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Quantum invariants of periodic three-manifolds
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Abstract Let p be an odd prime and r be relatively prime to p. Let
G be a nite p{group. Suppose an oriented 3{manifold M has a free
G{action with orbit space M. We consider certain Witten{Reshetikhin{

Turaev SU(2) invariants wy(M) in Z[Z—lr; ezs_ri]. We will show that w, (M)
3 def (M EM)(\y (M))I® (mod p). Here = e s, def denotes

the signature defect, and jGj is the number of elements in G. We also
give a version of this result if M and M contain framed links or colored
fat graphs. We give similar formulas for non-free actions which hold for
a speci ed nite set of values for r.
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1 Introduction

Assume p is an odd prime, and that r is relatively prime to p, and r 3. Let
G be a nite p{group, with jGj elements. We let , denote e .

Let M be an oriented closed 3{manifold with an embedded r{admissibly col-
ored fat trivalent graph J. We include the case that J is empty. We consider the
Witten{Reshetikhin{Turaev SU(2) invariants w,(M;J) 2 R, = Z[%; ¢ [18,
13] where t is 4r if r is even and 8r if r is odd. Here w,(M; J) is the version of
the WRT{invariant which is denoted 1— , (M;d) by LickorisBQ], assuming

(also known as in this paper ) ischosentobe o — 5 =(i° 2r). In terms of
the Kirby{Melvin [7] normalization , one has w,(M) = (M) = (S* S?).

Let M be an oriented closed 3{manifold with a G action. The singular set of
the action is the collection of points whose isotropy subgroup is non-trivial. Let
J be an equivariant r{admissibly colored fat graph J in M which is disjoint
from the singular set. The action is assumed to preserve the coloring and
thickening of J. Burnside’s theorem asserts that the center of a nite p{group
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is non-trivial. It follows that the quotient map M ¥ M=G can be factored as
a sequence of Z, (possibly branched) covering maps. It follows that the orbit
space is also a closed 3{manifold with an r{admissibly colored fat graph, the
image of J. In this case, we will denote the orbit space of M by M, and the
orbit space of J by J. We nd a relationship between w,(M; J), and w,(M; J).

When the action is free, a signature defect of M ¥ M may be de ned as follows.
One can arrange that some number, say n, of disjoint copies of M ¥ M form
the boundary of a regular G covering space of a 4{manifold W, denoted by
W . Then de ne

def (M ¥ M) = % jGj Sign(W) — Sign(W)

The defect can be seen to be well-de ned using Novikov additivity together
with that fact the signature of an m{fold unbranched covering space of a closed
manifold is m times the signature of the base manifold. This generalizes the
de nition of the signature defect for a nite cyclic group [5, ]. As Q3(BG) =
H3(BG), and H3(BG) is annihilated by multiplication by jGj, n can be taken
to be jGj in the above de nition. For this de nition, it is not necessary that G
be a p{group. We remark that 3 def (M ¥ M) is an integer. We will give a
proof in section 3.

We will be working with congruences modulo the odd prime p in the ring of
all algebraic integers (over Z) after we have inverted 2r, where r is relatively

prime to p. Let denote g ,'.

Theorem 1 If G acts freely, then
we(M;3) 3T MEM @, (M;3)Y (mod p):

Our equations in Theorems 1, 2 and 3 take place in R=pR,. We may think of
R, as polynomials in  with coe cients in %Z of degree less than (t). When
multiplying such polynomial, one should use the t-th cyclotomic polynomial to
rewrite the product as a polynomial in degree less than (t). Such a polynomial
lies in pR, if and only if each of its coe cients maps to zero under the map
%Z ¥ Zp given by reduction modulo p. For example we consider Theorem 1
with r = 5 applied to the free Z3 action on S with quotient L(3;1). This
action has defect 2/3. In this case t = 40, and the cyclotomic polynomial tells
us to reduce to polynomials of degree less than 16 via ¢ = #2— &+ 4—1.
We have:
3.+2F- f-4 i+ Po2 -3

ws(L(3;1)) = t ) ! ;
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3 5 7 9 11 13 15
3 _ tt § =2 +3 (+3 -2 -4+
ws(S%) = = 10
— 5+2 7+2 9_2 11_2 13 4 15
W5(S3) _ 2(W5(L(3, 1)))3 =3 t t t 50 t t t

We note that R=pR, = Z[ ¢J=pZ[ ¢]. Let T be the smallest positive integer
such that pf 1 (mod t). Z[ (]=pZ][ ] is the direct sum of (t)=F elds each
with pf elements [17; page 14]. It is important that the pth power map is the
Frobenius automorphism of Ry=pR,. So given w(M;J) and def (M ¥ M),
we can always solve uniquely for wy(M;J). Theorem 1 by itself will provide

no obstruction to the existence of a free G{action on a given manifold M.

If w.(M;J) & 0 for an in nite collection of r prime to p then the values of
w(M; J), and w,(M; J) for this collection of r determine def (M ¥ M). This
is not apriori clear.

When the action is not free we have to restrict r to a few values, and we don’t
know an independent de nition of the exponent of . Theorems 2 and 3 by
themselves will provide no obstruction to the existence of a G{action on a given
manifold M.
Theorem 2 If r divides 5%, then for some integer , one has

we(M;3)  (wr(M; )Y (mod p):
If G is cyclic and acts semifreely and r divides jsz 1 the same conclusion
holds.

We tie down the factor in a special case.

Theorem 3 Suppose r divides % and M is a pS{fold branched cyclic
cover of a knot K in a homology sphere M. Let J be a colored fat graph in
M which misses K, and J be the inverse image of J in M.

— s s
W, (M; J) s T e (M; )P (mod p);
Here ,s(K) denotes the total p®{signature of K [8]. I;Er is a Legendre

symbol.

As a corollary, we obtain the following generalization of a result of Murasugi’s
[11; Proposition 8]. Murasugi’s hypothesis is that C is p{periodic, is a
primitive pTl th root of unity and p 5. Here V() denotes the Jones
polynomial evaluated at t =
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Cgrollary 1 Let C be a pS{periodic link in S® with quotient link L. If

p 1

z =J1land & —1, then
Ve() Ve( H  (mod p):

L has an even number ofrgomponents if and only if C does also. In this case,
we must choose the same when evaluating both sides of the above equation.
The above equation is false, in general, for = —1: the trefoil is has period
three with orbit knot the unknot. Making use of H. Murakami’s formula [12]
relating the Jones polynomial evaluated at i to the Arf invariant of a proper
link we have the following corollary. First we observe: if C is a n{periodic link
in S% with quotient link L, and n is odd, then L is proper if and only if L is
proper.

Corolla% 2 Let C be a n{periodic proper link in S® with quotient link L.
Let n = T~ p;* be the prime factorization of n. Suppose for each i, p; 1
(mod 8) ( for each i one may choose di erently), then

Arf(L) Arf(C) (mod 2):

The period three action on the trefoil also shows the necessity of the condition
that pj* 1 (mod 8).

In section 2 we establish versions of Theorems 1 and 2 for the related Turaev{
Viro invariants by adapting an argument which Murasugi used to study the
bracket polynomial of periodic links [11]. See also Traczyk’s paper [15]. In fact
these theorems ( Theorems 4 and 5) are immediate corollaries of Theorems 1
and 2 but we prefer to give them direct proofs. The reason is that these proofs
are simpler than the proofs of Theorems 1 and 2. These proofs can be used to
obtain analogous results for other invariants de ned by Turaev{Viro type state
sums. Also Lemma 3, that we establish to prove Theorem 5, is used later in
the proofs of Theorems 2 and 3.

In section 3, we relate w,(M;J) to the TQFT de ned in [2]. We discuss
p{structures. We also rephrase Theorem 1 in terms of manifolds with p;{
structure, and reduce the proof of Theorem 1 to the case G = Z,. We say
that a regular Zps {cover which is a quotient of a regular Z cover is a simple
Zps{cover. In section 4, we derive Theorem 1 for simple Zps{covers of closed
manifolds. This part of the argument applies generally to quantum invariants
associated to any TQFT. We also obtain a version of Theorem 1 for simple Zs {
covers of manifolds whose boundary is a torus. In section 5, we derive Theorem
1in the case M is a lens space and G = Z,. In section 6, we complete the
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proof of Theorem 1. One step is to show that if M is a regular Z{cover which
is not a simple Zp{cover of M, then we may delete a simple closed curve y
in M so that the inverse image of M — v is a simple Zy{cover of M —vy. In
section 7, we prove Theorem 2, Theorem 3, Corollary 1, and Corollary 2.

2 Turaev{Viro invariants

We also want to consider the associated Turaev{Viro invariants, which one may
de ne by tv,(M) = w,(M)w,(M). Here conjugation is de ned by the usual
conjugation de ned on the complex numbers. tv,(M) was rst de ned as a
state sum by Turaev and Viro [16], and later shown to be given by the above
formula separately by Walker and Turaev. A very nice proof of this fact was
given by Roberts [14]. We will use a state sum de nition in the form used by
Roberts. We pick a triangulation of M, and sum certain contributions over r{
admissible colorings C of the triangulation. A coloring of a triangulation assigns
to each 1{simplex a nonnegative integral color less than r — 1. The coloring is
admissible if: for each 2{simplex the colors assigned to the three edges a, b,
and c satisfy a+b+ciseven,a+b+c 2r—4,andja—bj ¢ a+b.

XY Y Y Y

tvr (M) = 2 (c;e) (c;F)* Tet(c; t)
c2Cv2V  e2E f2F t2T

Here V is the set of vertices, E is the set of edges (or 1{simplexes), F is the
set of faces (or 2{simplexes), and T is the set of tetrahedrons (or 3{simplexes)
in the triangulation. The contributions are products of certain evaluations in
the sense of Kaufman{L.ins [6] of colored planar graphs. (c;e) = (), Where

i is the evaluation of a loop colored the color i. (c;f) is the evaluation of
an unknotted theta curve whose edges are colored with the colors assigned by
c to the edges of T. Tet(c; t) is the evaluation of a tetrahedron whose edges are
colored with the colors assigned by c to the tetrahedron t. However we take

all these evaluations in C, taking A2 to be = 5. Also 2 = ﬂ
So tv,(M) lies in Z[Zr, ]. This follows from the following lemmas and the
formulas in [6] for these evaluations.
Lemma 1 For j not a multiple of 2r, (1— )7t 22z[1; ].

_ P
Proof 20 'x— S)= T 'xi. Letting x =1, Qir Jta- s)=2r. o

Lemma 2 Forn r—1, the \quantum integers" [n] = —— = 1"
are units in Z[£; .
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Since it is xed by complex conjugation, tv.(M) 2 Z[z—lr; + 1.

Theorem 4 If the action is free, then
tve (M)  (tv,(M)Y®  (mod p):

Proof A chosen triangulation T of M lifts to a triangulation T of M. Each
admissible coloring of T lifts to an admissible coloring of T. As each simplex of
M is covered by jGj simplexes of M, the contribution of a lifted coloring to the
sum for tv,(M) is the jGjth power of the contribution of the original coloring to
tv.(M). jGj acts freely on the set of colorings of T which are not lifts of some
coloring of T. Moreover the contribution of each such triangulation in a given
orbit of this G action is constant. Thus the contribution of the non-equivariant
colorings is a multiple of p. Making use of the equation xP° +yP~  (x + y)P°

(mod p), the result follows. |
Lemma 3 If r divides 252, ; (i) (mod p), forall i,and 2 ( 2)P°
(mod p).

Proof Since r divides 252, 2r divides p> 1. Thus P° 1=1,and °° =
1. Thus

S

F=m - P P s - o (mod py
Also o =1. Thus ; ( i)’ (mod p), if i is zero or one. Using the
recursion formula j+1 = 1 i— i=1, i ( i)ps (mod p) follows by
induction. Here is the inductive step:
()" =C1 i— i-)”
A 1 i— i-1= j+1 (Modp):

P,._ P._ p° P,
It follows that = | 2 2 2 (modp). As 2 27 2=1,and

Z[ ; 21=p(Z[ ; x]) is a direct sum of elds, we have ( )" 2 (mod p). O

Theorem 5 If r divides 251, then

tv (M) (tv (M)Y® (mod p):
If G is cyclic and acts semifreely and r divides jsz 1 the same congruence
holds.

Proof We pick our triangulation of the base so that the image of the xed point
set is a one dimensional subcomplex. By Lemma 3, whether a colored simplex in
the base lies in the image of a simplex with a smaller orbit or not it contributes
the same amount modulo p to a product associated to an equivariant coloring.
Thus the proof of Theorem 4 still goes through. O
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3 Quantum invariants, p;{structures, and signature
defects

Let M be a closed 3{manifold with a p; {structure [2]. A fat colored graphin M
is a trivalent graph embedded in M, with a speci ed 2{dimensional thickening
(ie, banded in the sense of [2]) whose edges have been colored with nonnegative
integers less than r — 1. At each vertex the colors on the edges a, b, and ¢
must satisfy the admissibility conditions: a+b+c iseven, a+b+c 2r—4,
and ja—bj ¢ a-+b. Let J be such a graph (possibly empty) in M.
Recall the quantum invariant h(M;J)i,. 2 ko de ned in [2]. Consider the
homomorphism [10; note page 134] : kpr ¥ C which sends A to — 4, and
sends to g 4_rl. Let R, denote the image of . By abuse of notation let
denote ( ), and denote (). Lett=4r if r iseven and t = 8r if r is
odd. Then R, = Z[%; t]. Further abusing notation, we let h(M; J)i denote

h(M;J)i,, 2 Re. If M is a 3{manifold without an assigned pi{structure,
we let w,(M;J) denote h(M? J)i where M’ denotes M equipped with a p1{
structure with  {invariant zero. If M already is assigned a p; {structure, we let
w,(M;J) denote h(M?% J)i where M° denotes M equipped with a reassigned
p1 {structure with {invariant zero. One has that w,(M;J) = ~ M)n(M; J)i.
This agrees with w(M;J) as de ned in the introduction.

Assume now that M has been assigned a p; {structure. Let M be a regular G
covering space. Give M the induced p; {structure, obtained by pulling back the
structure on M. The following lemma generalizes [4; 3.5]. It does not require
that G be a p{group.

Lemma4 3def (M ¥ M) =jGj (M)— (M). Inparticular 3def (M ¥ M)
is an integer.

Proof Pick a 4{manifold W with boundary jGj copies of M such that the
cover extends. We may connect sum on further copies of CP(2) or CP(2) so
that the p; {structure on M also extends. Let W be the associated cover of W
with boundary jGj copies of M. We have

jGi (M) =3Sign(W); jGj (M) =3 Sign(W);

JGj def (M ¥ M) = jGj Sign(W) — Sign(W): O

Using this lemma, we rewrite Theorem 1 in an equivalent form. The conclusion
is simpler. On the other hand, the hypothesis involves the notion of a p;{
structure. Since p; {structures are sometimes a stumbling block to novices, we
stated our results in the introduction without reference to p; {structures.
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Theorem 1' Let M have a pi{structure, and M be a regular G cover of M
with the induced p;{structure. Then
D E

N h(M; )i’ (mod p):

Note that we may de ne h(M; J)i for J a linear combination over R, offat col-
ored graphsin M, ka()extending the function h(M; J)i linearly. If 3 = ; a;J;,
we de ne J tobe ;al®J;. Since the pth power map is an automorphism of
R,=pR;, we have that if Theorem 1° is true for a given type manifold M, then
it is true for such manifolds when we replace J and J by linear combinations
over R, of colored fat graphs: J and J.

Finally we note that if Theorem 1° is true for G = Z,, then it will follow for
G ageneral nite p{group. In the next three sections we prove it for G = Z;.

4  Simple unbranched Zy{covers

A regular Z,s {covering space X of X is classi ed by an epimorphism : H1(X)

¥ Zps. It factors through Z, we say X is a simple Zgs{cover. In this section,
we prove Theorem 1° for simple Zps {covers. We also obtain a version for simple
Zps{covers of manifolds whose boundary is a torus.

If :Hi(M) ¥ Z is an epimorphism, let ps: H1(M) ¥ Zys denote the com-
position with reduction modulo p®. Suppose M is classi ed by ,s. Consider a
Seifert surface for e, a closed surface in M which is Poincare dual to . We
may and do assume that this surface is in general position with respect to the
colored fat graph J. Then the intersection of J with F de nes some banded
colored points. This surface also acquires a pi{structure. Thus F is an object
in the cobordism category C5%°,, [2; 4.6]. Let E be the cobordism from F to
F obtained by slitting M along F. We view E as a morphism from F to F
in the cobordism category Czp;lr;il. Then M is the mapping torus of E, and M
is the mapping torus for EP°.

We may consider the TQFT which is a functor from C5%°,, to the category
of modules over R, obtained taking p = 2r in [2] and applying the change of
coe cients ko T R,.

By [2; 1.2], we have
D E .
h(M;J)i = Trace (Z(E)) and M;J =Trace Z EP
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Let E be the matrix for Z(E) with respect to some basis for V (F). E has entries
in Rr = Z[Z—lr; t]. Write the entries as polynomials in  whose coe cients are
quotients of integers by powers of 2r. Let v 2 Z such that 2rv 1 (mod p).
Let E° denote the matrix over Z[ {] obtained by replacing all powers of 2r in
the denominators of entries by powers of v in the numerators of these entries.
We have

Trace (Z(E)) = Trace (E) Trace (EY) (mod p) and;
Trace Z(E)® =Trace E”°  Trace E®  (mod p):

However all the eigenvalues of E” are themselves algebraic integers. The trace
of E' is the sum of these eigenvalues counted with multiplicity. The trace of
E% is the sum of pSth powers of these eigenvalues counted with multiplicity.
Therefore 3

Trace E®  (Trace(E")® (mod p):

Putting these equations together proves Theorem 1° for simple Zgs covers.

We now wish to obtain a version of Theorem 1° for manifolds whose boundary
is a torus. Let N be a compact oriented 3{manifold with p;{structure with
boundary S* S'. S! St acquires a p;{structure as the boundary. Let
J be a colored fat graph in N which is disjoint from the boundary. Then
(N;J) de nes an element of V(S* S?) under the above TQFT. We denote
this element by [N; J].

If :Hi(N) ¥ Z, let ps: Hi(N) ¥ Z denote the composition with reduction
modulo p®: Z ¥ Zps. Suppose s restricted to the boundary is an epimor-
phism. Suppose N is a regular Z,s covering space given by p,s. N has
an induced p;{structure. Suppose that we have identi ed the boundary with
St S! sothat restricted to the boundary is 1 : Hi(S* S%) ¥ H.(SY),
followed by the standard isomorphism. Here 1 denotes projection on the rst
factor. We can always identify the boundary in this way.

Let N be the regular Z,s covering space given by s, and J the colored fat
graph in N given by the inverse image of J. The boundary of N is naturally
identi ed with ST S, Equip S* D? with a p; {structure extending the p;{
structure that S*  S* acquires as the boundary of N. Equip (S!) D? with
a py{structure extending the p{structure (S1) S* acquires as the boundary
of N. This is the same py{structure it gets as the cover of ST S!. We have
[N;J] 2V (St SY). Also @(S* D?) =@N, and @(S*! D?) =@N. For
0 i r—2lete=[Sij]2V (St S?'), whereS;is S* D? with the core
with the standard thickening colored i. Similarly let &; =[S;] 2V (St S?),
where Sj is ST D2 with the core with the standard thickening colored i.
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. P . o Pro o . p°
Proposition 1 If [N;J] = ;_jaiei; and [N;J] = ;_g ai€j; then 8; &
(mod p), for all j; suchthat 0 j r—2.

Prooe‘) Note (N;J) [s 5! —S;j is a simple cover of (N;J) [s1 s:—S;j. More-
over (N;J)[s: 52 —Sj =g and h(N;J) [s: s —Sji = a;. By Theorem

1%, g a}’s (mod p). O

Proposition 2 If J is a linear combination over R, of colored fat graphs in
St D? then [St D?%J]2V(S' S?!) determines [S' D?J]2V (St S!)
modulo p.

Proof Just take N =S! D2, and sum over the termsin J. O

See the paragraph following the statement of Theorem 1° for the de nition of
J.

5 Zp{covers of lens spaces

L(m;q) can be described as —m=q surgery to an unknot in S®. A meridian
of this unknot becomes a curve in L(m;q) which we refer to as a meridian
of L(m;q). Below, we verify directly that Theorem 1 (and thus Theorem 1°)
holds when M is a lens space, J a meridian colored c, and G = Z,. By
general position any fat graph J in a lens space can be isotoped into a tubular
neighborhood of any meridian. Without changing the invariant of the lens
space with J or the cover of the lens space with J one can replace J by a
linear combination of this meridian with various colorings and J by the same
linear combination of the inverse image of this meridian with the same colorings
in the covering space. This follows from Proposition 2. Thus it will follow that
Theorem 1 (and thus Theorem 1°) will hold if M is a lens space, and J is any
fat colored graph in M, and G = Z,. This is a step in the proof of Theorem
1" for G =7Z,.

Consider the p{fold cyclic cover L(m;q) ¥ L(mp;q). We assume m, ¢ are
greater than zero. g must be relatively prime to m and p.
Lemma 5

def (L(m;q) ¥ L(mp;q)) = I%Ief %13‘ ¥ L(mp;q) —def %13‘ ¥ L(m;q)

1
m
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Proof Suppose Z ¥ X is aregular Zmp covering of 4{manifolds with bound-
ary, and on the boundary we have mp copies of the regular Zmp covering
S® ¥ L(mp;q). Let Y denote Z modulo the action of Zm  Zmp. Then
Z Y Y is a regular Zxn covering, and on the boundary we have mp copies
of the regular Zm covering S® ¥ L(m;q). Moreover Y ¥ X is a regular Zp
covering and on the boundary we have mp copies of the regular Z, covering
L(m;q) ¥ L(mp;q). We have:

mp %ef (L(m;q) ¥ L(mp;q)) = p Sign(X) — Sign(Y);
mp def (S ¥ L(m;q) = m Sign(Y)—Sign(Z) and
mp def (S* ¥ L(mp;q) = mp Sign(X) — Sign(Z):
The result follows. O
Suppose H is a normal subgroup of a nite group G which acts freely on M.
By the above argument, one can show more generally that:
def (M ¥ M=G) =def (M ¥ M=H) + jHj def (M=H ¥ M=G):
According to Hirzebruch [5] (with di erent conventions)
3 def %3 T L(m;q) =12ms(g;m) 2 Z:
See also [8; 3.3], whose conventions we follow.
Thus
3 def (L(m;q) ¥ L(mp;q)) = %(Hmp s(q; mp) —12m s(q; m)) 2 Z:

We will need reciprocity for generalized Gauss sums in the form due to Siegel [1;
Formula 2.8]. Here is a slightly less general form which su ces for our purposes:

r_
% k2+ k _ _ 2 y X- —(yk2+ k)

2y — 8 8y 2

where ; ;y2Zand ,y>0and y+ iseven.

We use this reciprocity to rewrite the sum

@r)n?+(ql 1)n _X (2gqr)n?+2(gl 1)n
m - 2m
n=1 n=1
| g
—4@l 12 M oS —mn?=2(ql 1)n,

8 16mqr 4qr
2qr ne1
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We substitute this into a formula from [3; section 2].

i _1)c+1 X b U 21241 2 D¢ ,
wr(L(m;Qq); ¢) = jpﬁ Z:mqmq (W+g?1?+1 2q 'gﬂr)n +(ql 1)n;
n=1

where U = (9 3), and | =c+ 1. We remark that the derivation given in [3] is
valid for m 1. Also using

mb—mgq (U)+g%1> +1 = g?(1> — 1) + 12mq s(q; m)

again from [3], we obtain:

3(_1\c+1 X<
C - {( 12 12m s(q;m) —g?—1 —mn2—2(ql 1)n,
Wr(L(m, Q), C) - 4rm 4r?'nq 4qr .

2rq ne1
Similarly
RN _ g(—12°+1 12mp s(q;mp) —q2—1x oS —mpn?—2(ql 1)n,
Wr(L(mp,q), C)_ or q 4rmp 4rmpq aqr .
n=1

So we now work with congruences modulo p in the ring of algebraic integers
after we have inverted 2r and q. We need to show that

wr(L(m;q); o) ° T CMOELD) (i (L(mp;g); c)®  (mod p): (5:1)

We have that:
3 def (L(M;q) ¥ L(MP;Q)) — L & (12mp s(g;mp)—12m s(g;m))

8 4ar
_ &@2mp s(g;mp)—12m s(g;m)) 12m s(g;m)—12mp s(q;mp).
- 8 4rm '
—q2—1 p _ —q2—1
4rmpq — 4rmgq

(—1)°? =—1 and;
2r)*»  2r (mod p):

mn?—2(ql 1)n

Note that only depends on n modulo 2qr.

ar
Thus
Ip
—mpn2—2(gl 1)n oS —m(pn)?>—2(ql 1)pn
4qr 4qr
n=1 n=1
4 2
— =2l 1 .
@D (mod p):
n=1
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Here we have made use of the fact t as n ranges over all the congruence
classes modulo 2qr so does pn. Let | denote the Legendre{Jacobi symbol.

Cor=a"=Ca 1 Pq moap

Equation (5:1) will follow when we show:

q 3 _ &@2mp s(@mp)—12m s(g;m)) 3p.
8= 8 8
p
or
3—3p+& (12m s(g;m)—12mp s(;mp)) _ 4 | )
8 = o (5:2)

We will make use of a congruence of Dedekind’s [14; page 160 (73.8)]: for k
positive and odd:

12k s(q:k) k+1—2 E (mod 8):

We rst consider the case that m is odd. We have:

12m s(g; m) —12mp s(g; mp) m(1 —p) +2 n?p S
=mia-p+2 1 T —1  (mod 8):
m p
If m is odd, the equation (5.2) becomes:
q q C 0; for . =1
@-3p)m+m@A-p)+2 ) -1 B for[gjz—l (mod 8);

which is easily checked. For the rest of this section, we consider the case that
m is even. In this case, ¢ must be odd. First we use Dedekind reciprocity [14;
page 148 (69.6)] to rewrite % (12m s(g; m) — 12mp s(g; mp)) as:

miq(—12mq s(m;q) + m? + g% + 1 — 3mq + 12mqp s(mp: q)

—m?p? — g — 1 + 3mpq)

]
or % —12q s(m; q) + m — 3q + 12qp s(mp;q) — mp? + 3pq :
As q is odd, g2 =1 (mod 8). So modulo eight the above expression is
1

g —12q s(m;q) +m — 3q + 12qp s(mp; q) — mp® +3pq :
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As p is odd, p> = 1 (mod 8), and m — mp? = 0 (mod 8). The expression,
modulo eight, becomes

—12¢? s(m; q) — 39> + 129°p s(mp; q) + 3pg*:
So the exponent of g in Equation (5.2) modulo eight is:
q(—12q s(m;q) + 12qp s(mp;q)): (5:3)

Again using Dedekind’s congruence, we have:
12 s(m;q) gq+1—2q r:; (mod 8):

Similarly

12q s(mp;q) gq+1—2q

”;p (mod 8):

The expression (5.3) modulo eight, becomes
m
qp—1(@+1)+2 1-p "
q q
Thus we only need to see
ae—D@+D+2(T)a—pEN _ g
8 -_ .
p
Using quadratic reciprocity for Jacobi{Legendre symbols, this becomes

et () ) _ (e

=1 ;

(-1 q

or

e C@) _ p
(1) = 0

which is easily checked.

6 Unbranched Z,{covers

Lemma 6 If 2 H'(M;Z,) is not the reduction of an integral class, then
there is a simple closed curve y in M such that the restriction of to M —vy
is the reduction of an integral class.
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Proof We consider the Bockstein homomorphism  associated to the short
exact sequence of coe cients: 0 ¥ Z ¥ 7Z ® 7, ¥ 0. Let y be a simple
closed curve which represents the element which is Poincare dual to () 2
H2(M;Z). The restriction of () to H>(M —vy;Z) is zero. This is easily seen
using the geometric description of Poincare duality which makes use of dual cell
decompositions.

Naturality of the long exact Bockstein sequence completes the proof. |

It follows that any non-simple unbranched cyclic covering of a closed 3{manifold
can be decomposed as the union of two simple coverings one of which is a
covering of a solid torus. Let N denote M with a tubular neighborhood of y
deleted. We may replace N in M by a solid torus with a linear combination
of colored cores obtaining a gew manifold gM’; %) ,esuch that h(M'; J%)i =
h(M;Jd)i. By Proposition 2, M%J = M;J . MYis a union of two
solid tori, and so is a lens space or S S2. Note that any cover of ST S? is
simple. As Theorem 1° when G = Z, has already been established for M?, we
have now established Theorem 1' when G = Z,,.

7 Branched Zgs{covers
We need to re ne the last statement of Lemma 3:

Lemma 7 If r divides &2, °° I;Er °  (mod p):

Proof We have that = —{p i, P 1 (mod p), i?° = i,
Fay 2 P moa p). -

We need the following which follows from Proposition 1, Lemma'_3) and Lemma
7. In the notation developed at the end of section 4, let I = iSi.

i—o

s P _
Proposition 3 If r divides 21, # %r ® 2 .s; (mod p).

1=0
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7.1 Proof of Theorem 2 for G cyclic

Suppose M is a 3{manifold, L is a link in this 3{manifold and there exists a
homomorphism : H;(M —L) ¥ Z,s which sends each meridian of L to a unit
of Zps. Then we may form a branched cover M of M branched along L. Every
semi-free Zys action on an oriented manifold arises in this way. Then we may
pick some parallel curve to each component of L whose homology class maps
to zero. Perform integral surgery to M along L with framing given by these
parallel curves, to form P. Then we may complete the regular unbranched
cover of M — L given by  to a regular unbranched cover P of P. If we
then do surgery to P along an original meridian (with the framing given by a
parallel meridian) of each component of L, we recover M. Similarly if we do
surgery to P along the inverse images of these meridians of L then we recover
M . Note that the inverse image of each meridian of L is a single component in
M and P. We give M a p;{structure with invariant zero. Then P receives
a pi{structure as the result of p;{surgery on M [2; page 925]. P receives
pi{structure as the cover of P. N receives a p;{structure as the result of
p1{surgery on P.

Now let J denote colored fat graph in M disjoint from L. Now let J* denote

the linear combination of colored fat graphs in P given by J together the

result of replacing the meridians of L by !. As usual in this subject, the

union of linear combinations is taken to be the linear combination obtained by

gxpandinggmultilinearly. Then h(M;J)i = h(P;J )i, by [2]. By Theorem 1,

P, J+ h(P;J +)ips (mod p). Using Proposition 3 and by [2], we have
E

D D
L L
_pr s 0O P

M, =

and changing the p; {structure on M, has the e ect of multiplying h(M; J)i by
a power of , this yields Theorem 2 for semifree actions of cyclic groups. |

. As some power of 3 is minus one,

7.2 Proof of Theorem 2 for general p{groups.

Now we assume r divides 2. Thus we have the congruence for every Z, action

by 7.1. However we can write the projection from M to M as a sequence of
quotients of Z, actions. m|

7.3 Proof of Theorem 3
In the argument of 7.1, if M is a homology sphere, and L is a knot K, then the

longitude of K maps to zero under , and P is obtained by zero framed surgery
along L. M is a rational homology sphere, and P is obtained by zero framed
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surgery along the lift of K. The trace of both surgeries have signature zero. If

we give M a p; {structure with invariant zero, then P also has a p; {structure

with  invariant zero. Also M and P have p; {structures with the same in-

variant. P has a p; {structure with invariant 3 def (P X FI’__)IZby lremma 4,but
p

this is —3 ps(K). Thus (wr(M;J)P" = h(M; )i rONMy =
() 3 p(w,(M;J), modulo p. This proves Theorem 3. O

7.4 Proof of Corollary 1

We obtain Corollary 1 from Theorem 3 by taking M to be S3, K to be the
unknot and J to be L colored one with the framing given by a Seifert surface
for J. Using [6; page 7], one has that
: L, ¢ —1
wr(M;J) = hLi__ w= VL ¢ — = o .
P
In evaluating the Jones polynomial at -1, we choose L to be 2_rl (for the
time being.) Since the induced framing of L is also given by the Seifert surface
which is the inverse image 05 tEe Seifert surface for L,
we M;J = ¢ = Vg ;b -
A=— 4r
_ L] _1\ P° .

By Theorem 3, Lemma3and Lemma7, Vo( 1)  Vo(;1H) "~ (mod p). This
means that thedi erence is p times an algebraic integer. V_(t) is a Laurent
polynomial in ~ t with integer coe cients. We have that

a— p° a—

—1 —_ —p° _ 1_ 1
r - 2r — 2r — r
Thus:
N 1 .
V() V(") (mod p):
and so

Ve( e V(Y (mod p):
As all primitive 2rth roots of unity are conjugate over Z,
Ve( ™) V() (mod p)

holds if is any primtie rth root such that r divides %, and r > 2. We
must choose the same °~ when evaluating both sides.

For any link L, let #(L) denote the number of components of L. One has
that Vi (1) = (=2)"®M~1. One has that #(C)  #(L) (mod p — 1). So
V(1)  Ve(1) (mod p). Thus the stated congruence holds if is any %—th
root of unity, and & —1. O
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7.5 Proof of Corollary 2

It su ces to prove the result for n = pS_where p® 1 (mod 8). We ap-
ply Corollary 1 with = i and choose 6_= T By H. Murakami [12],
for any proper link V (i) = (—D)ATW(_2)#M~1  with the above choice

ob pf. Since 2 is a square modulo p, Pt = 1. Thus (pﬁ)#('-)_l

(¢ 2*®~1 (mod p). Thus we conclude (—1)A™L) = (=DATE (mod p).
Therefore Arf(L) Arf(C) (mod 2). O
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