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Frequent Oscillation
of a Class of Partial Difference Equations

C. J. Tian and B. G. Zhang

Abstract. This paper is concerned with the partial difference equation
Am+1,n + Am,n+1 - a/m,nAm,n +pm,nAm—k,n—l =0

where k and [ are non-negative integers, {@m,» } and {pm, »} are real double sequences. Frequent
oscillation criteria of this equation are obtained.
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1. Introduction

We consider the partial difference equation

Am+1,n + Am,n—i—l - am,nAm,n +pm,nAm—k,n—l =0 (11)

where {an, »} and {py, »} are real double sequences, m and n are non-negative integers,
k and [ are positive integers. Equation (1.1) with a,, , =1 has been studied in [2, 6, 8
- 11]. Partial difference equations arise from considerations of random walk problems,
the study of molecular orbits [5], mathematical physics problems [8], and numerical
difference approximation problems [1, 4]. Difference equation (1.1) can be obtained
from the difference approximation of a class of delay partial differential equation of the
form (see [4])

0%u  0%u
@ + 8—3/2 +g($ayau(xay)au($ay_ 0’1),’&(37 - Tl,y),U(.T — T2,y — 02)) = 0.

The oscillation of the above delay partial differential equation has been investigated by
Tramov [7].

By a solution of equation (1.1) we mean a double sequence {A,, »,} which is defined
for m > —k and n > —I and satisfies (1.1) for m > 0 and n > 0.
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The usual concept of oscillation of a sequence {A,, ,} is the following: A solution
{A4; ;} of equation (1.1) is said to be eventually positive if A; ; > 0 for all large ¢ and j,
and it is said to be oscillatory if it is neither eventually positive nor eventually negative.

However, the above definitions does not catch all the fine details of an oscillatory
sequence. A strengthened oscillation which is called frequent oscillation has been posed
by Tian et al. in [6]. In the present paper we will discuss frequent oscillation of solutions
of equation (1.1).

2. Preparatory lemmas

For the sake of completeness, we list the following definitions which have been given in
[6].

The set {1,2,---} will be denoted by N and the set of integers by Z. An element
of Z2 = 7 x 7 is called a lattice point. Let  be a set of lattice points, i.e. Q C Z2.
The size of such set Q will be denoted by |2|. Given integers m and n, the translation
operators X™ and Y™ are defined by

Xm0 = {(i+m,j) € Z?(i,j) €Q} and Y"Q={(i,j+n)eZ? (7)€ Q},

respectively. Let o, and 7,7 be integers such that o <  and v < 7. The union
D > i—y XY IQ is called a derived set of Q. Thus (see [6])

ﬁ T . .
(i, 9) € 22\ Z > XY

i=a j=

i (2.1)
(i—k,j—1)€Z*\Q for a<k<Bandy<I<T
Definition 2.1. Let © be a set of lattice points and

Qmn) — {(i,7) € Qi <mand j < n}.

If
Qmn)|
lim sup

m,n—oo mn
exists, then this limit denoted by p*(€2) will be called the upper frequent measure of .
Similarly, if

Q(m.n)

lim inf g

m,n—oo mn
exists, then this limit denoted by p,(€2) will be called the lower frequent measure of €.
If 4* = s, then the common limit denoted by u(€2) will be called the frequent measure

of Q.

Definition 2.2. Let X = {z; ;} be a real double sequence. If p*(X < 0) =0, then
the sequence X is said to be frequently positive, and if p*(X > 0) = 0, then X is said to
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be frequently negative. The sequence X is said to be frequently oscillatory if it is neither
frequently positive nor frequently negative.

Obviously, if a double sequence is eventually positive, then it is frequently positive,
and if it is eventually negative, then it is also frequently negative. Thus, if the sequence
is frequently oscillatory, then it is oscillatory.

Definition 2.3. Let X be a real double sequence. If p*(X < 0) < w, then X is
said to be frequently positive of upper degree w, and if p*(X > 0) < w, then X is said
to be frequently negative of upper degree w. The sequence X is said to be frequently
oscillatory of upper degree w if it is neither frequently positive nor frequently negative
of the same upper degree w. The concept of frequently positivity of lower degree etc.
is similarly defined by means of pu.,.

In order to show the difference of frequent oscillation and usual oscillation, let us
see the following two examples in one dimension [6].

Example 2.1. Consider the sequence
X ={zp}p, ={1,1,1,-1,1,1,1,-1,--- }. (2.2)

Since . (X < 0) = 1 and p. (X > 0) = 2, thus X is frequently positive of lower degree
i, frequently negative of lower degree %, and frequently oscillatory of lower degree %

Example 2.2. The sequence

{—1 if k=2" (neN)
T =

+1 otherwise

is oscillatory, and frequently positive.

To prove our main results we need several preparatory results. The first three
lemmas to show basic properties of frequency measures are taken from [6].

Lemma 2.1. Let Q,I' C N2. Then
pr(+T) < p*(Q) + p*(I). (2.3)
Furthermore, if 2 and I are disjoint, then

pa(€2) + pa (0) < p (2 + 1) < pa(Q) + p*(T) < p*(Q+T) < p* () + p*(I).

From Lemma 2.1 we can get
pe(Q) + (N \ Q) =11 (2.4)

for any subset € of N2.
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Lemma 2.2. Let Q,T C N2. If p*(Q) + p«(T) > 1, then QN T is an infinite set.

Lemma 2.3. Let Q C N? and let o, B and v, 7 be integers such that o < B and
v < 7. Then

B T
M*(ZZX"Y”O) <(B—at1)(r—v+ Du ()

i=a j=y
and
IB T . .
©* (ZZX’YKZ) <(B-a+1)(T—vy+1)u*(Q).
i=a j=y
Lemma 2.4. Assume that {An, n} is a solution of equation (1.1) such that
me{m—2k,....m+ 71}
Ampn >0 for
ne{n—-2...,n+71}
me{m—k,....,m+71}

Pm,n >p>0 and 0< A <a fO’I”
ne{n—-1,....,n+7}

wherem >k, n > 1 and 7 > 2 are positive integers. Then
T7+1

741 i
a""  Am g > E Cr i1 Amr1—iati
i=0

+ (1 + 1)152 Cl Ay r—k—jati—l
=0
i-1

.
_2 . T—q 7
+p E ia” E Ci 1 Amyic1—j—2k,ntj—21-
=1 7=0

Proof. From (1.1), we have
Ami1n + Am a1 + PmalAm—ka—1 = amadma < GAma
and, forme {m—k,.... m+7}andne{n—1I,...,n+ 7},
Amtin + Ampnt1 + PmnAm—kn—i < @GmnAmn < GAm -
Therefore,

Amivon + Amt1n+1 + Prt1adlmti—kn—1 = Gmt1,04m+10 < GAmt1n
Amit1a+41 + Amat2 + Dmar1Am—k ati—l = Gmat1Am a1 < GAm a1

Amti—kn—1 + Am—k,n+1-1 + Pm—kn—1Am—okn—2 < @Am_kn_i-
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From the last three inequalities, we have
C_lem,ﬁ > a(Amt1,0 + Am 1 + PmaAm—kn-1)

> Amyon + 2Ami1,041 + Amate + Omt1a + Dmn) Amt1—k i
+ (pm,a+1 + Pma) Am—k,mt+1—1 + Pm,aPm—k, a—1 Am—2k 7i—21

ie.
2

-2 .
@ Amn > ChAmia it

i=0

1
— J
+2p Z CiAmi1—k—jati—i
j=0

1 i—1
N 1 j
+p E ia E Ci_ 1 Amyi—1—j—2k,n+j—21-
i=1 =0

From (1.1) we obtain

Ami3n + Amiont+1 + Pmt2nAmio—kn—1 < GAmian
Amioa+1 + Amt1,a+2 + Prtta+1Amt1—ka+1-1 < GAmyp1,a41
Amt1,5+2 + Amnts + Pmatr2Am—karo—1 < GAm rt2
Amto—kn—1 + Amti—k,a+1—1 + Pmti—ka—1Amyi—2k,n—21 < GAmi1—k,n—1

Amt1—kn+1-1 T Am—knvo—1 + Pm—kat+1—1Am—2k,n+1-21 < AGAm_knt1-1-
Hence
a*Amn > Amasn + 3Amiont1 + 3Ami1are + Amais
+ (Pm+2,n + Pmt1,a + Pmn) Am42—k,a—i
+ (2pm+1,a+1 + Pmt1,a + Pmat1 + 20m,n) Amt1—k a1
+ (Pm,at2 + Pmait1 + D) Am—k it 21
+ ap” Amm—ok,n—21 + 2D0° Ay 1—okm—21 + 20" Am—2k at1—21-

In view of the conditions of Lemma 2.4, we have
3
@ Am n > Z C3Amy3—iati
i=0
2 .
+3p Z CyAmy2 k—jmtji
7=0

2 1—1
—2 24 J
+p E a E C_ 1 Amtic1—j—2k,nt+j—21-
i=1 §=0

115

(2.5)
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Assume that

.
a" Amp > E CrAmyr—iati
i=0

7—1
= J
+7P Y C)_y Amr—1-k—jati—l
=0
T—1 i—1
_2 e —i—1 7
+p E wa” " E Cy 1 Amtio1—j—2k,ntj—21-
i=1 =0

Then, for 0 <7< 7and 0 < j <7 —1, we have

Amitrt1—in+i + Amtr—iati+i T PAmgr—k—iatiol < GAmir—inti
Amtr—k—jati—l

+Amr—1-k—jat14j—1 T PAmLr—1-2k—jnti-2 < GAmyr 1 k—jatri—i-

Thus
C_],T+1Am,ﬁ

.
> Z C; (Am+'r+1—i,ﬁ+i + Amqr—iayi4i + ﬁAm+T—k—z',ﬁ+i—l)
i=0

7—1
+7p Z Cl_y (Am+r—k—j,ﬁ+j—l
i=0

+ Amir—1—k—jatirj—1 + ﬁAm+r—1—2k—j,n+j—2l)

T—1 i—1
9 g 7
+p E ia” ZE Cl 1 Amtic1—j—2k atj—2
i=1 =0
= Am—}-'r—}-l,'ﬁ
T
+E CrAm tr1—iati
i1
7—1
+ E CrAmyr—int1+i + Amatr+1
i=0

+p Z Ci Amyr—k—isitiot + 7P| Amtr—kni
i=0

7—1
J
+ E C) Ak jati
7j=1

T—2
J
+ E Cl 1 Amtr—1—k—jat+1+j—1 T+ Am—k atr—i
=0
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T—1
_92 J
+ 7P E Cy 1 Amyr—1-2k—j,nt+j—21
=0

7—1 1—1
_2 T —3 J
+D E ia” ZE Cl 1 Amyic1—j—2k ntj—2
=1 7=0
ZAm+r+1,n

+ Z(C; + O N Amyr1—ini + Amagr1

=1

,
+D Z CrAmtr—k—iati—1 +TD (Am-l-r—k,n—l
i=0

7—1
+ D (C_ + CI ) Amgrk—jmrjt + Am—k,mr—l)
7=1

i—1

.
_92 T —14 7
+p E ia’ ZE C) 1 Amir—1-2k—ja+j—21
=1 7=0
T+1

= E Cr i1 Ampr—1—in+i

1=0

+(r+1)p Z Cy Ammgr—h—jatjt

=0
T i—1
_2 - r—q J
+p E ia” E Ci_ 1 Ammyr—1-2k—jati—21-
i—1 =0

The proof is complete B
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The following two lemmas can easily be derived from Lemma 2.4 and their proofs

are thus omitted.

Lemma 2.5. Assume that {An, n} is a solution of equation (1.1) such that

me {m—-3k,..., m+1}
Amn >0 for

ne{n-3...,n+k}
me{m—2k,.... m+1—1}
for

Pmn >0 and 0<apm,<a
ne{n—2l,...,n+k—1}

where m > 2k and 1 > 2l are positive integers. Then

! _ k4l
CryAmn <" Am_k .
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Lemma 2.6. Assume that {An, n} is a solution of equation (1.1) such that

me{m—-2k—1,.... m+2k+1+1}
Ampn >0 for

ne{n—20—k,...,n+k+20+1}
me{m—k—1,.... m+2k+1}

Pmn>D and 0<apy,, <a for
ne{n—k—1,...,n+k+2l}

where m,n > k + 1 are positive integers. Then
A" A > (B 1+ I)PC;H}[LA

for —k < h <.
Lemma 2.7. Assume that the conditions of Lemma 2.4 hold and p = 0. Then

T+1 T [T—j
_ 1 7
a Az > E Cri1Amariiinti + E E Drts,itt | Aftr—k—jati—i-

i=0 §=0 \ s=0t=0

Proof. As in the proof of Lemma 2.1, we know that inequality (2.5) holds. Assume
that

T T7—1 T—1—3 34
a"Ama > E CrAmyr—in+yi + E E E Drmts,itt | Amtr—k—j—1,a4j—1-
i=0 =0 \ s=0 t=0

Then, for 0 <i<7and 0 < j <7 —1, we have

Amgr—k—jatj—i + Ampr—k—1—jatit+j—1 < @Amir—1—k—jntj—1

Amiri1—iati T Amtr—iativi + Pmrr—intiAmir—i—kati—l < GAmpr—inti-

1=0
-1 /7—1-35 3

+'j£: j{: j{:pﬁi+&ﬁ+t (an+T k—j,n+j l4_an+T k—1 ]n+1+gl)
7=0 s=0 t=0

T+1

= Z CloAmprii—imti + Z ! Divtr—i i At r—iek Aiet

1=0
7—1 T—1—3 3

+ me-l-s ‘I'LA’ITL-l-T k,n—I + Z me-l-s n+t m-l—T—k—j,ﬁ-l—j—l
s=0 j=1 s=0 t=0

2 T7—1

T— T—1-3 j
E E 1%n+sn+t 1n+T—k—1—$ﬁ+1+j—l+'§ pﬁLﬁ+tAﬁi—hﬁ+T—l
0
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T+1 T7—1
> E Cr 1A r1—inti + E Pitr—i i Amtr—i—kati-i
i=0 i—1

+ pm—}-'r,ﬁAm—i—T—k,'ﬁ—l + pm,ﬁ—i-TAﬁ—k,ﬁ—i-T—l

T7—1 T—1
+ me+s,ﬁAm+T—k,ﬁ—l + me,n+tAm—k,n+T—l
s:O tZO
71 f7—1—3 J T—33—1
+ Z Z me+s,ﬁ+t + Z me+s,ﬁ+t A7 —k—ja+i—t
j=1 s=0 t=0 s=0 t=0
T+1 T
> Ci i Amprii—inti + Y PrtsnAmpr—kai
1=0 s=0
T 7—1
+ ) PmastAm-kair—t + Y | Prtr—jinti
t=0 7j=1
T—1—35 j T—jj—1
+ me+s,n+t + pm+s,ﬁ+t> Ampr—k—j,a+j—1
s=0 t=0 s=0 t=0
T+1 T T—3 3
> Z C:+1Am+7+1—i,ﬁ+i + me+s,ﬁ+t Am+T—k—j,ﬁ+j—l-
i=0 §=0 \ s=0 =0

The proof is complete 1

Lemma 2.8. If 0 < ann < 1 and py,, > 0 for all large m and n, then every
non-oscillatory solution of equation (1.1) tends to zero as m,n — oc.

Proof. Assume that {A4,,,} is an eventually positive solution of equation (1.1).
Then there exist positive integers m > —3k and n > —3[ such that

m > m — 3k

A >0 for
n>n-—3l

m >m — 2k
0<amn<1 and pp,=>0 for

n>n—2l.

By Lemma 2.4, for positive integers 7; and 75 we have
Amn > Ol s, Afitrs s -
Thus
Ariiry gy < CTT’" — 0 as Ty, T2 — OO.
T1+72

The proof is complete 1

Lemma 2.9. Assume that for some positive integers m and n, equation (1.1) has
a solution {Am n} such that
m—-3k<m<m+Il+k+1

A >0 or
e f {n—3l§n§n+k+l+1.
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If
m-—2k<m<m+l+k
Pmn >0 and 0<an,,<a for
n—2<n<n+k+I1
7 - m<m<m+k
Z Zpi7j2B>O for
i—m—k j=n—1 n<n<n+l,
then .
Am—kn-t _ (Z) 53k +31+4.
Am o B
Proof. It is easy to see that there exists m* such that m € {m* — k,...,m*} and

m

Z Z Di 5 2? and _Z_ Z pz,j = 2

i=m*—k j=n—I

By Lemma 2.7, we have

m*—m 1 B
a™ T A > ( > me+s,n+t—l> Ame k-t 2 5 Am*—kn—1
s=0 t=0
and
. . m-—m*+k 1 B
a™ T R A e k> ( YD Pmrkten l—i—t) Am—kn—1 2 5 Am—kn-i
s=0 t=0
Thus B2
Am 1 > (5) a2 A ko
Similarly, there exists n* such that 7 € {n* —1[,...,n*} and
m+k n B m+k n*
Z Z Dij Z 5 and Z sz,j = 2
i=m j=n*-—I i=m j=n

By Lemma 2.7, we have

k: n*—n B
—n*—n+k+1 E :
a” otk Am,ﬁ, > DPm+s,n+t m,n*—l > EAm,n*—l
s=0

t=

and
k n—n*+1 B
_A—n* k4141
at T R A e > [ ) Pritsn—t+t | Ama-1 2 o Ama-1.
s= t=0
Hence 'Y
__1—2k—2
Am,ﬁ > (5> a Am,ﬁ—l-
Therefore
Am— k-1 _ Am—k,n—1 Ama—i < (2)463“3”4
Amn Amna-1 Ama B

The proof is complete 1
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The following fact is also an easy consequence of Lemma 2.4 and its proof is thus
omitted.

Lemma 2.10. Assume that for positive integers m,n and T equation (1.1) has a
solution {Ay, n} such that

me{m—k,....m+71}
A >0 for
ne{n—-1,...,n+71}
me{m,....,m+ 71}
Pmn >0 and 0<am,<a for
ne{n,...,n+7}.

Then
ﬁTAmﬁ > Am+T,ﬁ and ELTAm,ﬁ > Am,’ﬁ—}-T'

3. Main results

Let a = {am n} and p = {pm.} be real double sequences.

Theorem 3.1. Assume that p and a are two positive real numbers and w a non-
negative number. Let p*(a > a ora < 0) = A and p*(p < p) = B. Suppose further

that (k14 1)
_(k+1+1)!
FgEe

and
k+1+1D)Q2+k+1)(A+B)+ Bk+1+2)3l+ k+2)w < 1.

Then every solution of equation (1.1) is frequently oscillatory of lower degree w.

Proof. Suppose to the contrary there is a frequently positive solution A = {A,, »}
of equation (1.1) with lower degree w such that p.(A < 0) < w. In view of Lemmas 2.1
- (2.4) we have

k I _
,u*<N2\.Z Z XiYJ(a>aorp<ﬁ)>

i=—k—1 j=—Fk—1

2k 21
+ p* <N2\ | > Y XWYi(A< o))

i=—k—1—1j=—k—I—1

k I
:2—/1,*< Z Z Xin(a>60rp<}5)>

i=—k—l j=—k—1
2k 21
—u*( > - Xin(Ago))
i=—k—l—1 j=—k—I—1

>2—-2k+1+1)2l+k+1)p*(a>aorp<p)

— Bk +1+2)(31+ k +2)u. (A <0)
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>2— 2k +1+1)20+k+1)(A+B)— Bk +1+2)3l+k+2)w

> 1.
Hence, by Lemma, 2.2,

k I o
<N2\. Z Z XY (a>a orp<]5)>

i=—k—1 j=—Fk—1

2k 21
N <N2\ > Y XWYI(A<0)

i=—k—1—1j=—k—1—1
is an infinite subset of N2, which together with (2.1), imply that there is a lattice point

(m,n) such that
m—2k<m<m+k+1l+1

Ampn >0 for
n—2<n<n+k+101+1
m—-—k<m<m+£k+I1
0<amn<a and ppn,>Dp for
n—Il<n<n+k+I

By Lemma 2.4, we obtain a**"*1 Az ; > (k + 1+ 1)pC} ,  Am ». Hence

(E+1+1)!
Prpmgrie
which is a contradiction. The proof is complete B

Lemma 3.1. Let k> 0,1 >0,V > 0,a > 0 and

D =artt T2 1+ )71 where A =2kI(k+1)7".

Assume that for some positive integers m,n and T equation (1.1) has a solution {Ay, »}

such that
m—(T+3)k<i<m+l1
A;i ;>0 for
n—(T+3)<j<n+k
m—(T+2)k<i<m+l
0<a;;<a and p;; >0 for
n—(r+2l<j<n+k

1 m—1 n—1
i Z Z pij =V

i=m—k j=n—I

Then
Am n attt IN\T
A < l (_)
Am—k,'ﬁ—l Ck-l—l
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Proof. From (1.1) and Lemma 2.5, we have
Aptin T Ampt1 —@Ampn S Anmtin + Amnt1 — OmnAmn
= —PmnAm—kn-i
C

l

form—717k<m<mand n— 7l <n<n. Thus

< gk+t (5, B Amtin +Am,n+1) < art! (5, — 2(Am+1,nAm,n+1)%> .

pm,n = "~ 1
k+1 Am,n CVk-l-l Am7”

Hence, for m — (1 — 1)k <m <m and n — (1 — 1)l < n < n we have

7.7
G+

:gl (a Z Z z+1,J Aijy1) )
k+1 i=m—k j=n—1 ’J

Note that by the inequality between the arithmetic and geometric means and Lemma
2.10 we have

N

2

j:n
SZIZH% mz nil ( z+1,J 7J+1)%>

2

ki

m—1 n—1 )%

(Az—i—l, 2,7+1
D I

i=m—k j=n—I

% —k =n—I
1 1 Ll
m— n— 2
— Z Ai,n Ai+1,j
N A A;
i=m—k in—l j=n—1 ©J
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Thus

l.e.

Hence in view of (1.1

Thus

For m —

Hence

C. J. Tian and B. G.

Am,n

Am—k,n—l

Am+1,n + Am,n-l—l -

k-l-lI‘
Pmn > A T
Ck+l

(t—1Dk<m<m

1=

Am,n

Zhang

A
l —
- akti+l | = CL, v

) we have

_ \I,Ck-i—l
U'Am,n S _pm,nAm—k,n—l S Ta TAk+l Pm,nAmn-

mn

1 — __
m+1 1114'rrL,n—i—1)2 ) for { m— Tk S m S m

and 7 — (7 — 1)l <n < 7n we have

m—1 n—1

Z Z DPij

m—k j=n—I1

Am—k:,n—

By induction, we can get

Am,n

A
< ar 1— Cin¥” < . (E)z
1 22 ak+i+17 - (Ol v/

Am—k,n—l

The proof is complete 1
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In view of Lemma 2.9 and Lemma 3.1, we see that if welet a, 7, P and I' = %
be positive such that
AN 1 /T\7
(2ak+l+1) = C! (_) (3.1)

k+l1
and m,n be positive integers such that
—(T+2)k<i<m+k+I
pij >0 and 0<a;;<a for
n—(r+2)<j<n+k+1
m—1 n-—1 m—(T—l)k<m<m+k
for

"I MIDSEFES. o

i=m—k j=n—1

n—(r—1l<n<n,

then equation (1.1) has no solution {4, ;}, which satisfies

—(r+3Yk<i<m+k+1+1
Ai,j>0 for B )
n—(T+3) <j<n+k+I1+1

The follwing theorem now follows easily.

Theorem 3.2. Assume that A = ,ff_ll I' = %, a>0,¥>0,7>0 and

(3.1) holds. Let ¢ = {gm,n} be a double sequence defined by

=k+1.k+2....
LS5, for{m k+2

ik n=I0l+1,14+2,....
Assume further that
p*(p < 0) =B, p*(a>a ora<0)=A, pe(g < ¥)=D

and
(r+3)k+1+1)((r+3)l+k+1)(A+ B+ D) < 1.

Then equation (1.1) has no frequently positive solutions.

Proof. Supposing the contrary, let A = {4, ;} be a solution of equation (1.1) such
that p*(A < 0) =0. By Lemmas 2.1 - 2.4 we get

(t+3)k (T7+3)1
( \ > 3y XiYJ'(Ago)>

i=—k—Il—1j=—k—1-1

(T-|-2)k: (r+2)1 o
+ p* (NZ\ Z X’YJ(aSOOra>dorp<00rq<\Il)>
t=—k—1lj=—k-—I
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(t4+2)k (7+2)1
:Q—M*( Z Z X’YJ(aSOOra>aorp<00rq<\11))
i=—k—1j=—k—1

(t4+3)k  (T+3)l o
—ﬂ*( > X XZY”(ASO))

i=—k—Il—1j=—k—1—1
>2—((r4+3)k+1+1)((r+3)l+k+1)
X (@< 0ora>aorp<0orgqg<W)
—((T+Dk+1+2)((r+ 4+ k+2)p*(A<0)

>2— ((t+3)k+1+1)((t+3)+k+1)(A+ B+ D)

> 1.
Thus

(t+3)k (r+3)1
<N2\ > XWJ‘(AgO))

i=—k—-Il—1j5=—k—1-1

(T+2)k (T+2)1
(Nz\ Z XZYJ(aSOOra>(_10rp<Oorq<\IJ)>
i=—k—1lj=—k—1

is an infinite subset of N?. In view of (2.1), we see that there are positive integers m
and 7 such that

—(r+3)k<m<m+k+I+1

Amn >0 for
n—(7'+3)l< <n+k+1+1
—(T+2k<m<m+k+I

Umn € (0,a], Pmpm >0, ¢y >T  for
n—(T+2)l<n<n+k+l

which is a contradiction. The proof is complete i
Corollary 3.1. Assume that
2kl aFtitipzA
A= —— and r=-2 2
k+1 220 (1 + N2
and am.n =a >0 form,n > 0. If ppn > 0 and

m—1 n-—1

ity 3 Y ma> T

i=m—k j=n—I

then every solution of equation (1.1) is frequently oscillatory.

Proof. It is easy to see that there exist 7 > 0 and ¥ > I' such that for all large m

and n ~
m,n—klz ZPZJ>\I’>F

=m—
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()= o (B

and (3.1) holds, i.e.

Since
p*(a>aora<0)=0, p*(p<0)=0, pi(g < U) =0,

then
(r+3)k+1+1)((r+3)l+k+1)(0+0+0)=0< 1.

By Theorem 3.2, every solution of equation (1.1) is frequently oscillatory
From Corollary 3.1, the following result is obvious.

Corollary 3.2. Ifap,n, =1 and pppn > 0, and

)\)\
%ilﬁiféﬁkl Z me T AT

i=m—k j=n—I1
where A = ,f—_’ill, then equation (1.1) has no frequently positive solutions, and hence it
has no eventually positive or eventually negative solutions.
Remark. Corollary 3.2 improves [10: Theorem 3.4].
From Lemma 2.6 we can obtain the following result.

Theorem 3.3. Assume that p and a are two positive numbers and w is a non-
negative number. Let p*(a < 0 ora > a) = A and p.(p < p) = B. Further assume
that

ﬁ(k + l + 1) C%]lg_l.Ql Z ak-i—l-i—l
and -
Bk+20+1)(3l+2k+1)(A+B)+ (4dk + 20 + 2)(4l + 2k + 2)w < 1.
Then every solution of equation (1.1) is frequently oscillatory of upper degree w.

Proof. Without loss of generality, assume that min(k,l) = I. Suppose to the
contrary there is a frequently positive solution A = {A,, »,} with upper degree w such
that p*(A < 0) < w. In view of Lemmas 2.1 - 2.3 and (2.4) we have

k+1 k+1 o
( \ Z Z X’Y”(aéOora>&orp<13))

1=—2k—1 j=—k—2I

2k+l k+21
(N2\ Y XWiAc< 0))

1=—2k—1l—-1j=—k—-2l-1

k-t k-+1 o
:2—u*< Z Z XzYJ(a§00ra>aorp<p)

i=—2k—1 j=—k—2l

2k+1 214k
_ u*( > Y Xyi4Ac< 0))

i=—2k—1—1j=—k—2l—1
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>2—Bk+20+1)(2k+3l+1)ps(a<0ora>aorp<p)
— (4k + 20+ 2)(2k + 4l + 2)p* (A < 0)
>2— Bk +20+1)(2k+3l+1)(A+ B) — (4k + 21 + 2)(2k + 4l + 2)w
> 1.

Hence by Lemma 2.2,

k—l—l k+1 o
<N2\ Z X’Yj(a§00ra>aorp<p))

1=—2k—1 j=—k—21

2k+1 2l+k
N (N2 Y Y XYI(A< 0))

i=—2k—1—1j=—k—2I—1

is an infinite subset of N>, which together with (2.1) implies that there is a lattice point
(m,n) such that

me{m—-2k—1,..., m+2k+1+1}
Ampn >0 for

ne{n—-20l—k,...,i+k+20+1}

me{m—k—1,....,m+2k+1}
for

ne{n—k—1,....,a+k~+2l}.

0<amnm<a and ppn,>p

By Lemmas 2.4 and 2.6 we obtain

k+l1

_k+l+1Am a > (k +1+ 1 pz k+1 m-i—l—j,ﬁ-l-j—l
7=0
21

>(k+1+1)pY Cl Amyijnti
7=0

2]

2(k+1+1)2 j o2
ak+l+1 ZCk-l-l k+1 A

By the inequality Z?lzo C’,ZHC,fiLlJ = C3}_ 5 we have

a* > (k+1+ 1)py/CE )

which is a contradiction. The proof is complete B

Example 3.1. Consider the partial difference equation

Am—i—l,n + Am,n—i—l - 2Am,n +pm,nAm—1,n—1 =0 (32)
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where

4 otherwise.

{—1 if m =8k and n =280 (k,l € Np)
P =
3

Take 0 < w < %. Since

pfa>20ra<0)=0, p*(p<2) =g, 16xg4+36w<l, 3Fx3x=1

64" 64 2 ’

then by Theorem 3.1 every solution of equation (3.2) is frequently oscillatory of lower
degree w, and hence oscillatory.

Example 3.2. Consider the difference equation

Am+1,n + Am,n+1 - Am,n + Pm,nAm—l,n—2 =0 (33)
where
0 ifm=9 andn=90 (k,l€Ny)
Pm,n = 1 .
15 oOtherwise.
Then

1

pa<0ora>1)=0 and pi(p < 15) = 55-

Taking 0 < w < 1p55, then 72 X g7 + 120w < 1 and 75 x 4 X y/CZ > 1. Therefore by
Theorem 3.3 every solution of equation (3.3) is frequently oscillatory of upper degree w

and hence oscillatory. But Theorem 3.1 is not available here.
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