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Determining the Relaxation Kernel
in Nonlinear One-Dimensional Viscoelasticity
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Abstract. We consider a viscoelastic string whose mechanical behavior is governed by a non-
linear stress-strain relationship. This constitutive law is characterized by a time-dependent
relaxation kernel k& which is assumed to be unknown. The resulting motion equation is then
associated with initial and Dirichlet boundary conditions. We show that the traction measure-
ment at one end allows to identify k. More precisely, we prove an existence and uniqueness
result on a small time interval. Also, we show how the solution continuously depends on the
data.
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1. Introduction

Consider a viscoelastic string of length L > 0 and indicate by u(z,t) its transversal
displacement at point z € [0, L] and at time ¢ € [0,T], T > 0 being a fixed final time.
Denote Q1 = (0, L) x (0,T). A quite general stress-strain relationship which describes
the mechanical behavior of the string has the form (see, e.g., [9, 17] and references
therein)

o(ug)(z,t) = p(z,uz(z, 1)) + / k(T)¢ (2, ug(z,t — 7)) dr (1.1)

for all (z,t) € Q1 where ¢ and 9 are suitable given functions, k is the so-called relazation
kernel, and the string is supposed to be at rest for ¢ < 0. Denoting by ¢ the string mass
density, the evolution of u is then ruled by the Volterra integro-differential equation

ougr — (0(ug))e = f in Qr (1.2)

where f is an external force. Here p is a smooth and strictly positive function.

An inverse problem which typically arises in applications regards the possibility of
determining the relaxation kernel k£ through measurements related to u. A possible
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formulation of this problem takes advantage of equation (1.2). More precisely, if a set
of initial and boundary conditions is associated with (1.2), then an additional condition
is considered (e.g., u is known for some zy € [0,L] and any ¢ € [0,T]) in order to
identify k. Consequently, the identification problem consists in finding a pair (u, k)
which satisfies equation (1.2) and fulfils the conditions mentioned above. When ¢ and
1) are both linear with respect to u,, this kind of inverse problem has been extensively
studied by several authors during these last years (cf. [3, 5, 12 - 16, 18]; see also [1,
2, 5, 6] for multi-dimensional models). On the contrary, the most difficult nonlinear
case has received much less attention. In this respect, the only result we are aware
of concerns the case in which ¢ is linear with respect to u, (see [16]). There, by
assuming Neumann homogeneous boundary conditions (that is, free ends) and u known
at some point zy € [0, L], for any ¢t € [0,T], as additional condition, the author proves
local (in time) existence, uniqueness, and continuous dependence on the data. Here
we want to show that similar results can be obtained under weaker assumptions by
using an alternative approach which allows us to deal directly with classical (and not
variational) solutions and by changing the boundary and the additional conditions. Of
course, the most interesting (and hard) case, namely when ¢ is nonlinear with respect
to u, as well, remains open. However, it is worth recalling that, when k is known, there
are some results about the well-posedness of initial and boundary value problems for
(1.2) (see, e.g., [17] and references therein). Several results are also available for the
direct problem in our simpler setting (see [7, 8, 10, 11]).

On account of what we have just observed, we assume
o(z,2) = po(a)z  ((,2) € [0,L] x R) (1.3)

where ¢ is a smooth function with strictly positive derivative. Then equation (1.2) can
be rewritten in this form
t

o(z)up(z,t) — | wol(z)uz(z,t) —I—/k(r)z/)(:c,um(a:,t —7))dr | = f(z,1) (1.4)
0 T
for (z,t) € Qr. Then we introduce the usual initial data
u(z,0) = up(z)
ut(x,0) = uy(x)

} (« € [0, L]) (1.5)

and we take Dirichlet boundary conditions (not necessarily homogenenous)
u(0,t) = a(t)
u(L,t) = B(t)

We further suppose that the traction exerted at one end is known, that is

} (t € [0,T7). (1.6)

00(0)11 (0, 1) + / k() (0, ua (0,1 — 7)) dr = g(2) (1.7)

for all t € [0, T]. Here, ug,u1, , 8 and g are given functions.
Therefore, what we want to study in this paper is the following
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Problem (P). Find a pair (u, k) satisfying (1.4) - (1.7).

Note that, due to the assumption on g, (1.4) is a nonlinear Volterra integro-
differential equation of hyperbolic type. To solve problem (P), we first write down
the corresponding problem for the pair (v, k), where v = u;. Then by differentiating
equation (1.7) we observe that k£ has to solve a Volterra integral equation involving the
traces of u, and v, at x = 0. This fact allows us to formulate a further equivalent
problem for the triplet (u, v, k), provided that the initial datum satisfies a suitable non-
vanishing condition. More precisely, we shall deal with an initial and boundary value
problem for a system of two nonlinear Volterra integro-differential hyperbolic equations
coupled with a Volterra integral equation of the second kind. We can uniquely solve
that problem for T sufficiently small. Moreover, continuous dependence on the data
can be established. The plan of the paper goes as follows. The main results are stated
in the next section. Section 3 is basically devoted to establish the equivalence result
mentioned above. Sections 4 and 5 contain the proofs of the main theorems, while in
Section 6 we report the proof of a technical lemma.

2. Assumptions and main results

Let us suppose the following:

o€ C([0,L]) with o(z)> 0o >0 forall z € [0,L]
wo € C([0,L]) with ¢g(x) > cop >0 for all z € [0, L]
¢ € ([0, L] x R)
Yy ¥zz € CO[0, L] X R)
For all M > 0 there exists Ag(M) > 0 such that
%22 (25 21) = Y2z(@, 22) | + [Yh22 (2, 21) — Y2 (2, 22)| < Ao(M)|21 — 22
for all z € [0,L] and all 23,29 € R with |21|+ |22 <M (
few>'(0,T;C°([o, L)) (
ug, u1 € C%([0, L)) (
poug + f(-,0) € C1([0, L]) (
a, B € WH(0,T) (
g€ W0, 7). (2.
In addition, we assume the following compatibility relations:
a(0) = up(0) and B(0) = up(L) (2.11)
a'(0) = u1(0) and B'(0) = uy(L) (2.12)
2(0)a”(0) = ¢o(0)ug (0) + ¢"(0)u'(0) + £(0,0) (2.13)
o(L)B"(0) = po(L)ug (L) + ¢" (L)u'(L) + f(L,0) (2.14)
9(0) = ©0(0)ug(0). (2.15)

Then we introduce a rigorous formulation of problem (P).
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Problem (P). Find a pair (u, k) satisfying

u, uy € C(Qr) (2.16)
ke whl(0,T) (2.17)

and (1.4) - (1.7).
Our first result regarding local (in time) existence and uniqueness is given by

Theorem 2.1. Let (2.1) — (2.15) hold and set
v =1(0,u5(0)). (2.18)

If
N #£0 (2.19)

and the compatibility conditions

2(0)a®(0) = o(0)uf (0) + 5 (0)u3 (0) + £:(0,0)
+ ko [%2(0,up(0))up (0) + 92(0, ug(0))] (2.20)
o(L)B®(0) = po(L)u" (L) + @h(L)ui (L) + fr(L,0)
+ ko [ (L, ug(L))ug (L) + ¥z (L, up(L))] (2.21)
hold where
ko =~""[g'(0) — ¢o(0)uy (0)], (2.22)

then there exists Ty € (0,T] such that problem (P) has a unique solution.

The proof of this theorem will be given in Section 4. Moreover, in Section 5 we will
prove that the solution to problem (P) continuously depends on the data. Indeed, we
have the following

Theorem 2.2. Let {f;, uwoj,u1j, 5, B5,9;+ (5 =1,2) be two sets of functions sat-
isfying (2.1) — (2.15) and (2.19 — (2.21). Denote by (uj, k;) the corresponding solution
to problem (P) and consider two positive constants Cy,Co such that

max {[1(F5)ellzr 00001017, I Olleogpo.:
13¢5 0)lleogo,zy: lwoglloz o,z lwaslloz o,z (2.23)
lpouy; + £+ 0)llor o,z 19500, el o,y 187 1z co.my }

<Cy

and

< 2.24
max [kllx0r) < o (224)

where koj is defined by (2.22) with g and u} replaced by g; and uy;, respectively, and
substituted with «y; defined by (2.18) with ug in place of uo; (j =1,2). Assume that

Uz (z, 2)| < 1+ ea)z| ((J:,z) € (0,L) x ]R) (2.25)
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for some positive constants c¢; and co, and
¥, € L>((0,L) x R). (2.26)
Then there ezists a function Ay € C°((0,+00)*; (0,+00)) such that

lur = u2lle2(@,) + (w1 = u2)illo2 (@) + k1 — k2llwraor)
< Aq(p, Cr, Co, T){||(f1 — f2)etll L2 (0,7500([0, 1))
+[[(f1 = f2)e (-, 0)lleoqro,zp) + I(f1 = f2) (-5 0)llcoqro, )
+ [Juor — wozlle2 o,)) + w11 — vazlle2 o, 1)) (2.27)
+ llpo(ugr — uga) + (f1 — f2) (-, 0)lle (o,
+ l(er — a2) P o,y + 1B — B2) P Lro,m)
+1(91 = 92)' )1+ l(91 = 92)" 201 |

where p = min{|vy1|71, |v2|~1}. Moreover, Ay is non-decreasing in each of its variables
and also depends on L, 9, 0o, o, Y, Co, C1,C2-

Remark 2.1. Assumptions (2.25) - (2.26) allow to obtain a bound for u; and its
time derivative in C?(Qr) taking advantage of (2.23) - (2.24). In place of (2.25) - (2.26)
we can suppose to have an a priori bound on (u;), in C°(Qr) (see below Section (5.12)
- (5.14)).

3. An equivalent problem and a preliminary lemma

Let us assume that problem (P) has a solution (u, k). Then differentiate equations (1.4)
and (1.7) with respect to time. Setting

V= U (3.1)

we obtain
o(@)ve(, 1) — (po(2)vz(2,1))s

~ [ K b alot = = )

o (2, g (@, — 7))t (&, £ — T)0g (2, — 7) (3:2)
+ 2@, g (#, £ — 7))vga (2.t —7)|d
:ﬁ@JM%ﬂﬂ%@wd))(m+¢Ax%<»

for all (z,t) € Qr and

©0(0)v(0,2) + (0, ug(0))k(t)
: (3.3)

+ /0 k(T)42(0, ug (0,1 — 7))vg (0,8 — ) dr = ¢' (1)
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for all t € [0, T]. Then, from (1.5) and (1.4) with ¢t = 0, we derive the initial conditions

; } (x €10, L])

where
vo(z) = w1 () }
vi(z) = (e(2)) " [po(2)ug () + po(2)un(z) + f(2,0)]
for any z € [0, L]. Note that, recalling (2.1) - (2.2) and (2.5) - (2.7),

vo € C*(Qr) }
U1 € Cl(QT)

follows. Regarding the boundary conditions, on account of (1.6) we have

v(0,t) = a(t)

o(L.1) = A1) } (t €[0,T])
where ® ®

a(t) =o' (t

By = ) } e

Then due to (2.8) observe that
&, B e W(0,T).

On the other hand, from equation (3.3) we infer (cf. (2.2))

Moreover, thanks to (2.19), equation (3.3) can be rewritten in the form
k=~""[k* Ni(u,v) + Na(v) +¢] in [0,T]
where * denotes the time convolution product over (0,%) and

Ny ('ﬂ'a la) (t) = —1, (Oa ﬂ'm(o’ t))ﬁac(ov t)
NZ(ﬁ)(t) = _()OO(O)ﬁm(Ovt)

for any ¢t € [0,T] and any @,% € C*(Qr). Set now
h=Fk  ae in (0,7)
and note that (cf. (3.10))

k=k0+1*h in [O,T]

(3.4)

(3.5)

(3.14)

(3.15)
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Then equation (3.11) becomes
ko+1xh=~""[(ko+1%h)+*Ni(u,v)+ Na(v)+g] in [0,T],
and differentiating it with respect to time we obtain
h=~""[koN1(u,v) + h* Ni(u,v) + Na(vy) + ¢”] a.e. in [0,T]. (3.16)
Taking advantage of (3.15), we can write down equations (1.4) and (3.2) this way as

Ugg — AlUgy — by = (ko + 1% h) * Ry(u) + F (3.17)
Vgt — QUgg — DUz = (ko + 1% h) * Ra(u,v) + (1 % h)c + koc + F; (3.18)

in Q7, where a, b, c, F' are defined by, respectively,

a(z) = (e(z))po(z), b(z) = (e(z))ph(z) Vae€[0,L] (3.19)
c(z) = (0(=)) W2 (2, up())ug (z) + ¥a (2, up(2))] VY € [0, L] (3.20)
F(z,t) = (o))" f(z,t) Y(2,t) €Qr (3.21)

for all (z,t) € Qr, while Ry, R, are given by

R (@) (2,1) = (0(2)) ™ [V (@, (2, 1)) + 9 (5, o (5, 1) (1) (3.22)
Ra(ii, 0) () = (e(x)) ™" [wm(:c, Uy (2,1))0(%, 1) + 122(7, Uz (2, 1))

X g (2, 8) T (T, 1) + Uy (2, s (0, 1) ) T (2, t)] (3.23)

for any (z,t) € Qr and all 4,7 € C%(Qr).
We have thus shown that the triplet (u, v, h) is a solution to the following

Problem (P1). Find a triplet (u,v,h) € (C%(Qr))? x L'(0,T) solving equations
(3.16) - (3.18) and fulfilling conditions (1.5) - (1.6), (3.4) and (3.7).

Conversely, taking the compatibility relations (2.13) - (2.15) and (2.20) - (2.21) into
account, one can also prove that if (u, v, h) solves problem (P1), then (u, k) is a solution
to problem (P), where k is given by (3.15).

Summing up, we have

Proposition 3.1. Let (2.1) — (2.15) and (2.19) — (2.21) hold. Then problem (P)
has a unique solution if and only if problem (P1) has a unique solution.

We conclude this section by reporting for the reader’s convenience a quite standard
result which is a slight generalization of [7: Theorem 2.3], namely
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Lemma 3.1. Let

e € CY([0,L]) with e(z)>eo >0 forall z€][0,L] (3.24)
n € C°((0, L]) (3.25)
¢ e Wh0,T;C°([0, L)) (3.26)
wo € C*([0,L]) and wy € C*([0, L]) (3.27)
p,q € WHH(0,T) (3.28)
p(0) = wo(0) and ¢(0) = wo(L) (3.29)
p'(0) =wi(0) and ¢'(0) = w1 (L) (3.30)
p"(0) = €(0)wg (0) + 1(0)wg (0) + £(0,0) (3.31)
q"(0) = e(L)wg (L) + n(L)wo (L) + £(L,0). (3.32)

Then there exists a unique w € C*(Qr) such that

Wit — EWgg — MWy = £ in Qr (3.33)
and the initial condition
w(z,0) = wo(x
(,0) = wola) (z € [0, L)) (3.34)
we(z,0) = wq(x,0)

as well as the boundary condition

w(0,2) = p(?)

w(Lt) — gt } (t € [0,T)) (3.35)

are fulfilled. Moreover, there exists a positive constant Cs3 which only depends on
L, |lelle1(po,0]), €0 and ||n]lco(o,z)) such that, for anyt € [0,T],

lellgnq,y < Ca{ (1 + 1) [Ieell s o,:0000,2) + 1 0)llooqo,p 50
+ llwolle (o, + llwiller o, 21y + 1PNl L1 0,0 + ||q(3)||L1(o,t)}-

This lemma, whose proof is given in Section 6, will be very useful in the sequel.

4. Proof of Theorem 2.1

We are going to solve problem (P1) locally in time by using the Contraction Mapping
Principle. Let us set B
Xr = (C*(Qr))? x L'(0,T).

We endow X7 with the norm

(@, 9, 1)l xr = llille2 Gy + 18llo2(@ry) + 1Rllz2om) (4.1)
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and introduce the bounded subset of X

B(E,T) = {(@,5,k) € X(T)| |(@5,})|x, < E}

for some positive constant E. This set is clearly a complete metric space with respect
to the metric induced by the norm of X7. Fix (@,9,h) € X7 and set (cf. (3.16))

h = H(i, b, h) := v [koN1 (4, 3) + h % Ny(i, &) + Na(9s) + g"] (4.2)
a.e. in [0,T]. Recalling (2.3), (2.10) and (3.12) - (3.13), one easily realizes that
h e LY(0,T). (4.3)
Consider then the following problem (cf. (3.17) - (3.18)).

Problem (P2). Find a pair (u,v) € (C?(Qr))? satisfying (1.5) - (1.6), (3.4) and
(3.6) and such that

Ut — QUgq — Ui, o, h)
Vit — QUgy — = V(ﬁ 0, h)
where
U, 5, h) = (ko + 1% H(, 3, 1)) * R (@) + F (4.6)
V(i o, h) = (ko + 1% H(it, 9, h)) * Ra(il, 8) + (1% H(i, 9, h))c+ koc + Fy (4.7
in Q.

Observe that (cf. (2.1) - (2.4), (2.6) - (2.7) and (3.19) - (3.23))

a € CH[0,L]) and b,ce C°([0, L))

F,F, € Wh'(0,T;C°([0, L])) :

R1(@), R (@, 7) € C*(Qr). (4.10)
Consequently, we have (cf. also (4.3))

U(@i, 3, h), V(i, 5, h) € WH(0,T;C°([0, L])). (4.11)

On account of (2.7) - (2.9), (2.11) - (2.14), (2.20) - (2.21), (3.4) - (3.9) and (4.11) we
are in a position to apply Lemma 3.1 which ensures that problem (P2) has a unique
solution (u,v) € C?(Qr). Also, estimate (3.36) entails that, for any ¢ € (0, 7],

lullc2g,) + Ivlle2 @)
<Cs{+1)
X [||(U(ﬂ, B, 1)ellzr 0,000,z + 1V (@, B, B))ell 10,6500 (10,27))
+ 4@, 5, B) (-, 0) looqo, 1y + V(s 8, B) (-, 0)l|eogo,zp |
+ [luolle2(po,27) + lvolle2 o,z + llwallerqo,zy) + lviller o,z

+ 1@ 10 + 16D 230, + 1B 12300 + 1B 2300 }

(4.12)
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Thus we can define a mapping J : X7 — X7 by setting
J(a,0,h) = (u,v,h) (i, h) € Xr). (4.13)

We are now going to show that J has a unique fixed point in B(Ey,Tp) for some
(Eo, Tp) € (0,400) x (0,T]. Of course, on account of (3.16) - (3.18) this is equivalent
to say that problem (P1) has a unique solution for T' = Tj. Recalling (2.3) and (3.12) -
(3.13), from (4.2) we easily deduce

1H(@, 5, B) |21 0.0y < YI7H [Ca(B + E®)t + 19" |21 (0,0)) (4.14)
for any (@, 9, h) € B(E,t) (t € (0,T]) where Cy is a positive constant depending only
on ko, po(0) and [|1),||L=((0,0)x (- E,E))- Observe now that (cf. (4.6) - (4.7))

u(~a@a~)(ao) —F(,O) (415)
V(it, 0, h)(-,0) := koc + Fy(-,0) (4.16)
Ui, B, h))g := Fy + (ko + H(it, 9, k) * )R (i2) (4.17)
(V(@, 9, b))y 2= H (i, 0, h)e + Fy + (ko + H (@, 0, h) * )Ra (i, 9). (4.18)

Hence, thanks to (2.1
(cf. also (4.8) - (4.9))

(U (@, B, B))ell 2 (0,6:00 0,3y + NV (@ B, B))ell 2 (0,6:00 (o0, 1)
+ ||U (@, 5, B) (-, 0)l|coo,yy + IV (@, 5, B) (-, 0) || co o, 1)
< 1Fellwrao,e:00(10,27)) + 1F ¢ D)llco o,y
+ | F (-5 ) |lcoo,zy) + [kolllellcojo,z))
+ Cs(E? + E)t{1 + |1 (i, 3, h)| 10,0 }
+ llellco o,z 1M (@, B, 1) || L2 0,2

(4.19)

for any (@,9,h) € B(E,t). Here Cs is a positive constant which only depends on
ko, 00, uo and on the L*°-norms of ¢, ¥,, ¥y, V., on (0, L) x (—E,+FE). Then combin-
ing (4.14) and (4.19), we obtain for any ¢ € (0, 7]

(U (@, B, B))ell 2 0,6:000,L7)) + V(@ 8, B))ell 22 (0,6:00 (o, 1)
+ (U (@, B, k) (-, 0) || opo,z7) + [V (i B, 2) (-, 0) | co g0,y
< | Fellw 1 (o,6:00(0,27)) + 1F ¢y )|l copo,z))
+ |F2 (5 )| coqro,z7) + kolllcllcopo,z))
+ 05(E2 + E)t {1 + \’Y\_l [C4(E + E2)t + ||g"||L1(0,t)]}
+ v Hlellcoo,Ly [Ca(E + E*)t + |lg" |22 (0,)] -

Taking advantage of (4.12), (4.14), (4.20), we can find a polynomial function P(y1,y2)
such that P(y1,y2) > 0 for any y1,y2 > 0 and P(y1,0) = 0 for any y; > 0, and a pair
of positive constants Cg, C7 such that (cf. (4.13))

(4.20)

|3 (@, 3, h)||x, < CeP(E,t)+ Cr (4.21)
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for any (4, 9, l~z) € B(E,t). We note that Cs and C7 depend on L, @y, co, ko, v~ *, 0, 00 and
on the norms of ug, u1, f, o, 3, g. Also, Cs depends on the L°°-norms of ¥, Y., Yz, ¥,
n (0,L) x (—E,+E).

Choosing for instance Fy = 2C7 and, consequently, Ty € (0,7] such that 0 <
CsP(Ep, To) < Cr we have from (4.21) that J maps B(Ey,Tp) into itself. Let us now
prove that J” is a contraction for n € N large enough. This suffices to conclude by
means of the generalized Contraction Mapping Principle (see, e.g., [4: Theorem 2.2/p.
88]).

Let (@i, %, h') € B(Ey, Ty) and consider (uf,v?, h') = J(@', &%, %) (i = 1,2). Ob-
serve that (cf. (4.2))

h' = h2 =1 [ko(Nl(ﬁl,ﬁl) — Ny (@2, 92)) + (B! — h2) % Ny (al, oY)
) (4.22)
+ 1%« (N1 (@', 0%) — N.(@,9%)) + Nao(o; — ;)

a.e. in [0,T]. Also, setting U = u! —u? and V = v! — v2, on account of problem (P2)
we easily deduce that
Uy — aUyy — bU, = U@, 5%, hY) — U (@2, 52, h?) (4.23)
Vit — Vg — bV, = V(@}, 91, hY) — V(@?, 52, h?) (4.24)

in Qr,. In addition, U and V satisfy homogeneous initial and boundary conditions.
From (2.3) - (2.4) and (3.12) we infer

HNl(’l] y U ) Nl HCO([O ) < CS (||u, - “2||01(Qt) + ||’U -0 ||C]‘(Qt ) (425)

for any t € (0,T,], where Cg > 0 depends on Ejy and on the L*°-norms of ,,1,, on
(0, L) x (—Fy, +Ep). Hence, thanks to (4.25) from (4.22) we deduce, for any ¢ € (0, Ty],

[ O AT

A o o (4.26)
< 09/0 (|Ih1 — 2|, + 18! — @P[ler g,y + 181 — ”2”02(@)) dr.

Here Cy is a positive constant only depending on kg, ¢o(0), Ty, Fp and on the L°°-norms
of ¥,,1,, on (0,L) x (—Ep,+Ep). On the other hand, recalling (2.1), (2.3) - (2.4) and
(3.22), we have

IR1(u) = R1(u?)llco(q,) < (20) ™ Crolld’ — @*[le2(q,) (4.27)

for any ¢t € (0,Tp], where Ciq is a positive constant which only depends on the L°-
norms of ¥, Yg,,¥,, on (0,L) X (—Ey, +Ey). Moreover, thanks to (2.1) and (2.3) -
(2.5), from (3.23) we derive, for any t € (0, Tp|,

H’R2 ut,vt) — Ra(u?, v? ”CO(Qt) (4.28)

< (00)~ 'Cni (||U - U2||02(Qt) + ||771 - 772”02(@)) .
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Here C1; > 0 only depends on Fy and on the L®-norms of ¢,,%,,,%,, on (0,L) X
(—Ey,+Ep). On account of (4.27) - (4.28) and recalling (4.17) - (4.18) we then obtain

U@, 5", k') — U@, 5%, h?)), ||L1(0,t,00([0L]))
+l(v@, o, bty = V@2, 92, 52)ell 21 o,6:000,10))

t
S 012{/0 (”’al - ’112||C2(QT) + ||’l~)1 - 62”6‘2(QT)) dr (4'29)
4Rt - h2||L1(o,t)}

for all t € (0,Ty] where C12 > 0 depends on g, ¢j, ko and on the same quantities as
Cy1 does. Using estimate (3.36) and taking advantage of (4.29), we infer

1Ulle2q,) +1VIle2qy)
¢
< 03012{/0 (||111 — a2||c2(QT) + 8" - 172“02((27)) dr (4.30)

+ (1 +t)||nt — h2||L1(07t)}

for all ¢ € (0,Tp]). Finally, thanks to (4.26) and (4.30), we can find a positive constant
Ci3 depending on L, kg, ©o, cg, 0, 00, 10, o and on the L°°-norms of 9,,%,,,¥,, on
(0,L) x (—Ep, +Ey) such that, for any t € (0, Tp],

t
3@, 3%, k') = 3@, 8%, 17)|, < 013/”(111,@1,}31)—(@{@{P)fom. (4.31)
0

Inequality (4.31) entails that J™ is a contraction of B(Ey,Tp) into itself provided that
n € N is large enough. This completes the proof.

5. Proof of Theorem 2.2

Let us set (cf. (3.1)) v; = (u;)¢ (j = 1,2). Moreover, on account of (3.14), set h; = k.
Then, recalling Section 3, we easily realize that (u;,v;) solves (cf. (4.4) - (4.5))

(uj)et — a(uj)ee — b(uj)e = Uj(uj, vj, hy)
(vj)et — a(vj)zz — b(vj)e = Vj(ug, v, hy)

where (cf. (4.6) - (4.7))

Uj(uj, vj, hj) = (koj + 1 hj) * Ri(u;) + F} (5.3)
Vj(’dj, v, hj) = (koj +1x hj) * RQ(Uj,’Uj) + (1 * hj)Cj -+ kojCj + (Fj)t (5.4)
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in Q7 and (cf. (2.22) and (3.20) - (3.21))

koj = 77" [95(0) — ¢o(0)u;(0)] (5.5)
cj(z ) (0(2)) ™ [z (2, ug; () ug; (@) + Yu (2, ug; (2))]  (z €[0,L])  (5.6)
Fj(w,t) = (e(=) " fi(z,t) ((=,t) € Q). 5.7

Also, (u;,v;) fulfills the initial and boundary conditions (cf. (1.5) - (1.6), (3.4) and (3.7)
- (3.8))

wi(2,0) = uoj(@)  (uy)e(e,0) = wij(,0)  (x € [0,L]) (5.8)
0i(2,0) = vo;(2)  (U)i(e,0) = 0yj(,0) (¢ €[0,L]) (5.9)
u(0, 1) = (1) w(L, 1) = B;(1) (t € 0,T]) (5.10)
v(0,) = () (L, 1) = B} (t) (t € [0,T]). (5.11)

Here vg; and vy  are defined by (3.5) with ug, u1, f replaced by ugj, uij, f;, respectively.
Applying estimate (3.36) to the Cauchy-Dirichlet problem (5.1), (5.8), (5.10), we deduce
that, for any ¢t € (0, T1,

||“j||c2(Qt)
< 03{”( i (g, V5 hg))ell Lo 0,600 (1o, + U5 (ugs 05, hg) (5 0)llcoqo,Lyy  (5.12)
+ lluoglloz o,z + lluijllor o,y + ||aj L1 (0,6) + ”:8_7' ”Ll(O,t)}-

On the other hand, from (2.23) - (2.26), (3.22) and (5.3) we infer (cf. also (4.15) and
(4.17))

1@ (ugs v3s hg))ell L o.6sc010,23)) + U5 (ugs 055 hg) (- 0) | oo,y
t
< A2(017027T){1 +/ ||“j||o2(QT)dT}
0

for any ¢ € (0,T]. Here and in the sequel of the proof, A, (r € N) denotes a positive
and continuous function which is non-decreasing in each of its variables and depends
on g, 0o, Yo, ¥, Co, €1, c2 at most. Then, combining (5.12) with (5.13) and using the
Gronwall lemma, we obtain

(5.13)

lujllo2(gqry < As(Cr, Co, T). (1=12) (5.14)

Consider now a Cauchy-Dirichlet problem for v;, namely (5.2), (5.9), (5.11). Esti-
mate (3.36) yields again

losllea@ < Caf 103 (s, v, B el 0,00 10,001
+ 1Vj (g, vj, hi) (-, 0)lleoo,zy) + llvolloz o, L)) (5.15)
4 4
+lvsllerqo,ry + Ne$? Iz o, + 18 )”Ll(o,t)}-
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Recalling (2.3) - (2.4), (3.23) and (5.4) - (5.7) and using (2.23) - (2.24) and (5.14), we
obtain (cf. also (4.16) and (4.18))

t
1V (i, v, hy)llwigo,g0000,0])) < A4(C1,02,T){1 +/ ||'Uj||c2(QT)dT}. (5.16)
0
A combination of (5.15) and (5.16) yields, via the Gronwall lemma,
vjlle2(gry < As(C1,C2,T) (1=1,2). (5.17)

Thanks to bounds (5.14) and (5.17), we can now proceed to get estimate (2.26). Set

u=1muy — Uy V = U1 — V2 h:hl—hz (518)
Up = Up1 — Uo2 up = Ui — U2 t=f—/ (5.19)
g=491— 92 a=o1 — Q2 b =31 — Bs. (5.20)

Taking (4.2) into account, we deduce (cf. also (5.18) and (5.20))

h=(y; —7v) " [kle(ﬂl, 01) + h1 * Ni(ug,v1) + Na((v1)s) + 9’1’]

+ 2 [(km — ko2) N1 (u1,v1)

(5.21)
+ koa (N1(u1,v1) — N1(us,v2)) +h* Ny (uq, vq)
+ hg x (Nl(ula v1) — Ni(ua, ’Uz)) + Na((v1 — wa)¢) + g”]
a.e. in [0, T]. Recalling (2.3), (2.18) and (2.22) - (2.23) we easily get
(71— 72)_1| + ko1 — koz|
(5.22)

< Aol C){ oo,y + [0 lloogo,rp + 18/(0)

where g = min{|y1|7%, |y2/7'}. On the other hand, taking (2.4), (3.12) - (3.13) and
(5.14) into account, we have, for any ¢ € [0, T,

| N1(u, 1) (t) = Ni(uz, v2) ()] + | Na((v1 — v2):) (2)]

(5.23)
< A7 (Ch) {”um“CO(Qt) + ||V$||01(Qt)} :

Using now (2.3), (2.23) - (2.24), (5.14), (5.17) and (5.22) - (5.23), from (5.21) we derive
the inequality

Ihlz: 0, < As(p, 01,02,T){||u6||00([o,1:])

+ lluillcoqo,zp + 18"(0) + llg"ll 21 (0,0) (5.24)

t t
+/0 luzllcog,y + Ivallor . dr+/0 ||h||L1(0,T)dT}
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for any ¢ € [0,T]. An application of the Gronwall lemma to (5.24) gives

Il Lro, < Ao(p, 017027T){||u6”00([0,L])

+ [luillcoqo,Lyy + 18'(0) + llg”llz1 0,t) (t € [0,T7). (5.25)

t
+ / llusllooio, + IValloia] dr}

We can now observe that the pair (u, v) solves the Cauchy-Dirichlet problem (cf. (5.1)
= (5.2), (5.8) - (5.11) and (5.18-20))

Uy — AUgy — buy = Uy (u1, v1, h1) — Us(ug, va, ha) )
Vit — QVge — vy = Vi(u1, v1, h1) — Va(ua, va, ha)
u(z,0) =ug(z), w(z,0)=ui(z,0) (z € [0, L])

> (5.26)
v(z,0) =vo(z), vi(z,0)=vi(z,0) (z€][0,L])
u(0,t) =a(t), u(L,t)=b(t) (tel0,T)
v(0,t) =a'(t), v(L,t)=Db'(t) (t€[0,T]). )

Then, estimate (3.36) applied to (5.26) entails

lulle2@,) + IVlle2g,)
< C3{||(U1(U1,01, h1) — Ua(uz, v, ha))t
+ H(Vl(ulﬁvli hl) - V2(/U/2”U27 h2

HLl(O,t;CO([O,L]))
HLl(o £:C0([0,L]))
+ || (U (wr, v1, hy) — Us(uz, va, ho)) (- HCO (10,L]) (5.27)

+ H(V1(U1,U17h ) = Va(uz, v2, ha))(: HCO([O L)

+ luolle2(jo,z)) + lIvolle2 0,27y + ||111||01([0,L]) + Iviller o,z))

+ 2@l 0.y + D09 }
for any t € [0, T]. From (5.3) - (5.4) we infer
U (u1,v1, h) — U (ua, v2, ha) = bug + (ko + 1+ h) * Ry (u1)
+ (koz + 1% ho) * (R1(u1) — R1(uz)) + F

Vl(’u,l,’U1, hl) —_ VQ(UQ,’UQ, h2) = me =+ (ko -+ 1x* h) k Rg(ul,’l)l)
+ (ko2 + 1 % ha) * (Ra(u1,v1) — Ra(uz, v2))
+ C(l * hl) + 62(1 * h) + cko1 + coko + F;

in Q7, where
k0=k01—]€02, F:Fl—FQ, C=2¢C1 — Ca. (528)
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Hence (cf. (4.15) - (4.18))

(U (w1, v1, h1) — Us(uz, v, ha)) (-, 0) = F(-,0) )
(V1 (u1,v1, h1) = Va(ua, v2, h2)) (-, 0) = k01c( ) +koca(+) + Fe(+, 0)
(U (ur, v1, k1) = Us(uz, va, ha)),
= (ko + h*)R1(u1) + (ko2 + hox)(R1(u1) — R1(u2)) + Fy b (5.29)
(V1 (w1, v1, h1) — Va(ua, va, hz))t
= (ko + h*)R2(u1,v1)

+ (ko2 + hax)(Ra2(u1,v1) — Ra(ug,v2)) + chi + coch + Fyy. )

Recalling (3.22) - (3.23), and (2.1), (2.3), (2.5), (5.14), (5.15) and (5.28), standard
computations lead to the estimate

H(Rl(ul) — Ra(u2)) (-, t)HCO([OL + H (Ra(u1,v1) — Ra(uz,v2))(-

)|l o "ML (5.30)
< A1o(Cr, Co, T) {lu(-, )|l c2(o,zp) + IV (- )||c2([o,L]>}

for any t € [0, T]. Moreover, from (5.5) - (5.6), owing to (2.4) and (2.23), we infer

lelleogo,zyy + Fellwrao,7:00(0,17)) (5.31)
< All(claT){”uO”C?([O,L]) + 1fs¢ll 10,7500 (10,7)) + IIfe (- 0)||CO([0,L])}' |

Thanks to estimates (5.22), (5.25) and (5.30) - (5.31), on account of (5.29) it is not hard
to prove that (cf. also (5.28))

H(ul(ulavla h1) — Ua(uz,va, ha))s ||L1(O,t;C°([0,L]))
+ || (Vi(ur, v1, ha) = Va(uz, vz, ha))el| 11 0 400 0.0)
+ || (@ (ur, v1, he) = Ua(uz, v2, 12)) (4 0) || o .19
+ || V1w, 01, ) = Va(ua, vz, 52)) (5 0) || go 0.1

5.32
< A1a(p, C1, Co, T){||ftt||L1(o,T;00([o,L1)) (532)

+ |I1£:(-, 0)llcoqo, ) + IE(- 0) [l oo,z
+ [|uolle2(jo,z)) + lluallergo,zy) + 18'(0)| + 18" | L1 0,7)

t
+ /0 (||u||00([o,r];omo,L])) + ||V||00<[o,f];02<[o,L])>)dT}
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for any t € [0, T]. Hence inequalities (5.27) and (5.32) yield
lulle2(a,) + IVlie2 g,
< Auz(p, Ch, Cz,T){||u0||c2([0,L])

+ [[vollez o,z + la1llor o,z + Iviller o,z
+ 1€l 21 0,500 10,27)) + 1£:(5 O)lcopo,zy + I£(+, 0) [l coo,z)
+ 12®lwr 0,0y + 0@ [lwr10,0) + 18"(0) + 8" |22 0,7)

t
+/O (Ilalleoqore=qo) + ||V||00([o,r];c%[o,LD))dT}
for all t € [0, T] and the Gronwall lemma entails

lallez(gry + IVlle2@r)
S A14(,LL, Cl, 025 T){HUOHC?([O,L])

+ lIvolle2(jo,z)) + llusllero,z)) + lIviller o,z (5.33)
+ [|feell 10,500 0,2)) + I£:(-5 O)[lcogo,z7y + I£(5 0)llcoro, 2y

+ ”a(s)”lel(O,T) + ||b(3)||W1v1(O,T) + 1g'(0)| + ||g”||L1(o,T)}-

Finally, taking (2.4), (2.20) - (2.21), (2.23), (3.5), (3.14) - (3.15), (5.17) - (5.20) and
(5.22) into account, inequality (2.27) follows from (5.25) and (5.33).

6. Proof of Lemma 3.1

Assume for the moment that p = ¢ = 0. Suppose that w € C2(Qr) solves (3.33) - (3.35)
and formulate an equivalent problem for a first-order system. Let us set

wt = (wt + \/Ewm)

(wt - \/Ewm)

[V
N = N =

Then it is straightforward to check that (w!, w?) solves the system

1
w; — Vew? = 2 £+ A(w" — w?)]

1 (6.2)
wi + ew? = 3 (€ + A(w" — w?)]
in Qr and fulfils the initial conditions
w'(z,0) = %(wl(a:) + Ve(z) wy(z))
I (z € [0, L)) (6.3)
w3 (2,0) = 2 (wn (@) = /o) w(x)
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and boundary conditions

w' (0,t) + w?(0,1)
wh(L,t) + w?(L,t)

g } (t € [0,T]). (6.4)

where A\ = 22\;;;5’ in [0, L]. Let us introduce the change of variable

T

| Ve©

y = ¢(z) (= €0, L))

and define . . ~
@'(y) =w' (¢ Hy)  (yelo,L)i=1,2) (6.5)

where L = ¢(L). Then the Cauchy-Dirichlet problem (6.2) - (6.4) can be rewritten as

- . 1.~ ~ .
wtl — ; = §[€+)\(w1 — 2)]
s in Ry (6.6)
wi + by = S [L+ A" — @)
with initial conditions
. - 1, .
W' (y,0) = g = 5(’11)1(1/) + () .
2 3 (v € 0, 2) (6.7
W (y,0) = g = 5(’1171(1/) — g (y))

£.4) } (t € [0,T)) (6.8)

where Rp = (0,L) x (0,T) and

Uy, t) =€ Hy),1) . Ay) =)
Wo(y) = wo(¢ (y)) w1 (y) = w1 (¢ (y))

for y € [0, L] and t € [0, T]. We now define the metric space

w(T) = {(z*, 2% € (CX(Rr))?

2M(y,0) = #%(y, 0) = @} in [0, L]}
endowed with the metric induced by the norm

||(Zla 22)||W(T) = maX{HZlHol(RT)» ||Z2||01(RT)}-

Of course, W(T) is complete.
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Let (z',2%) € W(T) be given. Thanks to [7: Theorem 2.2], we can find a unique
(2%, 2?) € W(T) which solves the system

1.~ -
2 — 2y = §[€+)\(21—22)}
7+ = %[Z+ NG

in R and satisfies the initial and boundary conditions (6.7) - (6.8). Moreover, owing
to [7: Formulas (2.15) - (2.16)], there exists a positive constant C14, only depending on
||)\||CO([O,E])’ SIlCh that

||(Zl, Z2)||W(t)

< 014{(1 +1) |:||Zt||L1(0,t;C’0([O,I:])) +[1€(, 0)||00([o,i])] (6.10)
t
+ ||U~Jo||c2([o,i]) + ||?I’1||01([0,E]) + (1+ t)/o ||(51,52)||W(T)d7'}

for all t € [0,T]. Consider the mapping W : W(T) — W(T) defined by W(z!, 2%) =
(21, 2%). Taking advantage of estimate (6.10), we obtain

WL ) =W, 2) |4y ) < Cra1+1) / (21, 20) — (23, ) llw(ndr  (6.11)

for any ¢t € [0,T] and any (2], 22), (Z3,%3) € W(T). From here we deduce that W" is
a contraction of W(T) into itself for some n € N. Thus the generalized Contraction
Principle yields that W has a unique fixed point in W (T'), that is, there exists a unique
solution (@', w?) € C*(Rr) to the Cauchy-Dirichlet problem (6.6) - (6.8). This is clearly
equivalent to say that problem (3.33) - (3.35) admits a unique solution w € C?(Qr)
with p = ¢ = 0, by virtue of (6.1) and (6.5). Also, from (6.10) and the Gronwall lemma
we derive the bound

(@, &)1 (my) < C’15{(1 +1) [“Zt“Ll(O,t;C’O([O,E])) + 116, 0)||00([0,i])}

(6.12)
+ llwoll 2 (o, 77y + ||w1||cl([o,i])}

for all ¢ € [0, T], where Cis is a positive constant only depending on T and ||A]| 5o ([0.E])"
On account of (6.1), (6.5) and (6.9), from (6.12) we infer (3.36) with p = ¢ = 0.

For non-homogeneous boundary data we can arguing exactly as in [7: Theorem 2.4],
taking the compatibility conditions (3.29) - (3.32) into account.
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