A Note on Convergence of Level Sets

F. Camilli

Abstract. Given a sequence of functions f_n converging in some topology to a function f, in general the 0-level set of f_n does not give a good approximation of the one of f. In this paper we show that, if we consider an appropriate perturbation of the 0-level set of f_n , we get a sequence of sets converging to the 0-level set of f, where the type of set convergence depends on the type of convergence of f_n to f.

Keywords: Perturbed level sets, set convergence, capacity

AMS subject classification: 28 A 12, 46 E 35

1. Introduction

In several fields (phase transition, free boundary problems, front propagation, etc.), a set of interest for the solution of the problem is represented by a level or a sublevel set of a function f. Let us suppose that by means of some approximation technique (f.e. discretization, regularization, rescaling of an order parameter) we get a sequence of functions converging in some topology to f. In general, no matter how strong is the convergence of f_n to f, the level sets of f_n do not give a good approximation of the ones of f.

Pursuing an idea used in Baiocchi and Pozzi [1], we show that appropriately perturbing the level sets of f_n (the same can be done for the sublevels or the superlevels), we get a sequence of sets defined by means of f_n converging to the level set of f. The type of set convergence is the convergence to zero of the measure of the symmetric difference between the level set of f_n and the corresponding one of f, and the measure depends on the type of convergence of the sequence f_n .

We analyze the case of convergence in L^p and in $W^{1,p}$, but this technique could be useful in other situations.

The paper is organized as follows. In Section 2, we analyze the case of convergence in L^{∞} and $W^{1,\infty}$ and the associated convergence of perturbed level sets in set-theoretical sense. In Section 3 we first consider the case of convergence in L^p , which gives the convergence in the sense of Lebesgue measure. Then we analyze the case of convergence in $W^{1,p}$ and the corresponding set convergence in the sense of capacity and Hausdorf measure.

F. Camilli: Univ. di Torino, Dip. di Matematica, Via Carlo Alberto 10, 10123 Torino (Italy) New address: Univ. dell' Aquila, Dip. di Energetica, 67040 Roio Poggio (AQ), Italy e-mail: camilli@ing.univaq.it

2. The case $p=\infty$

In this section we will study (extending the result given in [1]) the case of the convergence in L^{∞} . We will see that the natural set convergence associated to the L^{∞} convergence is the convergence in set-theoretical sense.

Definition 2.1. Given a sequence of sets $\{A_n\}_{n\in\mathbb{N}}$, we set

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_m \quad \text{and} \quad \liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} A_m.$$

We say that $\{A_n\}_{n\in\mathbb{N}}$ converges to A in set-theoretical sense and write $A=\lim_{n\to\infty}A_n$ if

$$A = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n.$$

We have the following result.

Proposition 2.1. Let f_n and f be continuous functions on \mathbb{R}^N such that

$$||f - f_n||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n \tag{2.1}$$

where $\varepsilon_n \to 0$ for $n \to \infty$. Let $\{\delta_n\}_{n \in \mathbb{N}}$ be a sequence such that

$$\begin{cases}
\delta_n > 0 & (n \in \mathbb{N}) \\
\delta_n \to 0 & (n \to \infty) \\
\frac{\varepsilon_n}{\delta_n} \to 0 & (n \to \infty).
\end{cases}$$
(2.2)

Set, for any $n \in \mathbb{N}$,

$$\Gamma = \left\{ x \in \mathbb{R}^N : f(x) = 0 \right\}$$

$$\Gamma_n = \left\{ x \in \mathbb{R}^N : |f_n(x)| \le \delta_n \right\}.$$
(2.3)

Then $\Gamma \subset \Gamma_n$, for n sufficiently large, and

$$\Gamma = \lim_{n \to \infty} \Gamma_n. \tag{2.4}$$

Proof. Let $\overline{n} \in \mathbb{N}$ be such that $\delta_n \geq \varepsilon_n$ for any $n \geq \overline{n}$ (recall that $\frac{\varepsilon_n}{\delta_n} \to 0$). If $x \in \Gamma$, then, for $n \geq \overline{n}$, we have from (2.1)

$$|f_n(x)| \le |f(x)| + ||f_n - f||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n \le \delta_n,$$

hence $x \in \Gamma_n$. Hence $\Gamma \subset \Gamma_n$ for $n \geq \overline{n}$ and therefore $\Gamma \subset \liminf_{n \to \infty} \Gamma_n$. Let us prove yet that $\limsup_{n \to \infty} \Gamma_n \subset \Gamma$. If $x \in \limsup_{n \to \infty} \Gamma_n$, then by definition there exists a subsequence $\{\Gamma_{n_k}\}_{k \geq 1}$ such that $x \in \Gamma_{n_k}$ for any $k \in \mathbb{N}$. It follows that $|f_{n_k}(x)| \leq \delta_{n_k}$ for any $k \in \mathbb{N}$ and therefore $f(x) = \lim_{k \to \infty} f_{n_k}(x) = 0$ which yields $x \in \Gamma$

Remark 2.1 Observe that if Γ_n and Γ are contained in a compact set K, then the previous proposition gives the convergence to zero of the Hausdorff distance between Γ_n and Γ .

In the next proposition we show that improving the convergence of f_n to f, we get some additional information on the type of convergence of Γ_n to Γ .

Proposition 2.2. Let $f, f_n \in C^1(\mathbb{R}^N)$ $(n \in \mathbb{N})$ be such that

$$||f - f_n||_{W^{1,\infty}(\mathbb{R}^N)} = \varepsilon_n$$

where $\varepsilon_n \to 0$ for $n \to \infty$. Let δ_n and Γ and Γ_n be defined as in (2.2) – (2.3). Set

$$\Gamma^{reg} = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } \nabla f(x) \neq 0 \right\}$$
$$\Gamma^{sing} = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } \nabla f(x) = 0 \right\}$$

and

$$\Gamma_n^{reg} = \left\{ x \in \mathbb{R}^N : |f_n(x)| \le \delta_n \text{ and } |\nabla f_n(x)| > \delta_n \right\}$$

$$\Gamma_n^{sing} = \left\{ x \in \mathbb{R}^N : |f_n(x)| \le \delta_n \text{ and } |\nabla f_n(x)| \le \delta_n \right\}.$$

Then

$$\Gamma^{reg} = \lim_{n \to \infty} \Gamma^{reg}_n$$
 and $\Gamma^{sing} = \lim_{n \to \infty} \Gamma^{sing}_n$.

Proof. Let $\overline{n} \in \mathbb{N}$ be such that $\delta_n \geq \varepsilon_n$ for $n \geq \overline{n}$. Then, for $n \geq \overline{n}$, $\Gamma \subset \Gamma_n$ and, if $x \in \Gamma^{sing}$, we have

$$|\nabla f_n(x)| \le |\nabla f(x)| + ||\nabla f_n - \nabla f||_{L^{\infty}(\mathbb{R}^N)} = \varepsilon_n \le \delta_n.$$

Therefore $\Gamma^{sing} \subset \Gamma^{sing}_n$ for $n \geq \overline{n}$. If $x \in \limsup_{n \to \infty} \Gamma^{sing}_n$, then $x \in \Gamma^{sing}_{n_k}$ for a subsequence Γ_{n_k} . It follows that $|f_{n_k}(x)| \leq \delta_{n_k}$ and $|\nabla f_{n_k}(x)| \leq \delta_{n_k}$ for any $k \in \mathbb{N}$ and therefore

$$f(x) = \lim_{k \to \infty} f_{n_k}(x) = 0$$
 and $\nabla f(x) = \lim_{k \to \infty} \nabla f_{n_k}(x) = 0.$

Therefore $x \in \Gamma^{sing}$ and $\Gamma^{sing} = \lim_{n \to \infty} \Gamma^{sing}_n$. Since (2.4) holds, we get also $\Gamma^{reg} = \lim_{n \to \infty} \Gamma^{reg}_n \blacksquare$

We conclude this section giving an estimate of the Hausdorff distance between Γ and Γ_n in the case that Γ is regular.

Proposition 2.3. Assume the same hypothesis as in Proposition 2.1, with δ_n and Γ , Γ_n defined as in (2.2) – (2.3). Moreover, assume that Γ is compact and that f is differentiable with $\nabla f \neq 0$ on Γ . Then there exists a constant C > 0 such that

$$d_{\mathcal{H}}(\Gamma, \Gamma_n) \le C(\varepsilon_n + \delta_n) \tag{2.5}$$

for n sufficiently large, where $d_{\mathcal{H}}$ denotes the Hausdorff distance.

Proof. By the assumptions on f and Γ , there exist $\eta_0 > 0$ and $C_0 > 0$ such that $|\nabla f(x)| \geq C_0$ on $\Gamma_{\eta_0} = \{x : d(x, \Gamma) \leq \eta_0\}$. For $\eta \leq \eta_0$, consider $y \in \partial(\Gamma_{\eta}) = \partial\{x : d(x, \Gamma) \leq \eta\}$ and let $x \in \Gamma$ be such that $d(y, \Gamma) = |y - x| = \eta$. Then

$$|(y-x)\cdot\nabla f(x)|=\eta|\nabla f(x)|\geq C_0\eta.$$

Since f(x) = 0, if ω is a modulus of continuity of ∇f on Γ_{η_0} , then

$$|f(y)| \ge |(y-x)\cdot\nabla f(x)| - \omega(|y-x|)|y-x| \ge \eta(C_0 - \omega(\eta)). \tag{2.6}$$

For n sufficiently large in such a way that $C_0 - \omega(\delta_n + \varepsilon_n) \geq \frac{C_0}{2}$ and $2\frac{\delta_n + \varepsilon_n}{C_0} \leq \eta_0$, from (2.6) with $\eta = 2\frac{\delta_n + \varepsilon_n}{C_0}$ we get $|f(y)| \geq \delta_n + \varepsilon_n$ and therefore $|f_n(y)| \geq \delta_n$ on $\partial \Gamma_{\eta}$. It follows that $\Gamma_n \subset \Gamma_{\eta}$. Since $\Gamma \subset \Gamma_n$ for n sufficiently large, we finally get $d_{\mathcal{H}}(\Gamma, \Gamma_n) \leq d_{\mathcal{H}}(\Gamma, \Gamma_{\eta}) \leq \eta$ and therefore (2.5), with $C = \frac{2}{C_0}$

All the results of this section have an analogue in the case of sub- and superlevel sets of f_n and f.

3. The case $1 \leq p < \infty$

We first analyze the case of convergence in $L^p(\mathbb{R}^N)$. We prove that in this case an appropriate notion of set convergence is the convergence to 0 of the Lebesgue measure of $\Gamma \Delta \Gamma_n$. In the following, \mathcal{L}^N denotes the Lebesgue measure on \mathbb{R}^N .

Proposition 3.1. Let $f_n, f \in L^p(\mathbb{R}^N)$ $(1 \le p < \infty; n \in \mathbb{N})$ such that

$$||f - f_n||_{L^p(\mathbb{R}^N)} = \varepsilon_n \tag{3.1}$$

where $\varepsilon_n \to 0$ for $n \to \infty$. Let $\{\delta_n\}_{n \in \mathbb{N}}$ be a sequence such that

$$0 < \delta_n \quad (n \in \mathbb{N}) \qquad and \qquad \delta_n \to 0 \quad (n \to \infty).$$
 (3.2)

Define, for any $n \in \mathbb{N}$,

$$\Gamma = \left\{ x \in \mathbb{R}^N : f(x) = 0 \right\}$$

$$\Gamma_n = \left\{ x \in \mathbb{R}^N : |f_n(x)| \le \delta_n \right\}.$$
(3.3)

Then:

(i) If $\lim_{n\to\infty} \frac{\varepsilon_n}{\delta_n} = 0$, we have

$$\lim_{n \to \infty} \mathcal{L}^N(\Gamma \Delta \Gamma_n) = 0 \tag{3.4}$$

$$\mathcal{L}^{N}\left(\Gamma \triangle \limsup_{n \to \infty} \Gamma_{n}\right) = 0. \tag{3.5}$$

$$\sum_{n} \left(\frac{\varepsilon_n}{\delta_n}\right)^p < \infty,\tag{3.6}$$

we also have

$$\mathcal{L}^{N}\left(\Gamma \triangle \liminf_{n \to \infty} \Gamma_n\right) = 0. \tag{3.7}$$

Therefore $\Gamma = \lim_{n \to \infty} \Gamma_n$ up to a set of 0-Lebesgue measure.

Proof. We first observe that, since we are considering only the measure of Γ and Γ_n , we can assume that these sets are defined by means of any element in the class of equivalence of f and f_n . We have

$$\Gamma \Delta \Gamma_n = (\Gamma \setminus \Gamma_n) \cup (\Gamma_n \setminus \Gamma)$$

and

$$\Gamma \setminus \Gamma_n = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } |f_n(x)| > \delta_n \right\}$$
$$\Gamma_n \setminus \Gamma = \left\{ x \in \mathbb{R}^N : f(x) \neq 0 \text{ and } |f_n(x)| \leq \delta_n \right\}$$

(the previous and all the others inclusions in this proof are intended up to sets of null Lebesgue measure).

Since $\Gamma \subset \Gamma_n \subset \{x \in \mathbb{R}^N : |f(x) - f_n(x)| > \delta_n\}$, from the Cebycev inequality we get

$$\mathcal{L}^{N}(\Gamma \setminus \Gamma_{n}) \leq \frac{1}{\delta_{n}^{p}} \int_{\mathbb{R}^{N}} |f(x) - f_{n}(x)|^{p} dx = \left(\frac{\varepsilon_{n}}{\delta_{n}}\right)^{p} \tag{3.8}$$

and therefore

$$\lim_{n \to \infty} \mathcal{L}^N(\Gamma \setminus \Gamma_n) = 0. \tag{3.9}$$

Let us prove that

$$\mathcal{L}^{N}\left(\limsup_{n\to\infty}(\Gamma_n\setminus\Gamma)\right)=0. \tag{3.10}$$

Set $\widetilde{\Gamma} = \limsup_{n \to \infty} (\Gamma_n \setminus \Gamma)$ and let $x \in \widetilde{\Gamma}$. Then there exists a subsequence $\{n_k\}_{k \ge 1}$ such that $|f_{n_k}(x)| \le \delta_{n_k}$ for any $k \in \mathbb{N}$. It follows that, \mathcal{L}^N -a.e. on $\widetilde{\Gamma}$,

$$\lim_{n \to \infty} \inf f_n(x) = 0 \quad \text{and} \quad \lim_{n \to \infty} \inf |f_n(x) - f(x)|^p = |f(x)|^p.$$

Applying the Fatou Lemma we get

$$\int_{\widetilde{\Gamma}} |f(x)|^p dx \le \lim_{n \to \infty} \int_{\mathbb{R}^N} |f(x) - f_n(x)|^p dx = 0.$$

Since |f(x)| > 0 on $\widetilde{\Gamma}$, we get (3.10).

Since for any sequence $\{A_n\}_{n>1}$ of measurable sets we have

$$\limsup_{n \to \infty} \mathcal{L}^N(A_n) \le \mathcal{L}^N\left(\limsup_{n \to \infty} A_n\right)$$

it follows from (3.10) that $\lim_{n\to\infty} \mathcal{L}^N(\Gamma_n \setminus \Gamma) = 0$ and therefore, together with (3.9), also (3.4) holds. From (3.10) and

$$\mathcal{L}^{N}\left(\Gamma \setminus \limsup_{n \to \infty} \Gamma_{n}\right) = \mathcal{L}^{N}\left(\liminf_{n \to \infty} (\Gamma \setminus \Gamma_{n})\right) \leq \lim_{n \to \infty} \mathcal{L}^{N}(\Gamma \setminus \Gamma_{n}) = 0$$

we get (3.5).

Let us prove now statement (ii). Estimate (3.8) gives

$$\mathcal{L}^N\bigg(\bigcup_{m=n}^{\infty}(\Gamma\setminus\Gamma_m)\bigg)\leq \sum_{m=n}^{\infty}\bigg(\frac{\varepsilon_m}{\delta_m}\bigg)^p,$$

and therefore, for any $n \in \mathbb{N}$,

$$\mathcal{L}^N\left(\Gamma \setminus \liminf_{n \to \infty} \Gamma_n\right) = \mathcal{L}^N\left(\limsup_{n \to \infty} (\Gamma \setminus \Gamma_n)\right) \le \sum_{n = \infty}^{\infty} \left(\frac{\varepsilon_m}{\delta_m}\right)^p.$$

For (3.6) we get $\mathcal{L}^N(\Gamma \setminus \liminf_{n \to \infty} \Gamma_n) = 0$. Since (3.10) yields $\mathcal{L}^N(\liminf_{n \to \infty} \Gamma_n \setminus \Gamma) = 0$ we get (3.7)

Remark 3.1. Since we have

$$|\mathcal{L}^N(\Gamma) - \mathcal{L}^N(\Gamma_n)| \le \mathcal{L}^N(\Gamma \triangle \Gamma_n)$$

then $\mathcal{L}^N(\Gamma\Delta\Gamma_n) \to 0$ implies that $\mathcal{L}^N(\Gamma_n) \to \mathcal{L}^N(\Gamma)$. The vice versa in general is not true. The result $\mathcal{L}^N(\Gamma\Delta\Gamma_n) \to 0$ gives a more complete information respect to the convergence of the measure of Γ_n to the measure of Γ . In fact, it shows that the measure of the part of Γ_n which does not approximate Γ tends to 0, while the measure of $\Gamma \setminus \Gamma_n$ can be estimated by means of (3.8).

If we know that $||f_n - f||_{W^{1,p}(\mathbb{R}^N)} = \varepsilon_n$, then we can prove a result similar to Proposition 2.2 for the convergence of regular and singular parts of Γ_n to Γ . In this case, a more accurate way of studying properties of sets defined through Sobolev functions is given by the notion of *capacity*. We will show that, in the case of convergence in $W^{1,p}(\mathbb{R}^N)$ $(1 \le p < N)$ we get convergence of Γ_n to Γ up to sets of 0 capacity. Let us recall the definition and some basic properties of the capacity we will need in the following (see [2 - 4] for more details).

Definition 3.1. Let $1 \le p < N$ and set

$$K^p = \left\{ \varphi : \mathbb{R}^N \to \mathbb{R} \middle| \ 0 \le \varphi \in L^{p^*}(\mathbb{R}^N) \ \ \textit{with} \ \nabla \varphi \in L^p(\mathbb{R}^N, \mathbb{R}^N) \right\}$$

where $p^* = \frac{Np}{N-p}$. For $A \subset \mathbb{R}^N$, we define

$$\operatorname{Cap}_p(A) = \inf \bigg\{ \int_{\mathbb{R}^N} |\nabla \varphi| \, dy \bigg| \, \varphi \in K^p \ \, \text{with} \, \, A \subset \{\varphi \geq 1\}^\circ \bigg\}.$$

It is possible to prove that Cap_p is an exterior measure on subsets of \mathbb{R}^N . For a function $\varphi \in L^1_{loc}(\mathbb{R}^N)$, the precise representative φ^* of φ is defined by

$$\varphi^*(x) = \begin{cases} \lim_{r \to 0^+} \int_{B(x,r)} \varphi(y) \, dy & \text{if the limit exists} \\ 0 & \text{otherwise} \end{cases}$$

where $\int_{B(x,r)} \varphi(y) dy = \int_{B(x,r)} \varphi(y) dy / \mathcal{L}^N(B(x,r))$. We have (see [2: Theorem 4.8.1]) the following

Theorem 3.1. Let $\varphi \in W^{1,p}(\mathbb{R}^N)$ $(1 \le p < N)$. Then:

(i) There is a Borel set $E \subset \mathbb{R}^N$ such that $\operatorname{Cap}_p(E) = 0$ and

$$\lim_{r \to 0^+} \oint_{B(x,r)} \varphi(y) \, dy = \varphi^*(x) \qquad (x \in \mathbb{R}^N \setminus E).$$

(ii) In addition,

$$\lim_{r \to 0^+} \int_{B(x,r)} |\varphi(y) - \varphi^*(x)|^{p^*} dy = 0 \qquad (x \in \mathbb{R}^N \setminus E).$$

(iii) The precise representative φ^* is quasi-continuous.

Because of the previous theorem, any function in the space $W^{1,p}(\mathbb{R}^N)$ admits a quasi-continuous representative. We have the following convergence result for the perturbed level sets.

Proposition 3.2. Let $f, f_n \in W^{1,p}(\mathbb{R}^N)$ $(1 \leq p < N)$ be such that

$$||f - f_n||_{W^{1,p}(\mathbb{R}^N)} = \varepsilon_n$$

where $\varepsilon_n \to 0$ for $n \to \infty$. Let δ_n and Γ, Γ_n be defined as in (3.2) – (3.3) by means of the precise representatives of f and f_n . Then:

(i) If $\lim_{n\to\infty} \frac{\varepsilon_n}{\delta_n} = 0$, then

$$\operatorname{Cap}_{p}\left(\limsup_{n\to\infty}\Gamma_{n}\triangle\Gamma\right)=0. \tag{3.11}$$

(ii) *If*

$$\sum_{n} \left(\frac{\varepsilon_n}{\delta_n}\right)^p < \infty,\tag{3.12}$$

then we have also

$$\operatorname{Cap}_{p}\left(\Gamma \triangle \liminf_{n \to \infty} \Gamma_{n}\right) = 0 \tag{3.13}$$

and therefore $\Gamma = \lim_{n \to \infty} \Gamma_n$ up to a set of zero capacity.

Proof. Let us prove statement (i). Since the sets Γ and Γ_n are defined by means of the precise representatives of f and f_n , then they are well defined, i.e. up to sets of zero capacity. In the following all the relations involving Γ and Γ_n are intended to be satisfied Cap_p -a.e. We have

$$\Gamma \setminus \Gamma_n = \left\{ x \in \mathbb{R}^N : f(x) = 0 \text{ and } |f_n(x)| > \delta_n \right\}.$$

Let us prove that, defining

$$B_n = \left\{ x \in \mathbb{R}^N \middle| f_{B(x,r)} | f_n - f | dy > \delta_n \text{ for some } r > 0 \right\},$$
 (3.14)

then

$$\operatorname{Cap}_{p}(\Gamma \setminus \Gamma_{n}) \le \operatorname{Cap}_{p}(B_{n}). \tag{3.15}$$

In fact, if $x \in \Gamma \setminus \Gamma_n$, then, up to a set of zero capacity, we have

$$\lim_{r \to 0} \int_{B(x,r)} |f_n - f| \, dy = |f(x) - f_n(x)| > \delta_n.$$

Therefore there exists $r_0 > 0$ such that $f_{B(x,r)} | B(x,r_0)| f_n - f | dy > \delta_n$ and so (3.15) holds. Recall that (see [2: Lemma 4.8.1]), if $\varphi \in K^p$, then there exists a constant C, depending only on N and p, such that for any $\eta > 0$

$$\operatorname{Cap}_p\left(\left\{x\in\mathbb{R}^N\,\middle|\, \int_{B(x,r)}\varphi(y)\,dy>\eta \text{ for some } r>0\right\}\right)\leq \frac{C}{\eta^p}\int_{\mathbb{R}^N}|D\varphi|^pdy. \tag{3.16}$$

From (3.14) and (3.16) we get

$$\operatorname{Cap}_{p}(\Gamma \setminus \Gamma_{n}) \leq \frac{C}{\delta_{n}^{p}} \int_{\mathbb{R}^{N}} |\nabla f - \nabla f_{n}|^{p} dy \leq C \left(\frac{\varepsilon_{n}}{\delta_{n}}\right)^{p} \tag{3.17}$$

and therefore $\lim_{n\to\infty} \operatorname{Cap}_p(\Gamma \setminus \Gamma_n) = 0$. From the previous equality and the properties of the capacity, we get

$$\operatorname{Cap}_{p}\left(\Gamma \setminus \limsup_{n \to \infty} \Gamma_{n}\right) = \operatorname{Cap}_{p}\left(\liminf_{n \to \infty} (\Gamma \setminus \Gamma_{n})\right) \leq \lim_{n \to \infty} \operatorname{Cap}_{p}(\Gamma \setminus \Gamma_{n}) = 0.$$
 (3.18)

Let A be the set

$$A = \left\{ x \in \mathbb{R}^N \middle| \limsup_{r \to 0^+} \frac{1}{r^{n-p}} \int_{B(x,r)} |\nabla f(y)|^p dy > 0 \right\}.$$

Then $\operatorname{Cap}_p(A)=0$ (see [2: Theorem 2.4.3]) and from the Poincaré inequality we have

$$\lim_{r \to 0} \int_{B(x,r)} |f(y) - (f)_{x,r}|^{p^*} dy = 0 \qquad (x \in \mathbb{R}^N \setminus A)$$
 (3.19)

where $(f)_{x,r} = \int_{B(x,r)} f(y) dy$. From Theorem 3.1, for any $n \in \mathbb{N}$ there exists a Borel set E_n such that $\operatorname{Cap}_p(E_n) = 0$ and

$$\lim_{r \to 0^+} \int_{B(x,r)} |f_n(y) - f_n(x)|^{p^*} dy = 0 \qquad (x \in \mathbb{R}^N \setminus E_n).$$
 (3.20)

Set $\Delta_n = B_n \cup E_n \cup A$, where B_n has been defined in (3.14). If $x \in \Gamma_n \setminus \Delta_n$, then from Theorem 3.1, (3.14) and (3.19) - (3.20) we get

$$\limsup_{r \to 0} |(f)_{x,r}| \le \limsup_{r \to 0} |(f)_{x,r} - f_n(x)| + \delta_n$$

$$\le \limsup_{r \to 0} \left\{ \int_{B(x,r)} |f - (f)_{x,r}| \, dy$$

$$+ \int_{B(x,r)} |f - f_n| \, dy + \int_{B(x,r)} |f_n - f_n(x)| \, dy \right\} + \delta_n$$

$$\le 2\delta_n. \tag{3.21}$$

Moreover, inequality (3.16) gives

$$\operatorname{Cap}_{p}(\Delta_{n}) \leq \operatorname{Cap}_{p}(B_{n}) + \operatorname{Cap}_{p}(E_{n}) + \operatorname{Cap}_{p}(A) \leq C\left(\frac{\varepsilon_{n}}{\delta_{n}}\right)^{p}.$$
 (3.22)

Set $\Delta = \liminf_{n \to \infty} \Delta_n$ and $\widetilde{\Gamma} = \limsup_{n \to \infty} (\Gamma_n \setminus \Gamma)$. From (3.21) - (3.22) it follows that if $x \in \widetilde{\Gamma} \setminus \Delta$, then $\lim_{r \to 0^+} (f)_{x,r} = 0$. Therefore from Theorem 3.1 we get $\widetilde{\Gamma} \setminus \Delta \subset \Gamma$ and, since $\operatorname{Cap}_p(\Delta) \leq \liminf_{n \to \infty} \operatorname{Cap}_p(\Delta_n) = 0$, it follows also that

$$\operatorname{Cap}_p\Big(\limsup_{n\to\infty}(\Gamma_n\setminus\Gamma)\Big)=0.$$

The previous equality and (3.18) imply (3.11).

Let us prove statement (ii). If $x \in \Gamma \setminus B_n$, then

$$\limsup_{r \to 0^{+}} \int_{B(x,r)} |f_{n}| \, dy \le \limsup_{r \to 0^{+}} \left(\int_{B(x,r)} |f| \, dy + \int_{B(x,r)} |f - f_{n}| \, dy \right) \le \delta_{n}. \tag{3.23}$$

Thus (3.23) yields $\Gamma \setminus B_n \subset \Gamma_n$ for any n and therefore

$$\liminf_{n\to\infty} (\Gamma \setminus B_n) = \Gamma \setminus \limsup_{n\to\infty} B_n \subset \liminf_{n\to\infty} \Gamma_n.$$

Set $B = \limsup_{n \to \infty} B_n$. Then, for any $n \in \mathbb{N}$,

$$\operatorname{Cap}_p(B) \le \sum_{m=n}^{\infty} \operatorname{Cap}_p(B_m) \le \sum_{m=n}^{\infty} \left(\frac{\varepsilon_m}{\delta_m}\right)^p$$

and, for hypothesis (3.12), we get $\operatorname{Cap}_p(B) = 0$ and $(\Gamma \setminus B) \subset \liminf_{n \to \infty} \Gamma_n$. From statement (i) we get (3.13)

Remark 3.2. For the capacity we do not have an analogy of property (3.4). While, as we have proved, $\lim_{n\to\infty} \operatorname{Cap}_p(\Gamma\setminus\Gamma_n) = 0$ in general, it is *not* true that $\lim_{n\to\infty} \operatorname{Cap}_p(\Gamma_n\setminus\Gamma) = 0$ as it can been easy seen taking $f_n \equiv f$.

Taking into account the relation between capacity and Hausdorff measure (see [2, 3]), from the previous proposition we get the following result about convergence in the sense of the Hausdorff measure.

Corollary 3.1. Under the same hypothesis of Proposition 3.2, we have the following:

(i) If $\lim_{n\to\infty} \frac{\varepsilon_n}{\delta_n} = 0$, then for any $\sigma > 0$

$$\mathcal{H}^{N-p+\sigma}\left(\limsup_{n\to\infty}\Gamma_n\triangle\Gamma\right) = 0. \tag{3.24}$$

(ii) If $\sum_{n} \left(\frac{\varepsilon_n}{\delta_n}\right)^p < \infty$, then we also have, for any $\sigma > 0$,

$$\mathcal{H}^{N-p+\sigma}\left(\Gamma \triangle \liminf_{n \to \infty} \Gamma_n\right) = 0. \tag{3.25}$$

If p = 1, then (3.24) - (3.25) hold also for $\sigma = 0$.

If p > N, since $W^{1,p}(\mathbb{R}^N) \subset L^{\infty}(\mathbb{R}^N)$ with continuous immersion, we can apply the results of Section 2 to the continuous representatives of f and f_n . Therefore, from the convergence of f_n to f we get the convergence in the set theoretical sense of Γ_n to Γ .

Acknowledgement. The author wishes to thank Prof. C.Baiocchi of the University of Roma "La Sapienza" for suggesting the problem.

References

- [1] Baiocchi, C. and G. A. Pozzi: Error estimates and free-boundary convergence for a finite difference discretization of a parabolic variational inequality. RAIRO Anal. Numér. 11 (1977), 315 353.
- [2] Evans, L. C. and R. F. Gariepy: Measure Theory and Fine p Properties of Functions. Boca Raton: CRC Press 1992.
- [3] Federer, H. and W. Ziemer: The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Univ. Math. J. 22 (1972), 139 158.
- [4] Ziemer, W.: Weakly Differentiable Functions. New York: Springer-Verlag 1989.

Received 22.03.1998