncture (cf [6, pages 3{4]) and
it meets K in a union of common boundary components. A similar assertion
holds for the repelling ends of L, the semigroup being ff−ng1n=0 . The way in
which the manifolds fn(F 0) link together along parts of their boundaries can
be surprisingly complicated.

As is well known, the depth one foliated manifold (M;F) can be recovered, up
to foliated homeomorphism, from the endperiodic map f . Indeed, the open,
�bered manifold (M0;F0 = FjM0) is obtained, up to homeomorphism, by sus-
pension of the homeomorphism f , while the completion

M = M0 [ @�M
is determined by the endperiodic structure. For more details see, for example,
[5, Lemma 2.3]. We further remark that the depth one foliated manifold is
homeomorphic (indeed, isotopic) to one in which F is smooth, even at the
boundary, so we assume smoothness.

The isotopy class m(f) of f (also called the mapping class of f ) is completely
determined by the depth one foliation F and, in turn, m(f) determines the
�bered manifold (M0;F0). The transverse foliation Lf is not well de�ned
by f , although the isotopy class of its core lamination Zf is well de�ned
(Lemma 4.10). This isotopy class varies, however, as f is varied through end-
periodic elements of m(f), so the cones Cf generally change as f is so varied.
We want to choose f so that these cones are as \small" as possible. That is,
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we want the dual cone, Df to be as large as possible. The tool for this is some
unpublished work of Handel and Miller (see [9]) which generalizes the Nielsen{
Thurston classi�cation of homeomorphisms of compact surfaces [1]. In order to
state this, some terminology is in order.

Denote by Lc the compacti�cation of L obtained by adjoining its ends. By a
properly imbedded line in L, we mean a topological imbedding

� : [−1;1]! Lc;

where f�(�1)g is a pair of ends of L and �(−1;+1) � L. This will be
distinguished from a properly imbedded arc which is an imbedding

� : [−1; 1]! L;

where f�(�1)g = �[−1; 1]\@L. A peripheral curve in L is either a closed curve
isotopic to a component of @L or a properly imbedded line, isotopic (with end-
points �xed) to the endpoint compacti�cation of a noncompact component of
@L. A proper homotopy between properly imbedded lines or arcs is a homotopy
that �xes the endpoints. If an end e of L has a neighborhood that is homeo-
morphic either to S1 � [0;1) or [0; 1] � [0;1), then e will be called a trivial
end.

De�nition 5.1 A closed, essential, nonperipheral curve γ � L is a closed
reducing curve if, for a su�ciently large integer n > 0, fn(γ) � U+ and
f−n(γ) � U− . A properly imbedded, nonperipheral line � is a reducing line if
one endpoint is an attracting end, the other a repelling end, and � is periodic
under f up to a proper homotopy. A periodic curve is a closed, nonperipheral
curve which is periodic under f up to homotopy.

De�nition 5.2 The endperiodic map f : L! L is periodic (or trivial) if every
orbit ffn(x)g1n=−1 has points in U+ and points in U− . The endperiodic map
is irreducible if no end of L is trivial and there are no reducing lines, reducing
curves, nor periodic curves. Otherwise, f is reducible.

Lemma 5.3 If no component of @�M is an annulus or a torus, if M is com-
pletely reduced (De�nition 3.2), and if L is a noncompact leaf of a taut, depth
one foliation of M , then every endperiodic homeomorphism f : L ! L that
occurs as the �rst return map for a transverse foliation Lf is irreducible. The
endperiodic homeomorphism is periodic if and only if M �= S � I and Lf is a
product I {bundle over S .
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The elementary proof is left to the reader. The point of this lemma is that our
ongoing hypotheses (Theorem 3.9) imply that the endperiodic monodromy is
irreducible and nonperiodic.

We can assume that the monodromy f and associated transverse foliation Lf
are smooth. Since no component of @�M is an annulus or a torus, we will
put a smooth Riemannian metric on M such that all the leaves are hyperbolic,
chosen so that, in U� , it is the lift of the metric on @�M via the projection
U� ! @�M along the leaves of Lf [3]. We can demand that @L be geodesic
and choose the juncture in each boundary leaf to be geodesic. In particular,
@K will consist of geodesic arcs and/or loops and f will be an isometry in the
ends.

Theorem 5.4 (Handel{Miller) Let f : L! L be an irreducible, endperiodic,
nonperiodic monodromy di�eomorphism of a hyperbolic leaf as above. Then
there is a pair of mutually transverse geodesic laminations �� of L and an
endperiodic homeomorphism h 2 m(f) such that

(1) The components of hn(@�K) are geodesics, 8n 2 Z, and

(a) �+ � K [ U+ is the limit of the geodesic laminations hn(@−K) as
n!1;

(b) �− � K [ U− is the limit of hn(@+K) as n! −1;

(2) K \ (�+ [�−) weakly binds K in the sense that complementary regions
not meeting @K are simply connected;

(3) hj@L = f j@L;

(4) If Z � K is the invariant set of h, the dynamical system (Z; hjZ) admits
a Markov partition.

Finally, m(f) together with the hyperbolic structure on L uniquely determines
�� and hj�+ \ �− .

Remark In (a), the assertion that

lim
n!1

hn(@−K) = �+

means that the leaves ‘ of �+ are exactly the curves in L with the following
property. For each compact subarc J � ‘, there is a sequence of subarcs
Jk � hk(@−K) converging uniformly to J as k " 1. Equivalently, �+ is the
frontier of the open set

U− =
[
n2Z

hn(U−):
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This is the weak interpretation of (a).

For the strong interpretation of (a), let eL be the the universal cover of L and
let L be the closure of eL in the closed Poincar�e disk D[S1 (where S1 is the
circle at in�nity and D is the open unit disk). Either @L = ; and L = D[S1 ,
or eL has geodesic boundary in D and L is the union of eL and a Cantor set
C � S1 . Since everything in sight is a geodesic, the weak interpretation of (a)
implies that the lifts e‘ � eL of leaves of �+ are exactly the uniform limits in the
Euclidean metric of sequences e�k of suitable lifts of components of hk(@−K).
When eL = D , this means that the endpoints in S1 of (the completion of)e�k converge to the endpoints of e‘. In general, the endpoints of e�k may lie on
geodesic boundary components of eL, but they still converge in the Euclidean
metric to the endpoints of e‘ in C � S1 . Similar remarks apply to (b).

We will say that h 2 m(f) is a pseudo-Anosov, endperiodic automorphism of L.
Remark that h preserves the laminations, expanding the leaves of the unstable
lamination �+ and contracting those of the stable lamination �− . Unlike the
compact case, there may not be projectively invariant measures of full support.

Since
S1
n=1 h

n(@−K) consists of disjoint geodesics and K is a compact surface,
the intersection of this set with K consists of compact, properly imbedded
geodesic arcs which fall into a �nite number of isotopy classes rel @+K . The
components of �+ \K all belong to these isotopy classes and every leaf of �+

meets @+K , hence every leaf meets hn(@+K), n � 1. Evidently, none of these
leaves can meet @−K . Similar remarks hold for the stable lamination �− .

Corollary 5.5 Every leaf ‘ of �+ contains points of Z and points going to
in�nity in both directions in ‘ which converge to an attracting end of L, but no
points arbitrarily near repelling ends. The analogous assertions hold for �− ,
with the roles of attracting and repelling ends interchanged.

The points of �+ \ �− are contained in the core K and remain there under
all forward and backward iterations of h. Generally, this intersection is not the
entire invariant set Z , which may have nonempty interior [9, Proposition 2.12].

The lamination �+ can be augmented to an h{invariant geodesic lamination Γ+

by adding on all hn(@−K), −1 < n <1, and a similar augmented lamination
Γ− is obtained by adding all hn(@+K) to �− . Once the choice of K has been
�xed, these augmented laminations are uniquely determined by m(f) and the
hyperbolic metric, they are mutually transverse and they weakly bind L. The
automorphism h is unique on Γ+ \ Γ− and may be extended continuously in
any convenient way on the complementary arcs of this set in Γ+ [ Γ− and on
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the components of the complement of Γ+ [ Γ− in L. It is not clear that this
can be done so that h will be smooth, even though the original monodromy f
was smooth.

The foliation Lh , chosen to produce the pseudo-Anosov �rst return map h,
is a bit problematic at @�M . It happens that there will always be distinct
h{orbits in �+ [ �− which cluster in M at the same point of @�M (see [9]).
Each leaf of Lh which comes close enough to @�M actually limits on a unique
point of @�M , but the fact that distinct leaves can limit on the same point of
@�M implies that the continuous extension of Lh to M will not be a foliation.
We could remedy this by modifying Lh in arbitrarily small neighborhoods of
@�M without a�ecting the core lamination Zh , thereby allowing the isotopy
arguments of the previous section to be carried out. Since the conclusions of
these arguments concern only the core lamination Zh , they remain true without
making such modi�cations.

By this remark and in order to keep the full force of pseudo-Anosov monodromy,
we agree that Lh be de�ned only in M0 , extending to M as a singular foliation.

Lemma 5.6 There are mutually transverse, smooth leaved, 2{dimensional
laminations �� of M0 which intersect the leaves of F0 transversely in the
augmented geodesic laminations Γ� for the pseudo-Anosov monodromy of those
leaves.

Proof For simplicity of exposition, we consider the case that @L = ;. This
makes the universal cover of each leaf the full open unit disk D . Standard
modi�cations of the following argument prove the general case. Let �t be the
leaf preserving flow in M0 with flow lines the leaves of Lf jM0 . Since Lf is
smooth, so is this flow. Fix a leaf L0 of FjM0 , set Lt = �t(L0) and consider
the open, F{saturated set V" =

S
−"<t<" Lt . Here " > 0 is chosen small enough

that L" 6= L−" . The universal cover of V" is of the form D � (−"; "), where
the interval �bers are flow lines of the local flow e�t obtained by lifting �t ,
−" < t < ".

Write Dt for D � ftg and remark that the lifted metric gives a hyperbolic
metric γt on Dt , −" < t < ". Projection along the interval �bers is smooth,
but is not an isometry of these metrics. However, for " > 0 su�ciently small,
projection distorts the metrics only in a uniformly small way in the C2 topology
(indeed, this is true for �t downstairs, which only fails to be an isometry on a
compact neighborhood of K ). In particular, each geodesic �0 in D0 is carried
to a curve �t in Dt with uniformly small geodesic curvature, −" < t < ".
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An important property of hyperbolic geometry is that any curve with geodesic
curvature < 1 remains uniformly near a unique geodesic, hence has well de�ned
ends in the circle at in�nity. In fact, any pencil of asymptotic geodesics limiting
on the same point at in�nity projects to a pencil of \almost geodesics" limiting
on a common point at in�nity. It follows that projections along the interval
�bers extend to well de�ned projections on the circles at in�nity. Thus, the
completion M of D� (−"; ") by the circles at in�nity of each Dt is canonically
identi�ed with D � (−"; "), making M a smooth manifold.

Suppose that �0 is a geodesic covering a leaf ‘0 of Γ� in L0 and consider the
smooth surface S =

S
−"<t<"

e�t(�0). If z�1 are the endpoints of �0 at in�nity,
then S is continuously extended to D � (−"; ") by adjoining fz�1g � (−"; ").
Fix some third arc fwg � (−"; ") at in�nity. If one uses the product metric on
D � (−"; ") instead of the lifted metric, each leaf Dt has metric γ0 and �t =
S \Dt is a geodesic, −" < t < ". But there is a unique leafwise uniformizing
di�eomorphism  : D � (−"; ") ! D � (−"; ") which �xes pointwise the three
transverse arcs at in�nity and carries γ0 to γt , carrying each �t to a γt{
geodesic. Each of these geodesics in Dt covers the leaf ‘t of Γ� in Lt which
is in the homotopy class of �t(‘). Since  (S) is smooth, these leaves ‘t �t
together to form a smooth piece of surface transverse to F . Extending this
local construction in the obvious manner, we sweep out the general leaf of the
desired lamination �� .

There is a certain amount of freedom in the choice of h and Lh . In order to
use the Schwartzmann{Sullivan theory as in the previous section, we note that
Lemma 5.6 implies the following.

Corollary 5.7 The foliation Lh , transverse to F0 = FjM0 and inducing
pseudo{Anosov monodromy h on a leaf L, can be chosen to be integral to
a C0 vector �eld in M0 .

Indeed, �+\�− is a smooth leaved, 1{dimensional lamination X and we choose
a continuous unit tangent �eld to X . This then extends, �rst to a continuous
unit �eld on �+[�− , thence to a �eld on M0 , which is C1 on each component
of the complement of X and is transverse to the leaves of F0 . Here we use the
fact that Γ+ [ Γ− weakly binds L. The foliation integral to this �eld is the
desired realization of Lh .

We come to the key result of this section.
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Theorem 5.8 Let h be a pseudo-Anosov �rst return map for F and let F0 be
another depth one foliation transverse to Lh , f 0 the �rst return map induced by
Lh on the typical noncompact leaf L0 of F0 . Then there is a homeomorphism
g : L0 ! L0 which is isotopic to the identity such that h0 = g � f 0 � g−1 2 m(f 0)
is pseudo-Anosov.

Corollary 5.9 Under the hypotheses of Theorem 5.8, Ch = Ch0 and Dh = Dh0
and these cones are independent of the choice of h o� of the set �+ \ �− .

Indeed, the �rst assertion is immediate by Lemma 4.11 and the second by
Theorem 4.14.

The proof of Theorem 5.8 will be broken down into a series of lemmas. Again,
for simplicity of exposition, we attend mainly to the case that @L = ; = @L0

(equivalently, @tM = ;), frequently leaving it to the reader to adapt arguments
to the general case.

To begin with, note that F0 will be transverse to Lf outside of a compact subset
of M0 , so we �x a leafwise hyperbolic metric for F0 such that, in neighborhoods
of the ends of depth one leaves, the metric is lifted from @�M by projection
along Lf .

Fix the noncompact leaves L of F and L0 of F0 . Projection along the leaves of
Lh de�nes local homeomorphisms between L and L0 , but one cannot expect to
piece these together to a well de�ned covering map. Nonetheless, if s : J ! L
is a curve, t0 2 J , one can project s along Lh to a curve s0 : J ! L0 , this
projection being completely determined by the choice of s0(t0). Similarly, curves
s0 on L0 project to curves s on L. The analysis in [9, Section 4] implies the
following.

Lemma 5.10 Deep in the ends of L and L0 (that is, arbitrarily near @�M in
the topology of M ), the projections along Lh can be arbitrarily well approxi-
mated by projections along Lf .

It is sometimes helpful to lift the picture of this projection operation to the
universal cover fM0 of M0 . The foliations F0 and F00 lift to foliations eF0 and eF00
and, since the foliations downstairs are taut, the lifted foliations have simply
connected leaves. The lift eLh of Lh is transverse to both lifted foliations. Thus,
we may view fM0

�= eL� R �= eL0 � R;
where eL is a leaf of eF0 covering L, eL0 is a leaf of eF00 covering L0 , and the
R factors are leaves of eLh . Projection along the leaves of this 1{dimensional
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foliation carries eL homeomorphically onto eL0 and vice versa. This projection,
restricted to a lift of a curve in L is a lift of a projection along Lh as described
above. This lifted picture of the projection is often useful. For instance, the
following should be obvious.

Lemma 5.11 Let s and s0 be mutual projections along Lh . Then s0 is a
nullhomotopic loop in L0 if and only if s is a nullhomotopic loop in L.

Let �� be the stable and unstable laminations preserved by h in the leaf L of F .
By taking all projections along Lh of the leaves of these laminations, we produce
a pair of laminations �0� on L0 . It is clear that these will be closed subsets of
L0 , but we cannot hope that they will be geodesic laminations. We will show,
however, that they have all the qualitative properties that the pseudo-Anosov
laminations should have. It will then be possible to construct a homeomorphism
g : L0 ! L0 which is isotopic to the identity and simultaneously conjugates
�0� to the geodesic laminations of the Handel{Miller theory. This will prove
Theorem 5.8. Here again it will often be useful to lift the data to the universal
cover.

We begin with the analogue of Corollary 5.5.

Lemma 5.12 Let Z 0 � L0 be the invariant set for f 0 . Then every leaf ‘ of �0+
contains points of Z 0 and points going to in�nity in both directions in ‘ which
converge to an attracting end of L0 , but no points in a suitable neighborhood
of the repelling ends. The analogous assertions hold for �0− , with the roles of
attracting and repelling ends interchanged.

Proof Indeed, by Corollary 5.5, every leaf ‘ of �+ contains points of Z , hence
meets Zh . It follows immediately that every leaf of �0+ meets Zh , hence contains
points of Z 0 . Similarly, no leaf of �+ meets leaves of Lh which approach
inwardly oriented components of @�M , so the same holds for leaves of �0+ .
That is, these leaves do not enter a periodic neighborhood U 0− of repelling
ends. Analogous remarks hold for the leaves of �0− .

Suppose that ‘ is a leaf of (say) �0+ such that an end � of ‘ has a neighbor-
hood which does not enter a neighborhood of the attracting ends of L0 . The
asymptote of � in L0 is therefore a nonempty, compact sublamination �� of
�0+ . Evidently, the closure �n in L0 of

1[
k=n

(f 0)−k(��)
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de�nes a descending nest f�ng1n=1 of nonempty, compact sublaminations of �0+
with intersection a compact, nonempty, f 0{invariant sublamination �. Thus,
� � Z 0 , implying that corresponding leaves of �+ are contained in Z . This
contradicts Corollary 5.5.

Let e�� and e�0� be the respective lifts of our laminations to eL and eL0 . Pro-
jection of eL0 onto eL along the leaves of eLh is a homeomorphism carrying e�0�
onto e�� . Since the latter are mutually transverse geodesic laminations, the
following is immediate.

Lemma 5.13 Every leaf of e�0+ meets every leaf of e�0− in a single point.

It is somewhat touchier to prove that the leaves of e�0� all limit nicely to end-
points at in�nity. There is no guarantee that F0 is tangentially close to F , so
there is no way to guarantee that the laminations in L0 are leafwise close to
geodesic ones.

Consider an end e of L0 and a neighborhood W of e in L0 which spirals on
a leaf F � @�M over the juncture N 0 � F . If @F = ;, this juncture can
be taken to be a simple closed geodesic. In general, @F 6= ; and N 0 will be
a disjoint union of simple closed geodesics and/or properly imbedded geodesic
arcs. Similarly, there is a juncture N � F for the spiraling ends of the leaf L
of F which are asymptotic to F . We work entirely in a normal neighborhood
V = F � [0; ") of F in M with normal �bers subarcs of leaves of Lf , assuming
this neighborhood to be small enough that F0jV is transverse to these normal
�bers. Thus, curves in L \ V can be projected both by Lf and Lh to curves
in L0 \ V and vice versa.

Let � be a component of N 0 and �x a lift � of � to L\V via projection along
Lf . We consider three cases.

Case 1 If � is a properly imbedded geodesic arc in F , so is � in L. Suitable
projections �k of � into L0 along Lh will be boundary components of complete
submanifolds Wk � L0 which form a fundamental neighborhood system of e.
The reader can check that, in the upcoming arguments, this case can be handled
in close analogy with the next case. In this way, we continue to focus on the
case in which the leaves have empty boundary.

Case 2 If � is a closed geodesic with homological intersection number ��N =
0, then � will be a closed geodesic in L. Again, suitable projections �k of � into
L0 along Lh will be boundary components of complete submanifolds Wk � L0
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which form a fundamental neighborhood system of e. Note that each �k has
an Lh projection to the geodesic � in L.

Case 3 If � is a closed geodesic and � �N 6= 0, then � will be a half in�nite
geodesic. We parametrize it as �(t), 0 � t < 1, remarking that, as t " 1,
�(t) moves arbitrarily far into an end of L. Let �� denote the restriction of
this geodesic ray to [�;1). For each � � 0, suitable Lf projections �k of ��
are closed geodesic boundary components of complete submanifolds Wk � L0

which form a fundamental neighborhood system of e. For suitably large values
of � and large enough values of k , a suitable projection �0k of �� into L0 along
Lh will wrap around �k , staying as close to �k as desired. This assertion follows
easily from Lemma 5.10. We emphasize that �0k has an Lh projection to the
geodesic ray �� in L.

In Cases 2 and 3, let e�k be a lift of �k to the universal cover, remarking that
this lift limits on two distinct points a�k 2 S1 . Suppose the lifts have been
chosen for all k � K (K > 0 �xed) so that there is a nested sequence

JK � JK+1 � � � � � Jk � � � �

of arcs in S1 with @Jk = fa+
k ; a

−
k g. Thus, the simple closed curves e�k [Jk cut

o� a nested family fDkgk�K of closed disks in the closed Poincar�e disk.

Lemma 5.14 The nested sequence fDkgk�K has intersection a singleton fxg
in S1 .

Proof In both cases, the sequence f�kgk�K converges to e. Thus, for every
compact subset X � L0 , only �nitely many terms of the sequence meet X . The
sequence of lifts fe�kgk�K must also have the property that only �nitely many
terms meet any given compact set Y � eL0 . In Case 3, �k is a closed geodesic
and, in Case 2, the closed geodesic �0k freely homotopic to �k stays uniformly
close to �k (again one uses Lemma 5.10). In either case, the lifts of these
geodesics are complete geodesics in the hyperbolic plane eL0 having endpoints
a�k in the circle at in�nity. This sequence must also have the property that
only �nitely many terms meet any given compact subset of eL0 and the assertion
follows.

In Case 1, The properly imbedded arcs �k are homotopic (with endpoints �xed)
to properly imbedded geodesic arcs and the reader can formulate and prove the
appropriate analogue of Lemma 5.14.
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Lemma 5.15 If " > 0, then there is an integer K so large that, if k � K and
Nk;" is the normal neighborhood of hyperbolic radius " of a lift e�k of �k to eL0 ,
then no leaf of e�0� can properly cross Nk;" twice.

Proof Case 2 is the easier one. In this case we can take K = 1. If e‘ is a leaf
of e�0� which properly crosses e�k twice, there is a closed loop in eL0 of the forme� +e� , where e� is an arc in e‘ and e� an arc in e�k . The covering map carries this
to a nullhomotopic loop � + � in L0 , where � is a subarc of a leaf ‘ of �0� and
� is a path running around �k . A suitable projection along Lh carries this to
a nullhomotopic loop in L (Lemma 5.11) running around the closed geodesic
� and along a subarc of a geodesic leaf of �� . Evidently, these two geodesic
segments do not coincide, contradicting a well known property of hyperbolic
surfaces.

In Case 3, one chooses � > 0 and K > 0 so large that, if k � K , a suitable
Lh projection �0k of the geodesic ray �� stays inside the "{neighborhood of
the closed geodesic �k . In the universal cover eL0 , suitable lifts e�0k lie in N";k .
If g is the hyperbolic transformation with axis the complete geodesic e�k , then
gn(e�0k) � N";k , 8n 2 Z. We suppose that e‘ is a leaf of e�0� properly crossing
N";k twice and note that, for suitable integers n, e‘ properly crosses gn(e�0k) in
two points. Again we obtain a nullhomotopic loop � + � in L0 , where � is a
subarc of a leaf ‘ of �0� and � is a path running along �0k . A suitable Lh
projection carries this to a nullhomotopic loop in L made up of two distinct
geodesic segments, one a subarc of a leaf of �� and one a subarc of the geodesic
ray �� . This is the desired contradiction.

Corollary 5.16 Each leaf of e�0� limits on two distinct points in the circle at
in�nity.

Proof Let e‘(t) cover the parametrized leaf ‘(t) of �0� , −1 < t < 1 in eL0 .
By Lemma 5.12, there is an end e of L0 and a sequence tk " 1 such that
f‘(tkg1k=1 clusters at e in L0 . We can assume that ‘(tk) 2 @Wk as above.
Indeed, passing to a subsequence, if necessary, and choosing the component �
of N 0 appropriately, we can assume that ‘(tk) 2 �k as in the above discussion.
Furthermore, as a little thought shows, we can assume wlog that, for in�nitely
many values of k , the segment f‘(t) j tk−1 < t < tk+1g does not meet �k−1 .
Thus, for all k � 1, let e�k be the lift of �k passing through the point e‘(tk).
In the case on which we are focusing, this lift will be an imbedded arc in D
limiting on two distinct points a�k 2 S1 . In Lemma 5.15, choose " > 0 so small
that Nk;" cannot meet the lifts e�k�1 . Thus, for suitable large values of k , there
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is no parameter value t > tk−1 at which e‘ again meets e�k−1 . This traps e‘(t),
t > tk−1 , in the closed disk Dk−1 of Lemma 5.14, so

lim
t!1

e‘(t) = x

(see Figure 1, where we use the upper half plane model). Similarly the other
end of e‘ limits on a well de�ned point y in the circle at in�nity. If x = y , e‘
would properly cross some Nk;" twice, again contradicting Lemma 5.15.

x

e‘ e�k

Figure 1: Each end of e‘ limits to a point at in�nity in eL0
Let K 0 � L0 be a choice of core and U 0� the corresponding neighborhoods of
attracting and repelling ends. Let U� � L be the sets de�ned in the remark
after Theorem 5.4 and set

U0� =
[
n2Z

(f 0)n(U 0�):

Then U0− is the set of points of intersection of L0 with the leaves of Lh which
limit on inwardly oriented components of @�M and U− is the corresponding
set in L. The sets U0+ and U+ have an analogous description. Since �� is the
set theoretic boundary in L of U� , the following is immediate.

Lemma 5.17 The laminations �0� are the respective set theoretic boundaries
in L0 of U0� .

Thus,

�0+ = lim
n!1

(f 0)n(@−K 0)

�0− = lim
n!1

(f 0)−n(@+K
0)

in the weak sense. It will be necessary to prove convergence in the strong sense
described in the remark following Theorem 5.4.
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Denote by C the set of points at in�nity of eL0 . We are focusing on the case
that C = S1 , but alternatively, it is a Cantor set. The following fact is well
known for the universal covering of a compact, hyperbolic surface, but is not
generally true for the noncompact case. The proof for endperiodic surfaces was
communicated to us by S Fenley.

Lemma 5.18 Let G be the group of covering transformations on eL0 . For each
point x 2 eL0 , the orbit G(x) accumulates in eL0 [ C exactly on the set C . In
particular, C is minimal under the induced action of G.

Proof Let x 2 eL0 and z 2 C . It is clear that G(x) cannot accumulate ineL0 and we will show that G(x) contains a sequence converging to z in the
Euclidean metric. Let γ denote the unique unit speed geodesic ray in eL0 from
x to z . This projects to a geodesic ray or loop � in L0 , parametrized on [0;1),
and we consider two cases.

Case I For a suitable sequence tk " 1, the hyperbolic distance between �(0)
and �(tk) is bounded by a �nite positive constant B . Let �k = �j[0; tk] and
choose a path �k in L0 from �(tk) to �(0) and having length at most B . Let
gk 2 G correspond to the lift of the loop �k + �k to a path starting at x. Thus,
this path ends at the point gk(x) and is written as γk + e�k , where γk = γj[0; tk]
and e�k is the lift of �k starting at γ(tk). The points γ(tk) converge to z in the
Euclidean metric, while the Euclidean length of e�k converges to 0. It follows
that

lim
k!1

gk(x) = z:

Case II The hyperbolic distance between �(0) and �(t) goes to in�nity with
t. We can choose the sequence tk " 1 so that �(tk) converges to an end
e. We set �k = �j[0; tk] and γk = γj[0; tk]. We can choose a fundamental
neighborhood system fWkg1k=1 of e with @Wk geodesic and assume that �(tk) 2
�k , a component of @Wk , k � 1. The lifts e�k passing through γ(tk) cut o�
a fundamental neighborhood system fDkg1k=1 of z in eL0 [ C . Since the end
e is nontrivial, there is a properly imbedded arc �k in Wk with endpoints in
�k which cannot be deformed into �k while keeping the endpoints in �k . We
can deform �k , keeping the endpoints in �k , to a loop (again denoted by �k )
based at �(tk) and let gk 2 G correspond to the lift of �k + �k − �k starting
at x. This lift has the form γk + e�k − e�k , where e�k is the lift of �k starting at
γ(tk) 2 e�k and −e�k is the lift of −�k starting at the terminal point of e�k . By
the assumption on �k this terminal point cannot lie on e�k and it follows that
gk(x) 2 Dk .
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Consider a leaf ‘ of �0� and a lift e‘ of this leaf to eL0 . For de�niteness, assume
‘ to be a leaf of �0+ . Since (f 0)k(@−K 0) converges to �0+ in the weak sense,
we can �nd a component � of a juncture arbitrarily deep in a repelling end
and a sequence of positive integers nk " 1 such that arbitrarily long subarcs
of �k = (f 0)nk(�) uniformly well approximate arbitrarily long subarcs of ‘ as
k " 1. This likewise holds for the lift e‘ and for suitable choices of the liftse�k . Note that e�k has well de�ned endpoints a�k , either in @eL0 or in C and
that Corollary 5.16 guarantees that e‘ has well de�ned endpoints in C . We can
assume that there are well de�ned limits

a� = lim
k!1

a�k :

In order to prove the strong convergence, we need only show that a� 2 C are
the endpoints of e‘. We suppose not and reach a contradiction.

e‘
e�k

Figure 2: Nonhausdor� accumulation of fe�kg1k=1 on leaves of e�0+
No generality is lost in assuming that the component � of juncture is chosen
as in one of the three cases discussed in the remarks preceding Lemma 5.14.
There, � denoted a component of juncture in a boundary leaf F , but here we �x
a homeomorphic lift deep in a repelling end of L0 and denote that lift by � . By
Lemma 5.18 and the invariance of e�0+ under the covering group G, we conclude
that the endpoints of the leaves of this lamination are dense in C . Since e�k
cannot meet these leaves, we easily conclude that the sequence fe�kg1k=1 has
nonhausdor� accumulation on more than one leaf of e�0+ (actually, on in�nitely
many) as indicated in Figure 2. The following, therefore, completes the proof
of convergence in the strong sense. The idea for this proof was suggested to us
by S Fenley.

Lemma 5.19 The sequence e�k converges uniformly to e‘ in the Euclidean
metric on D .

Proof We suppose nonhausdor� accumulation as in Figure 2 and deduce a
contradiction. Let � : eL0 ! eL denote the projection along the leaves of eLh .
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This is a homeomorphism. It will preserve the nonhausdor� accumulation,
although we are no longer assured that �(e�k) has well de�ned endpoints at
in�nity. Since �(e‘) is a geodesic leaf of e�+ , it does have well de�ned endpoints.
Let z be one of these endpoints, remarking that �(e�k) passes arbitrarily near
z (in the Euclidean metric) as k !1.

Let ‘ denote the leaf of �+ covered by �(e‘). By Corollary 5.5, there is a
sequence fWkg1k=1 of closed neighborhoods of an attracting end of L such that
@Wk is geodesic and such that ‘(tk) 2 @Wk , where �(e‘(tk)) ! z as k ! 1.
Thus, we can �x a fundamental system fDkg1k=1 of closed neighborhoods of z
in eL, each bounded by a geodesic (or geodesic arc) e�k which is a lift of the
component �k of @Wk which passes through ‘(tk).

�(e�k)

e�k�(e‘)
z

Figure 3: �(e�k) crosses the geodesic e�k twice

Since the curves �(e�k) also accumulate on other leaves of e�+ , there will be
large enough values of k so that �(e�k) crosses e�k twice (Figure 3). Thus, we
obtain a nullhomotopic loop in eL made up of a segment of �(e�k) and a segment
of the geodesic e�k . If p : eL ! L denotes the covering projection, we obtain a
nullhomotopic loop �k in L made up of a segment of the geodesic �k and of
the curve p(�(e�k)).

If � is as in Case 2, then there is an Lh projection of � to a geodesic loop �
deep in a repelling end of L. Since f 0 is everywhere de�ned by projection along
Lh , every �k has an Lh projection to the closed geodesic � . Since h is also
de�ned by projection along Lh , it follows that a suitable negative iterate h−nk
carries p(�(e�k)) onto the geodesic � . Since h preserves the extended geodesic
lamination Γ− , h−nk(�k) is also geodesic and h−nk(�k) is a nullhomotopic loop
made up of two distinct geodesic segments, a contradiction. Case 1 is entirely
similar.

If � is as in Case 3, one chooses a normal "{neighborhood N"(�) of the closed
geodesic � so that all iterates N";k = (f 0)k(N"(�)) are pairwise disjoint. The
geodesic ray �� � L in Case 3 has an Lh projection contained entirely in
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N"(�). In the argument above, view the lifts eN";k as slightly thickened ver-
sions of e�k , also accumulating in nonhausdor� fashion on multiple leaves of e�0 .
Modi�cations of the above argument, analogous to the treatment of Case 3 in
the proof of Lemma 5.15, produce a nullhomotopic loop made up of a segment
of the geodesic �� and a segment of the geodesic h−nk(�k).

Since the leaves of e�0+ are exactly the uniform limits of lifts of components of
(f 0)k(@−K 0) and all of these curves have well de�ned (and distinct) endpoints
in eL0 [ C , we can replace each of these curves with the geodesic having the
same endpoints. The strong convergence proven above implies corresponding
convergence of endpoints, hence strong convergence of the geodesics with these
endpoints. Thus, these geodesics are exactly the lifts of the leaves of the ex-
tended geodesic laminations Γ0+ of the Handel{Miller theory. Similar arguments
apply to the lamination Γ0− . In standard fashion, one constructs a homeomor-
phism eg : eL0 ! eL0 , commuting with the covering group, �xing C pointwise, and
carrying the laminations to geodesic ones. This induces the homeomorphism
g : L0 ! L0 of Theorem 5.8, completing the proof of that theorem.

Corollary 5.20 Let (M;F) be a depth one, foliated, sutured manifold. Then
there is a unique closed cone D � H1(M) which is convex, polyhedral, contains
the proper foliated ray [F], has interior a union of foliated rays, and is such
that @D contains no foliated rays.

Proof By Theorem 3.3, Lemma 3.6 and Lemma 5.3, together with Theo-
rem 5.4, we can suppose that the endperiodic monodromy h of a leaf L of F is
pseudo-Anosov and consider the cone D = Dh . By Theorem 4.14, this cone is
polyhedral. By Theorem 4.3, every class in intDh is foliated and we only need
to prove that there is no foliated class in @Dh . The linear inequalities �i � 0
de�ning Dh are given by integral homology classes �i 2 H1(M ;Z), these being
represented by closed loops, so there is a foliated class [!] 2 @Dh if and only if
some such class corresponds to a depth one foliation. Let F0 be a depth one foli-
ation represented by a class [!0] 2 @Dh and let h0 : L0 ! L0 be a pseudo-Anosov
�rst return map for a noncompact leaf L0 of F0 . Choose a class [!00] 2 intDh
on a ray through the integer lattice and as close to [!0] as desired. Thus, we
can assume that the closed, nonsingular foliated form !00 is su�ciently near !0

that the depth one foliation F00 which it de�nes is also transverse to Lh0 . But
Corollary 5.9 then implies that Dh = Dh0 , so [!0] 2 intDh , a contradiction.
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6 Finiteness of the Foliation Cones.

One can construct nonmaximal foliation cones in close analogy with U. Oertel’s
construction of branched surfaces which carry norm minimizing representatives
of elements of H1(M) [21]. While it seems to be hard to use this approach
to prove convexity of the maximal cones, it does provide a proof of �niteness.
Indeed, every maximal foliation cone is a union of Oertel cones and there are
only �nitely many of these. The proof requires a few modi�cations of arguments
in [21] since it will not be convenient to use norm minimizing surfaces. The norm
minimizing hypothesis in Oertel’s argument is used to prove a crucial orientation
property [21, pages 261{262] which, in our case, will follow from the depth one
hypothesis. We assume familiarity with the construction of branched surfaces
from surfaces in Haken normal form as carried out, for example, in [10, 20, 21].

We �x a handlebody decomposition of the sutured manifold M , requiring that
@M be covered by a union of i{handles, 0 � i � 2, @�M \ @tM being covered
by a union of 0{handles and 1{handles. All constructions of surfaces in normal
form and of branched surfaces will be carried out relative to this handlebody
decomposition.

We also �x normal neighborhoods W = @�M � [0; 2] and V = @tM � [0; 2],
arranging that the handles meeting @�M lie in W 0 = @�M � [0; 1] and those
meeting @tM lie in V 0 = @tM � [0; 1].

Given a depth one foliation F , we will produce a branched surface B which,
in a suitable sense, \fully carries" F . (For this, we could invoke a theorem of
Gabai [14, Theorem 4.11], but we will describe a more elementary proof.)

The branched surface B will be such that every choice � = f�ig of strictly
positive weights on the sectors Bi of B , satisfying the branch equations [20,
page 386], de�nes a foliated class [�] 2 H1(M). We call � an invariant measure
on B .

As in the cited references, one directly constructs the normal neighborhood
N(B) � M , foliated by compact, oriented intervals I , B being de�ned as the
quotient of N(B) obtained by collapsing the interval �bers to points. While
N(B) is not exactly an interval bundle in the usual sense, the local models
pictured in the cited references make clear the sense in which it can be viewed
as an interval bundle over B . Hereafter, we use the term \interval bundle" in
this more general sense.

A major di�erence from the construction in [21] is that @�M will be part of B .
This implies that B can fully carry only noncompact surfaces L which accu-
mulate on @�M exactly as does a depth one leaf (Figure 4). This requires that

John Cantwell and Lawrence Conlon

Geometry and Topology Monographs, Volume 2 (1999)

68



the corresponding measure � take the value 1 on the sectors of B contained
in @�M . Away from the tangential boundary, L will meet each interval �ber
of N(B) in only �nitely many points.

@�M

N(B)

Figure 4: The normal neighborhood N(B) near @�M

The foliation F will be transverse to the �bers of the normal neighborhood
@�M � [0; "] � W 0 for small enough " > 0, so an isotopy that flows into M
along the �bers of W allows us to assume that the foliation FjW is transverse
to these �bers. Here, each noncompact leaf of FjW falls into �nitely many
disjoint, noncompact pieces, each spiraling in on one or another component of
@�M . It will also be convenient to choose the �bers of V = @tM � [0; 2] to be
tangent to the leaves.

Choose a depth one leaf L of F . This submanifold, being a leaf of a taut
foliation, is incompressible in M . As in [4, Section 4], �x a decomposition
L = C [E , where C is a compact, connected submanifold of L with boundary
and, possibly, corners, E being the union of spiraling pieces. We can assume
that E is exactly the intersection of L with the handles that meet @�M . As
in [4, pages 166{167], complete C to a properly imbedded surface F = C [ A
in M , where A is made up of annuli and/or rectangles which \drop" from
components of @C to @�M . Since L is incompressible, so is F .

We would like to perform an isotopy on F , putting it into Haken normal form
relative to the handlebody decomposition. As the referee pointed out, there
is a problem applying standard theory here since we cannot guarantee that F
is boundary incompressible. However, the very simple structure of F in the
neighborhood U = W 0 [ V 0 of @M makes it clear that there are no boundary
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compressing disks contained entirely in U , so standard methods do permit an
isotopy that puts A into Haken normal form relative to the handles meeting
@M . We view this as an ambient isotopy, simultaneously moving the leaf L.
Now the incompressibility of F allows us to extend this to an ambient isotopy,
supported in the complement of the interiors of the handles meeting @M and
putting all of F , hence A, into Haken normal form. The fact that E = LrintC
consists of spiraling pieces near @�M now allows the entire leaf L to be isotoped
to Haken normal form.

Let N(L) � M be an imbedded normal neighborhood of L, this being an
oriented J {bundle over L, where the natural orientation of the compact interval
J � R agrees with the transverse orientation of L. We can assume that N(L)
itself is in normal form. That is, N(L) meets no 3{handles and, if H is an i{
handle, 1 � i � 2, then each component of H\N(L) is of the form D�J , where
D is one of �nitely many disk types in H . Let N+(L) be the augmented J {
bundle, incorporating a normal neighborhood of @�M which lies in the union
of i{handles meeting @�M and is also in normal form. The orientation of
the �bers respects the transverse orientations of L and @�M as indicated in
Figure 4. Because L is a depth one leaf, M0 r intN+(L) will have a product
structure G� I , where G is a compact 2{manifold and I a compact interval.

In [21], the complexity of a compact, properly imbedded surface in Haken nor-
mal form is de�ned to be the number of disks in which the surface intersects
2{handles. Since L meets the 2{handles along @�M in in�nitely many disks,
we modify this de�nition, using only the 2{handles which do not meet the tan-
gential boundary. We can assume that, among all normal forms in its isotopy
class, L has minimal complexity. Following Oertel, we form N

+(L) by adjoin-
ing to N+(L) all products D� [−1; 1], where D�f�1g are adjacent, normally
isotopic disks of @N(L) \H , H an i{handle with 0 � i � 2. We can write

N
+(L) = N+(L) [Q1 [ � � � [Qr;

where the Qi ’s are compact, connected, pairwise disjoint products. As is stan-
dard, we break @N+(L) into the horizontal part @hN

+(L) and the vertical part
@vN

+(L). Again, N+(L) is a compact J {bundle and the complement in M0

of its interior is a product (possibly not connected).

Following Oertel [20, 21], we cut N+(L) along @N(L)\Qj , 1 � j � r , obtain-
ing a compact interval bundle bN+(L) which generally has many components.
There is a canonical immersion � : bN+(L) ! M which is an imbedding on
each component of bN+(L) and has image N

+(L). We can identify the com-
ponents of bN+(L) with their images under �, noting that one component of
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bN+(L) is identi�ed with N+(L). One must be concerned with the possibility
that some component(s) Q = Qj may have opposed orientations along the two
components of @hQ, as indicated in Figure 5.

Q

Figure 5: Opposed orientations on @hQ

Lemma 6.1 There is a continuous choice of orientation on the interval �bers
of N

+(L) which agrees with the orientation on the �bers of N+(L).

QB

Figure 6

Proof We assume that some component Q = Qj of bN+(L) has opposed ori-
entations on @hQ, as indicated in Figure 5, and deduce a contradiction. Write
Q = R� [0; 1] and suppose that C � R is any closed loop (respectively, prop-
erly imbedded arc). Then C� [0; 1] can be interpreted as a proper homotopy of
C�f0g to C�f1g in the complement of the depth one leaf L in M0 . Because
of the opposed orientations on @hQ, the homotopy meets that leaf at C�f0; 1g
on the same side of L. Since M0 rL is a product, this homotopy can be com-
pressed to a homotopy in L, keeping C � f0; 1g pointwise �xed. Remark that
R � f0g and R � f1g are disjoint subsurfaces of L and C is arbitrary, so the
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well understood structure of orientable surfaces implies that these subsurfaces
are annuli (respectively, disks) and are separated by an annulus (respectively,
a disk). One concludes that the picture is as in Figure 6, where B and Q are
both solid tori (respectively, 3{cells). An isotopy of N(L) across B [ Q, as
indicated in Figure 7, then produces a normal form in the isotopy class of L
with strictly smaller complexity. This contradicts the fact that L already has
minimal complexity.

QB

Figure 7: A complexity reducing isotopy

Corollary 6.2 There is a smooth, oriented, one dimensional foliation L of M
which is transverse to @�M , tangent to @tM and in N

+(L) coincides with the
interval �bration.

Indeed, P = M0r intN+(L) is a product, so the corollary follows directly from
Lemma 6.1. Note that LjP is the product �bration of P by compact intervals.

The branched surface B is the quotient of N+(L) by the interval �bers. We
write N

+(L) = N(B) and view B as imbedded in N(B) transverse to the
�bers in the standard way. By a small isotopy of N(B) we can assume that
the branch locus meets itself transversely and without triple points.

Remark In [21], certain \trivial" components of bN+(L) are deleted, there-
by eliminating disks of contact and insuring that B is Reebless as well as
incompressible. For our purposes, there seems to be no compelling reason to
incorporate this step.

If an imbedded surface F � N(B) is transverse to the �bers, meets every �ber
and meets the �bers away from @�M only �nitely often, F is said to be fully
carried by B . Because @�M can be viewed as part of B with branch locus
the junctures, any surface fully carried by B will be noncompact with ends
spiraling in on @�M over these junctures. Such a surface de�nes an invariant
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measure � on B which has value 1 on sectors of B in @�M and positive
integer values on other sectors. Conversely, an invariant measure with these
properties corresponds to such an imbedded surface. More generally, we allow
the �nite values of � to be positive real numbers, always requiring that the
branch equations be satis�ed.

An invariant measure � well de�nes a homomorphism

[�] : �1(M)! R:

Indeed, given a loop � in M , there is a free homotopy of � to a loop �0 which is
transverse to B and meets B only in the ineriors of sectors Bi . If x 2 �0 \Bi ,
we assign the value ��i to x according as the orientation of �0 at x does or
does not agree with the transverse orientation of B there. The sum of these
signed weights is an invariant of the free homotopy class of � because of the
branch equations. Thus, [�] 2 H1(M).

Lemma 6.3 Each cohomology class [�], determined as above by a strictly
positive invariant measure � on B , is a foliated class. As � varies over all such
measures, these classes form a convex cone DB in H1(M).

Proof Let Z be the core lamination of the foliation L of Corollary 6.2 and
let �t parametrize L as a flow (stationary exactly along @�M ). One can use
this parametrization to de�ne the \length" of any compact subarc of a leaf of
L, remarking that there is a positive upper bound m to the lengths of the
�bers of N(B) that do not meet @�M and to the lengths of the �bers of P .
Let Γ = limk!1 Γ�k=�k be a homology direction of Z, where Γ�k=�k are long,
almost closed orbits as de�ned in the proof of Lemma 4.5. If a > 0 is the
minimum value taken by �, one checks that the values of [�] on the long,
almost closed orbits cluster at a value no smaller than a=2m. By Lemma 4.7,
it follows that [�] is strictly positive on the cone CZ of structure cycles. In
particular, none of these structure cycles bound, so [�] 2 intDZ is a foliated
class (Theorem 4.3). The fact these foliated classes form a convex subcone
DB � DZ is elementary.

The branched surfaces B obtained by our procedure are �nite in number, up
to small isotopy. Indeed, each i{handle determines �nitely many disk types,
up to transverse isotopy, and contributes at most one disk of each type to the
construction of B . Since DB is a convex cone of foliated classes, it is contained
in a unique maximal foliation cone as in Theorem 5.20. This guarantees that
there are only �nitely many of the latter.
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Theorem 6.4 There are only �nitely many maximal foliation cones.

The proof of Theorem 1.1 is complete. The assertion that the proper foliated
ray [F] determines F up to isotopy was proven in [4].

Remark The \Oertel cone" DB may not have full dimension, but at least
some of the branched surfaces produce cones of full dimension. Indeed, the
nonempty interior of each foliation cone is a �nite union of Oertel cones.

7 Computing examples

If M reduces to a sutured manifold that is completely disk decomposable [13],
the foliation cones are easy to compute. Furthermore, in many examples it is
easy to compute the Thurston norm for the 3-manifold M using the foliation
cones. In these examples, each foliation cone is the union of cones over top
dimensional faces of the Thurston ball and the set

C = fC = (−Ci) \Cj j Ci; Cj are foliation conesg

is the set of cones over the top dimensional faces of the Thurston ball. If M�

denotes the sutured manifold obtained by reversing the orientation of @�M (but
not of M ) the cones

f−Ci j Ci is a foliation cone for Mg

become the foliation cones for M� . The lattice points in the cones (−Ci) \Cj
correspond to foliations of both M and M� . Thus, in the examples mentioned
above, the lattice points in the interior of each cone C 2 C correspond to
foliations that can be spun both ways at @�M . In general it is very hard to
compute the Thurston norm and these results do not hold.

Remarks We routinely make the identi�cation

H2(M;@M) = H1(M):

When representing foliated classes by disks of a disk decomposition, it is more
natural to view the foliation cones in H2(M;@M). When de�ning these cones
by inequalities Γ� � 0, where Γ� is (the homology class of) a loop in Z of
minimal period �, it is more natural to view the cones in H1(M).

We compute the Thurston norm in a sutured manifold by doubling along the
sutures, computing the norm of the doubled class in the doubled manifold, and
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dividing by 2. Up to a factor 2, this is the same as Scharlemann’s de�nition of
the Thurston norm for a sutured manifold [26, De�nition 7.4] (take � = ; in
Scharlemann’s de�nition).

In the following examples if fR1; : : : ; Rng is a Markov partition for Z \ L, we
will let aij = 1 i� h(Ri) \Rj 6= ; (zero otherwise), and A = [aij]. Then

�A = f(: : : ik ik+1 : : : ) j aikik+1
= 1;8 k 2 Zg

are the allowable sequences (see Section 4). If � 2 �A is periodic, the transverse
loop Γ� is well de�ned as a homology class.

If the sutured manifold M is completely disk decomposable, using disks

D1; : : : ;Dn �M;

we will let �i be the curves in M de�ned, up to homology, by the condition
that the intersection products with the disks are

�i �Dj = �ij ; 1 � i; j � n:
We will use the notation ei = [Di] 2 H2(M;@M), 0 � i � n. (In many
of the examples there will be a disk D0 so that e0 + e1 + : : : + en = 0).
Then H2(M;@M) = Rn is generated by e1; : : : ; en . The minimal period loops
Γ� , thought of as classes in H1(M), will be expressed in terms of the basis
f�1; : : : ; �ng.
In our examples, the sutured manifolds will be of the form MS(�) as in the in-
troduction, where � is a knot or link. They will generally be denoted simply by
M unless some confusion is possible. They will be pictured \from the inside".
That is, MS(�) will be the complement of the interior of the handlebody that
is drawn. Our convention will be that S+ is the part of @�M oriented outwards
from M (away from the viewer), S− the part oriented inwards. A decomposing
disk Di with positive sign (often suppressed) has boundary oriented counter-
clockwise from the viewer’s perspective, the boundary of −Di being oriented
clockwise.

Finally, the following observation will often be used.

Proposition 7.1 Suppose that

(M;γ) D
; (M 0; γ0)

is a disk decomposition by a nonseparating disk that meets the sutures twice.
Then the regluing map

p : M 0 !M
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(a) (b)

S

D0

S−
S+

A

B

D1 D2

C

D

Figure 8: (a) A Seifert surface for (2; 2; 2) (b) The sutured manifold M obtained
from (2; 2; 2)

induces a surjection

p� : H1(M)! H1(M 0)

having one-dimensional kernel generated by the Poincar�e dual of D . Further-
more, the foliation cones in H1(M) are exactly the preimages of the foliation
cones in H1(M 0).

Indeed, an elementary Mayer{Vietoris argument, expressing M as the union
of M 0 and D � I , proves the assertion. This is similar to the procedure in
Section 3, but easier and more natural for disk decomposable examples.

Example 1 Cutting the complement of the three component link (2; 2; 2)
apart along the Seifert surface given in Figure 8(a), gives the sutured mani-
fold M , everything outside the solid two-holed torus in Figure 8(b). We let
D1 and D2 be the two disks indicated in the �gure and D0 the outside disk.

If one carries out the disk decomposition of M using the disks +D1;+D2 to
obtain a foliation F of M , one can piece together a core K of a leaf L of F
as displayed in Figure 9, the entire leaf L being displayed in Figure 10(a) with
the core shaded. (It should be remarked that this choice of K is not entirely
in accord with the conventions of Sections 4 and 5, where the components
of L r K are all unbounded. The current choice, however, is adequate to
cover the invariant set Z and is convenient for illustrating the pseudo-Anosov
dynamics.) In Figure 10(a), the endperiodic map h moves points near the ends
in the directions indicated by the arrows, but also involves a lateral exchange
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K

A

B

D1

h(D1)h(B) h(A)

h(D2)

h(C)
h(D)

D

D2

C

Figure 9: The core K of the leaf L of Example 1

as indicated by the labels. With some thought, this can all be deduced from
Figure 8. In Figure 9, the disks D1 and D2 serve as the rectangles of a Markov
partition. The intersections h(Di) \ Dj are also displayed, showing that the
incidence matrix is

A =
�
1 1
1 1

�
:

That is, in this case every sequence is an allowable sequence. The loops corre-
sponding to sequences of minimal period are

Γ(:::111::: ) = �1

Γ(:::222::: ) = �2;

so the foliation cone to which F belongs is de�ned by the inequalities

f�1 � 0g = the right half plane
f�2 � 0g = the upper half plane.

A base for this cone is the segment [e1; e2] (see Figure 11).

There is a simple symmetry of M cyclically permuting e1; e2; e0 . This sym-
metry takes the foliation cone with base [e1; e2] to the foliation cone with base
[e2; e0] and then to the foliation cone with base [e0; e1]. This gives Figure 11,
where the unit ball for the Thurston norm on M is also drawn with dashed line
segments.

Example 2 Carrying out the disk decomposition of M (as in Figure 8) using
the disks +D1;−D2 to obtain a foliation F of M , one can piece together the
core of a leaf L of F as displayed in Figure 12 (the entire leaf L is displayed in
Figure 10(b) with the core shaded). Then

A =
�
0 1
1 1

�
:
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1
1
1
1
1
1
1

1
1
1
1
1
1
1

12345
12345
12345
12345
12345
12345

123
123
123
123
123
123
123

12
12
12
12
12
12
12

123
123
123
123
123
123
123

1
1
1
1
1
1
1
1

1
1
1
1
1
1

(b)(a)

A

BC

D

h(D)h(A)

h(B)h(C)

Figure 10: (a) The leaf L of Example 1 (b) The leaf L of Example 2

e0

e1

e2

Figure 11: Foliation cones for (2; 2; 2)

That is, in this case, 1 can follow 2 and 2 can follow 1 or 2, but 1 cannot
follow 1. The loops of minimal period are

Γ(:::1212::: ) = �1 − �2

Γ(:::2222::: ) = −�2
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K
B

h(C)

h(D2)

A D

D2

h(D1) h(B)

C

h(A)

h(D)

D1

Figure 12: The core of the leaf L in Example 2

The foliation cone to which F belongs is de�ned by the inequalities

f�1 � �2g = the half plane below the line �1 = �2

f�2 � 0g = the lower half plane:

A base for this cone is the segment [e0; e1] (see Figure 11).

Example 3 If one decomposes the sutured manifold M of Figure 8 using the
disk −D0 , one obtains a product sutured torus and thus a depth one foliation
F of M . A leaf L of this foliation and the disk D0 is given in Figure 13. If t
is translation to the left by one unit and d is a Dehn twist in the dotted curve,
then h = d2 � t is the pseudo-Anosov endperiodic monodromy of the foliation
F . The foliation F , the leaf L and the endperiodic monodromy are the same
as in Example 1 (see Figure 10(a)). The disk D0 does contain Z = Z \ L but
is not a Markov partition for Z . However the two components of h(D0) \D0

will be a Markov partition for Z and can be used to compute the foliation cone
with base [e1; e2] much as above.

Figure 13: The leaf L of Example 3 showing the disk D0 (shaded)
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Remark There are 13 knots of ten or fewer crossings that have unique Seifert
surface S and whose complements, cut apart along the Seifert surface, reduce
via disks meeting the sutures twice to the sutured manifold M in Figure 8(b).
They are:

815; 925; 939; 941; 949; 1058; 10135; 10144; 10163; 10165; 1049; 1066; 1080

(with notation as in Rolfsen [23]). If � is one of the �rst ten of these knots and
M is the sutured manifold of Figure 8(b), then there is a disk decomposition
of MS(�) to M using two disks, each of which meet the sutures twice. By
Proposition 7.1, the foliation cones for MS(�) are obtained from the foliation
cones in Figure 11 by crossing with R2 . If � is one of the last three of these
knots, then there is a disk decomposition of MS(�) to M using four disks,
each of which meet the sutures twice, and the foliation cones for MS(�) are
obtained from the foliation cones in Figure 11 by crossing with R4 . Finally, an
additional knot 1053 has two disjoint, nonisotopic Seifert surfaces S1 and S2 .
If we cut the knot complement apart along S1[S2 , we get two disjoint sutured
manifolds X and Y . The component X is the sutured manifold X(2; 1; 2)
de�ned in [5, page 385] and Y = MS(815). By results in [5], the foliation cones
in H1(X) = R4 consist of two half spaces, while those in H1(Y ) = R4 were
determined above. Using Mayer{Vietoris as in [5, section 4], one shows that

R4 = H1(MSi(1053)) ,! H1(X)�H1(Y ); i = 1; 2;

is a diagonal inclusion sending each foliated class to the direct sum of foliated
classes. One then assembles the cone structure from that for X and Y .

D0

D1

D2

D3

S+

Figure 14: The 2{component link of Example 4 and the sutured manifold obtained
from this link
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Example 4 Consider the 2{component link with Seifert surface in Figure 14
and the sutured manifold M obtained from the link complement by cutting
apart along the Seifert surface. We let D1;D2;D3 be the three disks indicated
in the �gure, D0 the outside disk. Then H2(M;@M) = R3 . The Thurston ball
for M and bases for the foliation cones are given in Figure 15. One computes
the Thurston ball by noting that the given vertices all have norm one and, in
this case, the cones over the top dimensional faces of the Thurston ball are all
of the form −Ci \ Cj where Ci and Cj are foliation cones.

e1

−e2

(a)

e3 e3

−e1

−e1

e0 −e0 −e0

e2
e2

−e3

−(e2 + e3) −(e2 + e3)
(b)

(e2 + e3)

Figure 15: (a) The Thurston ball and (b) the foliation cones for Example 4

K

D2
D1

h(D2) h(D3)

D3

h(D1)

Figure 16: The core K of the leaf in Example 4

We compute the foliation cone with square base in Figure 15(b). If one carries
out the disk decomposition of M using the disks −D1;+D2;+D3 to obtain a
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foliation F of M , one can piece together the core of a depth one leaf L of F as
displayed in Figure 16. Then

A =

240 1 1
1 1 1
1 1 1

35 :
That is, in this case, 1 can follow 2 and 3, while 2 and 3 can each follow 1, 2
and 3. The minimal period loops are

Γ(:::1212::: ) = �2 − �1

Γ(:::2222::: ) = �2

Γ(:::1313::: ) = �3 − �1

Γ(:::3333::: ) = �3:

The foliation cone with square base is de�ned by the inequalities

�2 � �1

�2 � 0
�3 � �1

�3 � 0:

If � = 938 or 1097 and M is the sutured manifold in Figure 14, then one can
do a disk decomposition of MS(�) to M using a disk that meets the sutures
twice. By Proposition 7.1, the foliation cones for MS(�) are obtained from the
foliation cones in Figure 15(b) by crossing with R.

Example 5 If � = 1055 or 1063 and M is the sutured manifold consisting of
the complement of the pretzel link (2; 4; 2) cut apart along the Seifert surface
(as in Figure 17), then one can do a disk decomposition of MS(�) using two
disks, each disk meeting the sutures twice, obtaining M . By Proposition 7.1,
the foliation cones for MS(�) are obtained from the foliation cones in Figure 17
by crossing with R2 . Figure 17 also gives the Thurston ball (dashed) for M . As
before if one carries out a disk decomposition of M with the disks +D0;−D1 , it
is easy to trace out a suitable core of the leaf L. Figure 18 gives this core as well
as the rectangles Ri used in the Markov partition. The disk D1 is represented
as hexagonal since it meets the sutures 6 times. The rectangular disk D0 = R1

meets the sutures 4 times. Notice that D1 is divided into three rectangles
R2; R3; and R4 of the partition. These look like pentagons, but the barycenter
of D1 is not to be viewed as a vertex of these rectangles. The incidence matrix
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for this scheme is

A =

2664
0 0 1 0
1 0 1 0
1 0 0 1
0 1 0 0

3775 :
The minimal period loops are

Γ(:::234234::: ) = �2 − �1

Γ(:::131313::: ) = (−�2) + (�2 − �1) = −�1:

The foliation cone is de�ned by the inequalities

�2 � �1

�1 � 0

and has base [e0; e2].

D0

D1 D2

S+

e1

e0

e2

Figure 17: The sutured manifold, foliation cones, and Thurston ball for (2; 4; 2)

Remark In Example 5 one is tempted to take fR01 = D0; R
0
2 = D1g as

\Markov partition". The hexagon h(R02) stretches and passes properly through
both R02 and R01 , while h(R01) meets only R02 . In fact, the resulting 2 � 2 in-
cidence matrix does determine the correct cone. In general, however, one must
stick to the standard de�nition of \Markov partition", requiring that the ele-
ments be rectangles with one pair of opposite edges in the stable set and one pair
of opposite edges in the unstable set. This is illustrated by the sutured manifold
in Figure 19. We omit the details, but it happens in this case that, carrying
out the disk decomposition by −D1 and−D2 and using fD1;D2g as \Markov
partition", one does not get the entire cone with base [−e1; (3e1 − e2)=4]. In
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K

R1

h(R3)

h(R2)

R3 h(R1)R4

R2

h(R4)

Figure 18: The core K of the leaf in Example 5

this case, D2 is a decagon. Figure 19 also gives the bases for the foliation cones
and the Thurston ball (dashed) for this example.

D1

S+

D0

D2

e2

e1

Figure 19: Example in which fD1; D2g does not work as Markov partition

Remark Of the 249 knots of ten or fewer crossings, 117 are �bered and 111
belong to the class B of knots described in [5]. The preceding examples indicate
how to compute the foliation cones of 18 of the remaining 21 knots. The
three remaining knots, 935; 10101; 10120 , of � 10 crossings each have a unique
Seifert surface. Let M be the knot complement cut apart along this Seifert
surface. The knot 935 is the pretzel knot (3; 3; 3), M is completely reduced
and H2(M;@M) = R2 . For the knot 10101 , decomposition by a disk meeting
the sutures twice replaces M with a completely reduced, sutured manifold M 0

with H2(M 0; @M 0) = R3 . For the knot 10120 , M is completely reduced and
H2(M;@M) = R4 . In all cases the foliation cones are easily computed as above.
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