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Abstract. We prove a global in time existence and uniqueness theorem for the identification
of a relaxation kernel h entering a hyperbolic integro-differential equation, related to a convex
cylinder with a smooth lateral surface, when the coefficient h is assumed to depend on time and
one space variable ## and general additional conditions are provided. A continuous depen-
dence result for the identification problem is also stated. Finally, a separate proof concerning
the existence and uniqueness of the solution to the related direct integro-differential problem
is also given in a suitable functional space. Moreover, the dependence of such a solution with
respect to the relaxation kernel is fully analysed.##
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1. Introduction

This paper is concerned with the identification of a unknown coefficient h (the relazation
coefficient, depending on time and one space variable) appearing in the following integro-
differential equation related to the convex cylinder Q = (0,£) X w C R”® (n > 2), w being
an open bounded convex set in R*~! of class C:!:

¢
Diu(t,z,y) + Au(t,z,y —I—/ht—s:vBu(s z,y) ds
0 (1.1)

t

+/th(t —s,2)Cu(s,z,y) ds = f(t,2,y)
0

for all (¢t,z,y) € [0,T] x €. Here
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A= —Dz [al,l(l')Da;]
n—1

— Y Dyfa1144(w,y)D ZD [a14i,1(2,y)Dy]

j=1

— (1.2)
- Z Dyz [a1+i71+j(.’17, y)Dyj] + al(aja y)Dw
ij=1
n—1
+ Z A1+j (z, y)Dyj + ao(z,y)
j=1
B = —Dy[b1,1(z,y)Dy)

n—1 n—1
- ZD [b1,145 (2, y) Dy,] ZDyz [b1+44,1(2, ) D)
j=1 i=1
n-l (1.3)
- Z Dy, [b1+i,1+j(m7 y)Dyj] +b1(z,y) Dy
i,j=1
n—1
+ Z bl—l—j(ma y)Dyj + bO(xa y)
j=1
n—1
C= Cl(xay)D:I:"' ch+j($’y)Dyj +CO($ay)' (14)
7j=1

We note that C is a linear (formal) first-order differential operator, while A and B are
two linear (formal) second-order operators with principal parts in divergence form. We
emphasize that the coefficient a; 1 in A depends on z only, instead of on the pair (z,y)
as in the general case. The operator A is uniformly elliptic, i.e.

alé)? < ) aij(x,y)éils < onl¢f (1.5)

,j=1

for all (z,y,&) € (0,£) X w x R™ where a; > 0 and a3 > 0 with o < ay are two given
constants.

We now prescribe the usual initial-boundary value conditions

uw(0,z,y) = up(x,y) ((:L‘, y) € Q) (1.6)
Dyu(0,z,y) = ui(z,y) ((:L‘, y) € Q) (1.7)
%(t,x,y) = g%(t,x,y) ((t,a:,y) € [0,T] x 89) (1.8)

where ug,u; : @ — R and uy : [0,7] x @ — R are given (smooth) functions and v4
denotes the conormal vector associated with A and €.
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To determine the relaxation coefficient h we assume that the two pieces of additional
information

Dlu(t,)|(x) = ot,x)  ((t,z) € [0,T] x (0,)) (1.9)
Ulu(t,-,-)] = ¥(t) (t € 10,77) (1.10)

are available where ® is a linear operator acting on the variable y only, while VU is a
linear functional acting on all the space variables. Examples of admissible ® and ¥ are

Bv](z) = / Az, y)o(e,y)dy (z € (0,0) (1.11)
] = /Q o(z, y)o(z, y) dedy (1.12)

where A : w — R and p: Q — R denote two (smooth) assigned functions.

We observe that our choice not to explicitly define operator ® and functional ¥
allows a large variety of applications, the actual choice of ® and ¥ being left to the
user. Then we observe that our data have to fulfil the consistency conditions

gTUi(-’IT, y) = Dig%(o, CE,y) ((_’L" y) c 8Q) (1.13)
Dip(0,z) = @u;](x) (z € [0,4]) (1.14)
DIy (0) = [u;] (1.15)
for j =1,2.
##

Remark 1.1. Further consistency conditions may occur in some specific cases (cf.
section 2, remark 2.1.).##

Finally, we observe that the determination of the relaxzation kernel h (depending on
time and one space variable, the axial one) is of interest in applied problems related to
stratified media. In this case the operators A, B and C often take the particular forms

n—1
A= =Dy, (al,l(yO)Dyo) - Z D,, (aiyj(yO)Dyj)
7,7=1
n—1 _
B=~ ) Dy (bi;(y0)Dy,)
4,j=0
n—1
C=- Z ¢j(yo) Dy,
1=0

where yo = z and D,, = D,.

The class of problems dealt with in this paper seems, at present, not to have been
widely investigated, in contrast to the case where the relaxation kernel depends on time,
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only (cf., e.g., [4 -6, 8,9, 14 - 16]). Therefore this paper wants to contribute to develop
the studies in this area. We observe that some related papers are [2, 11, 12]. In [2]
and [11] the authors deal with the problem of the diffusion of electromagnetic waves
in dispersive media and are concerned with the determination of a relaxation kernel
depending on time and one space variable. The same identification problem is treated
in [12], but relatively to stratified viscoelastic materials and specific assumptions on the
data.

#7We conclude this section by noting that Theorems 2.1 and 2.2 in section 2 report
the main results involving the identification problem. They are concerned with a global
existence and uniqueness result as well as a global continuous dependence result for the
solution (u,h) to the identification problem (1.1), (1.6) - (1.10). Furthermore, some
applications, related to the specific operator ® and functional ¥ defined by (1.11) and
(1.12), are reported in Section 6.

Finally, the well-posedness of the direct problem (1.1), (1.6) - (1.8) is ensured by
Theorem 4.2 in Section 4, which provides also the continuous dependence of the solution
u on the relaxation kernel h.##

2. The main result

We state in this section our ##global in time## existence and uniqueness results
related to problem (1.1), (1.6) - (1.10). For this purpose we assume that the coefficients
of our operators A, B and C enjoy, in addition to (1.5), also the properties

a1 € Cl’l([O,é]), Q. g, bi’j € 00,1(5)7 Qi 5 = Gj; (Z,] =2,..., n) (2.1)
Dgayj1 € C¥H(Q), DyDy,a1,j11 € L®(Q) G=1,....n—1) (2.2
aj, by, c; € L=(Q) (G=0,...,n).

Here C™1(0), O being an open bounded set in R?, denotes the subspace of all functions
in C™(0O) whose derivatives of order m can be extended to O by Lipschitz continuous
functions.

We now recall that the open set w is convex and assume that the operator ® and
the functional ¥ enjoy the properties

2

® e () LEHI(Q);HI(0,6) and Ue L*(Q)* (2.4)

@[hqj]_i h®[u] for all (h,u) € L*(0,£) x L*(Q) (2.5)

D[u](kl) = Blu(kL,)|(kL) for all u € L% (w, H(0,£)) (2.6)

D, ®[u](kf) = ®[Dyu](kl) + D¢ x[u(ks,-)], Poxr € L*(w)* @)
for all u € L?(w, H*(0,£)) and k = 0,1

A=A+ cﬁli +®, on H*(Q) #H4(2.8)##

8I/A
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&, € L(H?((0,0) x 0w); L2(0,£)), @5 € L(HY(Q); L3(0,£)) (2.9)

VA= \Ijlai + Uy on H(Q), U, € H2(0Q)*, Uy ec H'(Q)* (2.10)
va

where
A1 = —Dm[al,l(x)Dm] (211)

Moreover, £(X;Y), X* and H™(O) denote the Banach space of all linear bounded
operators between the Banach spaces X and Y, the dual space to X and the Sobolev
space of order m related to L?(0O), respectively.

Assume now that the data f,ug,u1,us, @, related to the identification problem
(1.1), (1.6) - (1.10), enjoy the properties

feW2H(0,T); L3A(Q)), wo € H*(Q), u, € H*(Q), ug e U*H(T,Q) (2.12)
Aug — £(0,-,-) € HY(Q), Dy(D2ug + Aguz) € W2((0,T); L*(Q)) (2.13)
0 e UHH(T,(0,2)), ¢ € WH0,T) (2.14)

where Ay denotes the principal part of the operator A (cf. (1.2)) and the Banach spaces
U*P(T,O), O being an open set in R?, are defined for any s € NN [2, +00) by

Us?(T,0) =
{ We2((0,T); L2(0)) N W*=12((0,T); H(0)) N W*=22((0,T); H*(©))  (2.15)
c*([0,T}; L*(0)) n C*=1([0, T]; H'(0)) N C*~2([0, T]; H*(0))

according as p € [1,400) or p = +00.
##

Remark 2.1. From assumptions (2.6), (2.7) we easily derive the chain of equalities

@[%(t,-,-)](kﬁ) —o[ - O (1, ke, (ko)
— an 1 (EOBDoult, K, (kD)
[Z a1145(kE,) Dy, ult, kL, )](ke) (2.16)

1,1(k€) Do ®lu(t, -, -)|(k€) — ax,1(k€) Dolu(t, -, -)] (kL)

n—1

[z a1 1+J kﬁ y (t, )] (M)

for t € [0,T] and k = 0,1. Observe that, if the vector valued function (a1 z2,...,a1,)
vanishes everywhere on {0, 4} x w and ® commutes with D, at z = kf (k = ) then
from (2.16) we easily deduce the consistency condition
@[%(t : -)} (kf) = a1 1(k€)Dyo(t, kf)  (t € [0,T];k=0,1) }
87/A I , T ) ’ ’ ’ (217)
ifa; ;=00n {0,/} xw (j =2,...,n) and & commutes with D, at x = k’.
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On the contrary, if (a1 2, ..., a1 ) does not coincide with the null function on {0, £} x w
or ® does not commute with D, at x = k£ (k = 0,1), then condition (2.16) prescribes
the values of two (known) functionals, related to ®, ® and the unknown u, on the bases
of the cylinder 2.

Finally, assume that ug satisfies the conditions##

mi(ug)(z) := |®[Cupl(z)| >m1 >0 (z€]0,4]) (2.18)
ma(ug) := V[J(ug)] # 0 (2.19)

for some constant m; > 0 where

Hun)(a.9) = (Buole.) - Gt Cunlern) ) exo (= [~ FEEE ).

Remark ##2.2.## According to properties (2.3) - (2.4) we easily get the equa-
tions

* ®[Buo](£)
P[Cuo](¢)

(I)[BUO]
(D[CUO]

D[ J (ug)](x) = exp < - / d§>¢(Bu0 - Cuo) (x)=0

0
for x € (0,£). Consequently, in order that assumption ##(2.19)## may be satisfied,
the functional ¥ must be linearly functionally independent of the operator ® in the
sense that there exists no functional A € L?(0,4)* with ¥ = A®. Otherwise, we should
get U[J(up)] = 0. In particular, when ® and ¥ admit the integral representations (1.11)
and (1.12), this means that no function p of the form p(z,y) = p1(z)A(z,y) is allowed.

Remark #+#2.3.## When ® admits the representation (1.11), a necessary con-
dition for assumption ##(2.18)## to be satisfied is that there exists no zq € [0, £] such
that A(zo,y) = 0 for any y € w.

#+#We can now state the two main results of this paper involving our identification
problem: a global existence and uniqueness theorem and the corresponding continuous
dependence result.#+#

Theorem 2.1. Let assumptions (1.5) and (2.1) —(2.10) be fulfilled. Assume further
that the data enjoy properties (2.12) — (2.14), fulfil the consistency conditions (1.13) —
(1.15), ##(2.17) ## and the inequalities ##(2.18) and (2.19).## Then problem (1.1),
(1.6) — (1.10) admits a unique solution (u,h) € U (T,Q) x WH1((0,T); H'(0,£)).
HHAHH

s

Theorem 2.2. Let (f;,uo j,u1,j, U2 5,95, %) (7 =1,2) be two siztuplets satisfying
properties (2.12) — (2.14), (2.18), (2.19) with

0<m < inf [m1(u071)(a:), ml(uog)(m)]

z€[0,£
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as well as consistency conditions (1.13) — (1.15), (2.17). Then the solutions (uj, h;)
corresponding to the data (fj, w0 j,u1 4, U2, 95,%;) (J = 1,2) satisfy the estimate

lua = u1llys. () + [lha = hillwri(o,1);H1 (0,0))

<C(T,m1,m2)||(f2 — f1,u0,2 — wo,1, 1,2 — U1,1,U2,2 — U2,1, P2 — @1, P2 — P1)||

(2.20)
where
0 < 2 < min (|m2(uo,1)l, [m2(uo2)|)
and
|”(f7 Ug, U1, U2, P, w)m
2
< fllweao,ryz2 ) + ) lujll 2 @)
jz:; (2.21)

+ llwallear (r.0) + | Auz — £(0, )| (0
+ || De(D7uz + Aug)lw21 0,1y L2 (9)) + l@llus (0,0 + 19w 0,1

Remark 2.4. To prove our existence and uniqueness result it is essential that
condition (2.18) should be satisfied. This explains why we have chosen a particular
non-smooth domain - a cylinder - instead of a general regular one. Indeed, assume
for a moment that our domain were smooth and of the form Q@ = (J, ¢ q w(z) with
Mp—1(w(z)) - 02 — 0 or z — ¢, m,,_1 denoting the (n — 1)-dimensional Lebesgue
measure.

We could replace condition (1.11) in a natural way with the following

Blo)(o) = | A dy (@€ 0.0)

In this case, for regular kernels A\, ®[v] would not be bounded away from 0 for any
function v. As a consequence, if we would want to deal with smooth domains, they
should be of barrel type, only. Moreover, such a choice would cause a remarkable
complication in the treatment of our identification problem (cf. assumption (2.7)).

Remark 2.5. Note that estimate (2.20) takes into account all the metric spaces
involved in conditions (2.12)-(2.14). Moreover, if m; and 9 are lower uniform bounds
for m1(ug) and mo(ug) as ug runs on the set of all admissible ug, (2.20) ensures that
the mapping data — solution is Lipschitz continuous when the set of data is provided
with the metrics induced by the norm in (2.21).

To conclude this section we observe that, because of its length, we are forced to
give only a very short outline of the proof of Theorem 2.2 (cf. the end of section 6).
However, we note that Theorem 2.2 could be proved following the same ideas as in the
proof of the existence and uniqueness Theorem 2.1. About the proof of the latter we
want to give here a short outline as well as some comments.

i) Section 3 will be devoted to transforming our original problem into an equivalent
one for a triplet (v, ko, k1), where v = Dyu. It will consist of an integro-differential
equation for v as well as of a fixed-point system for (ko, k1).
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iii)

i)
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This process will explain also the necessity of the additional condition (1.12), which,
at a first sight, might seem superfluous.

In section 4 we shall solve the (direct) integro-differential problem for v in a func-
tional space ensuring the maximal spatial regularity allowed in a non-smooth situa-
tion as ours is. For this purpose we recall that, according to the results in [7: Theo-
rem 3.2.1.3], the maximal spatial regularity for u, in a (general) convex cylinder, is
expressed by the membership in H?(€2). Moreover, some basic weighted estimates
will be proved. In particular they will establish the continuous dependence of v on
the relaxation kernel h.

In section 5 we will transform the problem for (v, ko, k1) in a system of operator
fixed-point equations for the pair (ko, k1). Such a system will be solved (in suitable
weighted spaces) using the Banach’s Contraction Principle.

Section 6 will be devoted to determining suitable conditions on the kernels A and p
in order the explicit operator ® and ¥ defined by (1.11) and (1.12) may satisfy the
basic conditions (2.4)-(2.10). ##

An equivalence result

Assume that (u, h) € U>(T, Q) x WHL((0,T); H*(0,£)) (cf. ##(2.15))#+# is a solu-
tion to the identification problem (1.1), (1.6) - (1.10) and introduce the new unknown
function

t
o(t,7,y) = Dult,zy) <  ult, ) = uo(z,y) + / o(s,0y)ds  (3.1)
0

Then the pair (v, h) € U (T, Q) xWH1((0,T); H'(0,£)) solves the following ##system
of equations##:

D}v(t,z,y) + Av(t, z,y)

¢
+/ h(t — s,z)Bv(s,z,y) ds
0

. (3.2)
+/ D h(t — s,2)Cu(s,x,y)ds
+D,h(t, z)Cug(x,y) + h(t, x) Bug(z,y) = Di f(t, x,y)
for (t,z,y) € [0,T] x Q) #HH#H#
’U(O,:C,y) =u1(x,y) ((m,y) € Q)
Dy (0,z,y) = —Aug(z,y) + f(0,2,9) ((z,y) € Q)
%(t,x, y) = Dtg%(t, z,y) ((t,x, y) € 10,T] x 8&2) (3.5)
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D, h(t, z)®[Cuol(z) + h(t, z)P[Buo)(z)

— —D3o(t,) - Didvplt,a) — &1 [Digo ()] (@)
— Oyfv(t,-)|(x) — /0 h(t — s,2)®[Buv(s,-)](z) ds (3.6)

- [ Dabie = s.0)0(Cu(s. (o) ds + 2D 1, ])
:= Ny (v, h)(t,x)
for (t,x) € [0, T] x (0,£) ##H#H#

U [Dyh(t, ) Cu) + T[h(t, ) Buo]

— —DR(t) — W1 [Diget(t,-, )]
ot )] — U [/Ot h(t — 5, ) Bu(s, ") ds} (3.7)

—v [/Ot Dyh(t —5,-)Cu(s, -, ") ds] LD f(L, )]
.= Na(v, h)(t)

for t € [0,T]. We note that equations (3.6) and (3.7) can be derived applying the
operator ® and the functional ¥ to both members in (3.2) and using assumptions
H(2.4) - (2.10). 44

Assume now that (v, h) € U2 (T, Q) x WH((0,T); H(0,£)) is a solution to prob-
lem (3.2) - (3.7) and introduce the function u € Y3 (T, Q) defined in (3.1). Owing to
consistency conditions (1.13), from (3.2) - (3.4) we immediately deduce that u solves
equations (1.1), (1.6) - (1.8). We integrate, then, with respect to ¢ equation (3.6) (where
we have set v = D;u) and use identity (2.8) and consistency conditions (1.13) - (1.15).
We get the equation

Dip(t,z) + ®[Au(t,-)](z) + /0 h(t — s, z)®[Bu(s,-)](z) ds
+/O D h(t — s,2)®[Cu(s,)](x) ds = ®[f(t,-)](x)

for (t,z) € [0,T] x (0,£). Apply now operator ® to both members in (1.1) and subtract
memberwise (3.8) from the equation just found. We easily get the equation

Di®[u(t,))(z) = Dip(t, ) (3.9)

for (t,x) € [0,T] x (0,£). Using conditions (1.6), (1.7) and (1.14), we deduce that u
satisfies the additional information (1.9). Performing similar computations, we can show
that u satisfies also equation (1.10). Summing up, we have shown that the identification
problems (1.1), (1.6) - (1.10) and (3.2) - (3.7) are equivalent.
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Setting ¢ = 0 in equations (3.6) and (3.7) we get the following (operator) differential
system for h(0,-):
D, h(0,z)@[Cuo)(z) + h(0, 2)P[Bug|(x)

## = — ##D}p(0,2) — Dy A19(0, z)
8’11,2

#t — 4 01 [D 2 (1)) (&) = Dafun)(z) + (D0, )](x) = r(x)(3.10)

U[D,h(0,)Cug + h(0, ) Bug]
8’1,&2

Ova

Integrating the differential equation in ##(3.10),## we obtain the following general
integral depending on an arbitrary constant ¢ (cf. assumption ##(2.18)):##

oo [ 225400

= —D}1p(0) = U1 [ Dy 2 (0,,-)| = Walur] + WD, f(0,-, )] (3.11)

(3.12)
© o [%®[Bug)(€) £1(n)
+/0 "‘Xp( /n B[Cuo)(6) df) 3[Cuol(6)
where 5
b(x) = = D}p(0,2) = DeArp(0,2) — #1[Dy 5 2(0.)] (2) 5.13)

— ®afus](z) + [D: £(0,-)](x)

for z € [0,4]. Substituting this representation of h(0,-) into ##(3.11)## and using
condition ##(2.19),## we can easily compute ¢ as

¢ = [ma(uo)] ™"

U9 .14
| - vt - D) - 0 [P 0,] - ot + wipeso 0} Y
where
Cug(z, ) ®[Bug)(x)
00 = ey te) + (Bte) - GigiticiOmtan) 515
| .

Con [ [ 2[Buol(€) ) t(n
<[ o (- [ Seu ) wicugm
for (z,y) € Q). Hence, from #+#(3.12) and (3.14)## we derive the initial value for
h(oa)

1(0.2) = lma ()] - 9lta] - DFU(0) ~ 12 [Deg 2 0,
e[ 0)

v e ( - / i{ﬁ’;‘}ég dg) @[élég])(m o
=: ho(z)
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Introduce then the new unknowns

ko(t) = h(t,0) B z -
bu(t. ) = Dohlt, x)} — h(t,z) = ko(t) + / ko(t,€) de = H(k)(t,z)  (3.17)

0

for (t,z) € [0, T] x (0, £).

Remark 3.1. Since h(0, ) = ho, we immediately derive the initial conditions

ko(0) = ho(0) } (318)

k‘l(O, ) == tho

These conditions, in turn, implies the equation H(k)(0,-) = ho.

We use now definitions ##(3.17)## and solve system (3.6) - (3.7) for k = (ko, k1) in
terms of the right-hand sides (N1 (v, H(k)), N2(v, H(k))). Explicitly, we get the system

k1 (t, 2)®[Cup](z) + ®[Bup)(x)1 * k1(t, x)
= —ko(t)®[Bug|(x) + N1(v, H(k))(t, z) (3.19)
Uky(t,-)Cuo] + C[(1 * k1) (¢, -) Buo] + ko(t)¥[Buo] = Na(v, H(k))(t)  (3.20)

for t € [0,T] and z € (0,¢) where we have set

1k bt 7) = /O Cka(t€) de. (3.21)

First we consider the integral equation
k1(t, ) ®[Cup)(z) + ®[Bugl(xz)1 * k1(t, z) = f(t, ) (3.22)
f being a prescribed function in L'((0,T) x (0,€)). Since ug satisfies ##(2.18)##
and 1 * k1(¢,0) = 0 for any ¢t € [0,T], integrating the first-order differential equation
#7£(3.22)#+# for 1 x k1, we get the simple integral equation
1xki(t,x) = Lf(t, x) (3.23)

the linear operator L being defined by

[T ([T RBut) ) (8
L) = | p( /g @[Cuo](md)@[cw(s) - (3.24)

A direct inspection shows that function k; defined by

by (tz) . 1 ®[Bug)(x)

Wf t,z) — WLf(t, x) (3.25)
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on [0,T] x (0,£) satisfies ##/(3.23)## and solves the integral equation ##(3.22).##
From ##(3.19) and (3.25)#+# we easily deduce that k; solves the equation

by (tz) ®[Buo)(z)

) = ko(ﬂw{[/q’wuo](ﬁ) — 1} + N3(v, k)(t, 2) (3-26)

on [0,T] x (0,4) where

1
Ns(v, k)t %) = Frmnot@) (3.27)

x {Nl (v, H(k))(t, ) — ®[Buo)(x) LN (v, H(k))(t, x)}.

Consequently, recalling the formulas

1 — L®[Bug)(z) = exp (- /0 ’ g{ggﬂ Eg dr)

1+ (e Bl - 1)@ = 1+ (- [* G0 )

for z € [0, £] from #+#(3.20) and (3.26)## it is easy to derive that kg solves the equation
(cf. #4:(2.18) - (2.19)):#4#

ko(t)mz(’u,()) = — \IJ[Ng(’U, k)(t, )CUO]
— W[ % Na(v, k) (¢, ) Bug] + No(v, H(k))()  (t€[0,T])  (3.28)
:= Ny(v, k)(t).

From property #+#(2.19)## and equations ##(3.26) and (3.28)## we conclude that
the pair (ko, k1) solves the fixed point system

Folt) = ma(uo)~ Na(v, K)(t) = N (v, k)(¢) } (3.29)

k1(t,z) = J1(uo)(x)Ns(v, k)(t) + N3(v, k)(t,x) := Ng(v, k)(t, x)

for t € [0,T] and z € (0,£) where

@[Bus () " 2ABuol(©)
J1(uo)(z) = " ®[Cug)(z) exp (_/0 @[Cugl(§) d£>'
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4. Estimates for the direct wave problem

In this section first we consider the hyperbolic direct problem

Div(t, z,y) + Aov(t, z,y) = f(t,z,y) (tz,y) €0, T] x Q) )
v(0,z,y) = vo(,y) (z,y) € Q)
Dy (0,2, y) = v1(z,y) ((z,y) € Q) ; (4.1)
818/20 (t,z,y) = 88;);0 (t,z,y) ((t,z,y) € [0,T] x 0R2) J

where ## Ao## denotes the principal part of operator A (cf. (1.2)). As far as the data
are concerned, we make the assumptions

vo € H*(Q), v € H'(Q), vy € U>>(T,Q) (42)
D}vy + Agva, [ € WH((0,T); L*(2)). ‘
Moreover, functions vy and v, have to satisfy the consistency conditions
81}0 8’02
— 0, 012). 4.3
v, B =502y ((z.y) € 09) (4.3)

Before stating Theorem 4.1 we introduce yet the notation

= |[v]l &+ () (s eN).

lv

Theorem 4.1. Under assumptions (4.2) — (4.3) the direct problem (4.1) admits a
unique solution v = Lo(f)+L1(vo, v1,v2) € UP®(T, Q) (¢f. ##(2.15)),## where Lo(f)
and Ly (vg, v1,v3) solve problem (4.1) with (vg,v1,v2) = (0,0,0) and f = 0, respectively.
Moreover, the linear operators Ly and Ly satisfy the estimate

IDZLo(f) (¢, - Lo(f)(,-,")
+ [ Lo(f )( M2, + 1D Ll(vo,vhvz)( o,
+ || D¢ L1 (vo, v1,v2) (2, -, *) (vo, v1,v2)(t, ) ||2,0 (4.4)

< Cl(T){||f||W111((0,t);L2(Q)) £, )llo,@ + [[vollz,0 + llvr]l1,0

+ [[o2(t, ) luz.oo t,0) + [1DFv2 + Agvallwra (0,0, L2(Q))}

for any t € (0,T]. Here ¢y denotes a positive, continuous and non-decreasing function
of T, depending also on £ and w.

Proof. Assume that v € U?°°(T,Q) is a solution to problem (4.1). Then the
function z = v — vy solves problem (4.1) with (f,vg,v1,v2) replaced by (f,vo,v1,0),
where _

f:f—Dt2U2—A0U2
vo = vo — v2(0, ),

V1 = V1 — Dt’U2 (0, )
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We note that the quadruplet (f, 20, 21, 0) fulfils properties (4.2) - (4.3) with v = 0. An
application of the Faedo-Galerkin approximation method leads to the following integral
inequality for the approximating sequence {z,, }, where the positive constant co depends

on a; and ag only (cf. (1.5)) while the two sequences {2, } and {z1,,} approximate
vo and vy in H'(Q) and L?(£2), respectively:

1Dtz (t, ) I6,0 + 12m (t, ) IE 0

< CZ{”Zl,m”g,Q + llzomlli o (4.5)

?’Q) 2 dS}

v2 [ 1 Moa(IDezn s,

6.0 + lzm (s, )|

for a.e. t € (0,T) and all m € N.
We now consider the following simple variant of [1: Theorem 4.9].

Lemma 4.1. Let ¢ be a non-negative C([0, T])-function, and let b and k be non-
negative L1 (0, T)-functions satisfying

o(t) <a +/O b(s)p(s)ds -I—/O k(s)p(s)Pds (t€0,T])

where p € (0,1) and a > 0 are given constants. Then for all t € [0,T]

o) < oo ([ o06)05)

y [al_p +(1-p) /Ot k(s) exp ((p _1) /0 b(o) da) ds} =

;From (4.5) - (4.6) (with (p,b) = (%,0)) we easily obtain the estimate

27
5" d
u9+(A|vw>m@s

for a.e. t € (0,T). According to this estimate, [3: Theorem 3.4.1] and [17: Corollary
to Theorem 1 in Chaper 5, Appendix] we can select a subsequence in {z,,}13 (still
denoted by {2z, }:-%°,) and a function z € W1 >°((0,T); L2(Q))NL>((0,T); H(2)) such
that

(4.6)

1Dz (8, )15 @ + lzm (8, )17

< 2¢omax (1, 02){||z1,m||3,9 + [20,m

Zm — 2z weakly * in L®((0,T); H'(2))
Dz — Dz weakly * in L=((0,T); L*()).

In particular, from these convergences we deduce that z satisfies a similar estimate with

the same constant 2cy max (1, ¢z).

Following the same procedure as in [3: Chapter 3/Theorem 4.1] we can prove that z
is the unique weak solution to problem (4.1) in L ((0, T); H*(Q))NW 12 ((0,T); L?(Q2)).
Moreover, a regularity procedure as in [10: Theorem 3.8.2] shows that z actually belongs
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to UL°°(T, Q). Then, reasoning as in [10: Theorem 5.2.1] (cf. also [13: Theorem 30.4])
we conclude that z belongs to U%>°(T, ) and satisfies

IDE2(t, )60 + 1Dez(t, )l o + l2(4 )i 0

= ~ ) (4.7)
< C3(T){“f“Wlal((O,t);L?(Q)) + [1£(0, )] 1,9}
for all t € [0,T] where the positive constant cs is a non-decreasing and continuous
function of T', depending also on £ and w. Consequently, z turns out to be a strong
solution to problem (4.1). In particular, Agz € C([0,T]; L*(2)) and satisfies

(2),9 + o]

2.0+ lI91]

[Aoz(t, ) [lo,0
< e 1 Fllwe 2002 + 170, )]

1 Q} (4.8)

for all t € [0,T]. Since Q = (0,4) x w is convex and Agz + z € C([0,T]; L?(Q2)), from
[7: Theorem 3.2.1.3] we deduce that z belongs to C([0,T]; H?(Q2)) and satisfies the
estimates

0,0+ |[voll2, + ||v1]

12(2, 2,0 < esllAoz(t, ) + 2(t:)llo.o < cs(|Aoz(, )0, + |2(2; o) (4.9)

for all t € [0, T], the constant c5 > 0 depending only on £ and w.

Finally, from the equation v = w+ v, we conclude that v belongs to Y% (T, ) and
solves problem (4.1). Moreover, v admits the representation v = Lo(f) + L1 (v, v1,v2)
and, owing to estimates (4.7) - (4.9), the linear operators Ly and L, satisfy (4.4). We
conclude by observing that Lo(f) and L (vg, v1, v2) solve problem (4.1) with (vg, v1, v2)
= (0,0,0) and f = 0, respectively B

We are now in a position to solve our direct integro-differential problem (3.2) - (3.5),
which we rewrite in the form

Div(t, z,y) + Aov(t,z,y) = M (v, h)(t, z,y) + Di f (t, 2, y) (4.10)

for all (¢,z,y) € [0,T] x Q with

v(0,2,y) = u1(z,y) ((z,y) € Q)
Div(0,z,y) = —Auo(z,y) + (0,2, 9) ((z,y) € Q) (4.11)
O (t,,9) = D (t,,) ((t:,9) € [0,T] x 09).
VA, VA,

Operator M is defined by ##(cf. (3.2))#+#
t
M(Ua h)(ta Z, y) = _ASIU(ta €z, y) - / h(t - S, .’E)B’U(S, Z, y) ds
0
t
- / D h(t — s,2)Cv(s,z,y)ds (4.12)
0

— Dyh(t,x)Cuo(x,y) — h(t,2) Bug(z, y).
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##where

n—1

A5 = a'l(xvy)Da: + Z a'l-l-j(xa y)DyJ + aO('Ta y)

j=1

## We then introduce the complete metric spaces of admissible unknowns v and kernels
h

V(A\T) = {'v € UP®(T,Q) : v satisfies ##(4.11)##}

(4.13)

H\T) = {h e W ((0,T); HY0,£)) : h(0,-) = ho}

for all A € Ry . Here U™ (T, ) and W3 ((0,T); H'(0,£)) (s € N) denote the weighted
Banach spaces obtained from U%>° (T, Q) (cf. #4#(2.15))## and W*1((0,T); H(0, 7))

by introducing the weight function ##t — e~ .## For instance, the norm in wy ’1((0, T); X) ,I
X being any Banach space, is defined by

||u||W;’1((0,T);X) = Z ”u(j)||L1((O,T);X;e—>\tdt) = Z ||U(j)||L;((o,T);X)-
=0 =0

Remark 4.1. It is immediate to check that the weighted norm above is equivalent
to the usual one. Moreover, we observe that, for any pair (v, h) € V(A,T) X H(A, T), the
initial value of M (v, h) is independent of (v, h): in fact (cf. ##(3.16)),#+# it is given
by

M(Uv h)(ov xz, y) = —A5’U,1(SC, y) - thO(x)CUO(xa y) - hO(x)BUO(xa y)

- 4.14
= M(uo,ul,ho)(ﬂ?;y) ( )

for all (z,y) € Q.

Lemma 4.2. Operator M maps V(\,T) x H(\, T) into Wy ((0,T); L*(2)) and
satisfies the following estimates for any p € [1,+oc], where cg and c; are continuous and
non-decreasing functions of the norms in L>°(Q2) of the coefficients a; (j =0,...,n):

|M (v, h) ”W}l\’p((O,T);L?(Q))
(4.15)
< 66(1 + [[holl 2 (0,6) + [lwoll 2 (@) + ||h||W;,1((o,T);H1(o,e))) ||’U||L{)2\”’(T,Q)

for all (v,h) € VN, T) x H(A,T) and
||M(’l)2, h2) — M(’Ul, hl)”Wi*”((O,T);L%Q))

<cy (1 + |[holl &1 (0,e) + w0l 72 (0)
2
+ Z ”hi||W>1\’1((0,T);H1(0,f))> [va = v1lly2r (7,0
zzl
+) [illy2 g0y l1P2 = Pallw 21 (0,187 0,09)

=1
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for all (va, h2), (v1,h1) € VN, T) x H(A,T).

Proof. First we observe that, according to assumptions (2.1) - (2.3), ##(2.12) -
(2.14)## and ##(2.19)#+# function hg defined by #+#(3.16)## belongs to H*(0, £).
Then we note that the properties stated in the lemma are implied by definition (4.12),
Young’s theorem on convolutions and by the formula

DM (v, h)(t, z,y)

t
= —AsD(t,z,y) — / D.h(t — s,z)Bv(s,z,y) ds
0

¢
— ho(z)Bo(t,z,y) — / DD, h(t — s,z)Cu(s,z,y)ds

0
— Dyho(z)Cu(t, z,y) — D¢ Dyh(t, x)Cug(x,y) — Dih(t, z)Bug(z, y)

for all t € (0,T) and all (v,h) € V(T,A) x H(T,\). For this purpose we need the
###following estimates which rely on the well-known continuous embeddings L*°(0, ) -
L%(0,£) = L2(0,¢) (- denotes pointwise multiplication) and H(0,£) < L (0, £);##

lgfllz2) < llgllze,0)llfllz2@) < cro(@)lgllmr 0,0l fll2 ) F#HH(4.16)#H#

for all f € L2(Q) and all g € H((0,£)), and

1
2

lof e < ||g||L2<o,@( JAII dy)

2 (4.17)
< clow)ngnm(o,@( / ||f(-,y)||§p(o,e)d?/>

< 109l z20,0) 1 | 22 (w1 (0,))

for all f € L?(w; H*(0,£)) and all g € L%(0, ¢).
##Performing standard, but boring computations, which take into account that con-
volutions commute with functions t — e~*!, we easily derive the assertion.## B

We are now in a position to solve our direct integro-differential problem. For this
purpose we introduce the normed space G related to our data by
(£, w0, w1, up) € WHH((0,T); L*(Q)) x H(Q) x H*(Q) x U (T, Q) :
G =< Aug— £(0,-,-) € HY(Q), Dy(D?uy + Aguz) € WL((0,T); L*(Q)) (4.18)

(f, uo, u1,u2) satisfies consistency conditions (1.13)

The norm in G is defined by

| (fs w0, w1, u2)|lg = || fllw21(0,7):220)) + ##l woll 72 ) + w1 || 2 ) ##
+ [luzllean .0y + | Auo — £(0, -, )|z ()
+ | De(D}ug + Aguz) w21 (0,1);22(2) -
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Remark 4.2. It is immediate to check that G is actually a Banach space.

Theorem 4.2. For any h € H(A\,T) and any quadruplet (f,uo,u1,usz) € G there
erist two positive, continuous and non-decreasing functions c19 and c11 such that for
any

A > max (¢o(T), e0(T)) (1 + (£, w0, ur, w)lg + bl oy oey) — (419)

problem (4.10) — (4.11) admits a unique solution v = V (k) € Uy (T, ). Moreover, the
nonlinear operator V satisfies the following estimates for any p € [1,+0o0], where c11
and c12 denote positive, continuous and non-decreasing functions:

IV )l .0
-1 -1
< [1= o) (14 10,0, w1, w0 lg + Wl omymmn0) A (4:20)
X A5 e (1) (1 + 107, wo, ur, uz)l ) 1, o, ua, u2) g
for all h € H(A,T) and

IV (h2) =V (h)lly2» (1,0

<\ Pcm(T) [1 — max (co(T), c10(T))A ™
(4.21)

-1
(1 + |[(f, o, w1, u2)llg + 12a<X2 | ||W1 1((0,T);H1(0,£)))]

X (1 + ||(f7 Up, U1, U2)||g) ||(f7 U, U1, U2)||Q||h2 - hl”W)l\’l((O,T);Hl(O,E))
for all hy,hy € H(X,T). The latter estimate holds if A satisfies ##(4.19),## with
||h||W1 L((0,T): H(0,0)) replaced ##with## 1max || ||W1 L((0,T):H (0,8))"

#7# Remark 4.3. According to remark 4.1 we easily conclude that the direct
problem (4.10), (4.11) is uniquely solvable and its solution v belongs to the (non-
weighted) space U?P(T,Q) and depends continuously on the relaxation kernel h €
W11((0,T); H'(0,£)). The same technique used here would allow to solve the direct
problem (1.1), (1.6) - (1.8) in the same space U?P(T,2) under the simpler assumption
h € L*((0,T); H'(0,£)), since in this case no preliminary differentiation with respect to
t is needed.##

Proof. First we note that the quadruplet
(M(U7 h) + -th7 Uy, _AU’O + f(07 ) ')7 Dtu2)

relative to problem (4.10) - (4.11) satisfies consistency condition (4.3) for any pair
(v,h) € V(N T) x H(A, T) by virtue of conditions (1.13) and formula (4.14). Hence, the
integro-differential problem (4.10) - (4.11) is equivalent to the fixed-point equation

v = Lo(M (v, h)) + {Lo(D¢f) + L1 (u1, £(0,) — Aug, Dyus) }

= M(v, h) +w. (4.22)
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We note that, according to Theorem 4.1, M(v, h) + w belongs to V(A,T) for any pair
(v,h) € VA, T) x H(N,T). Moreover, from Lemma 4.2 and estimate (4.4) we easily
deduce the following inequalities for any p € [1, +o0]:

[ M(v2, ha) = My, hl)”ui’p(T,Q)

e S IDIM(va, ha) (8 ) = DIM (w1, 1)t | oy o
(2)

=0

L?(0,T)
< Cl(T)H [/Ote_’\(t_s)e_’\s(HM(Uzy h2)(s,) = M(v1, h1)(s, ')HL2(Q)

+ || DeM (va, h2)(s, ) — DM (vy, hi)(s, ) HLQ(m)dS} (4.23)

Lr(0,T)
< e (T)AH|M (va, ha) — M (01, hy) HWi’p((O,T);L2(Q))

< eaoA | (14 10 w0l + g sl o0

x o2 — ”1||ui*’°<T,m + 22 IITJz'Ilui»I’(T,Q)”h2 - hl”W;*l((o,T);Hl(o,E))]

for all (vg, ha), (v1,h1) € VA, T) x H(N\,T), c10 being a positive, continuous and non-
decreasing function. From estimates ##(4.23)#+# with p = +o00 we conclude that, for
any fixed h € H(A,T), the operator v — M(v,h) + w maps V(A, T) into itself and is
a contraction mapping for any A satisfying #+#(4.19).## Consequently, an application
of Banach’s fixed-point theorem ensures that equation ##(4.22)## admits a unique
##£global in time## solution v = V (h, f, ug, u1,us2) := V(h).

In order to derive estimate #+#/(4.21)## we consider the following inequalities,
where we make use of identity (4.14):

M (o, h)”ui’P(T,Q)

[z D7 Mot o)

=0

<o) [ [ 0o (116016 oo

L (0,T)

- (4.24)
+ [[DeM (v, h)(s, ')||L2(Q))d5 + e || M (uo, ua, h0)||L2(Q)]

L?(0,T)
— -1, =
S C]_ (T)A 1||M(’U, h)||Wi’p((0,T);L2(Q)) + C]_ (T) (pA) p ||M(’U,0, ’U,]_, h0)||L2(Q)
< CQ(T))\_l (1 + [|(f, w0, u1, u2)llg + ||h||W;11((0,T);H1(0,e)) ”U”L{i"’o(T,Q)
_1
+ers(T)A7 (1 + [|(f, wo, u, u2)llg) | (f, wo, ur, us)llg

for all (v,h) € V(A\,T) x H(A,T), c13 being a positive, continuous and non-decreasing
function. From #+#(4.19), (4.22), (4.24)#+# and the equation

V(h) = M(V(R), h) +w (4.25)
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we easily derive estimate ##(4.20).## In fact, for any p € [1, +00] we have

3=

2
. _1
(E ||wa||1£§((0,T);H2—J(Q))) < (@A) Fllwliyz»z.0)
§=0

< e (T)(pN) ™7 || (f, wo, ua, us)llg

for all (f,uo,u1,u2) € G. Finally, we observe that estimate ##(4.21)## follows from
the equation

(4.26)

V(h2) = V(h1) = M(V (h2), ha) — M(V (1), h1)
and the relationships ##(4.20), (4.23) and (4.24)## 1

5. Solving the identification problem (3.2) - (3.7)
In this section ##first we introduce the complete metric space##

COunT) = { k = (ko, k1) € Wy (0,T) x Wy H((0,T); L*(0,)) : }
||k0||W;’1(O,T) + ”kl”W;‘l((O,T);L?(O,E)) s
for A € Ry and r € Ry U {+oo} and the ##non-linear operator##
W (k) = W (k, f,uo,u1,uz) := V(H (), f, uo, u1, u2).
We recall that W (k) solves the operator equation (cf. ##(4.25) and (3.17))##
W(k) =MW (k),H(k))+ w. (5.1)

Assume now that k = (ko, k1) € Wy''(0,T) x W, ((0,T); L*(0,£)) is a solution to
problem ##(3.29). #+# In particular, k belongs to (A, 7, T) for any fixed positive
r and any large enough A. It is then an easy task to check that such a k solves the
following fixed-point problem, equivalent to ##(3.29),##

ke KA7rT) )
ko(t) = Ns(W (k), k)(t) = Ns (M(W (k), H(k)) +w, k) ()
:= N5 (k)(t) > (5.2)
ki(t,z) = Ne(W (k),k)(t,z) = Ne(M(W (k), H(k)) + w, k) (¢, z)
= Ng(k)(t, ) )

for all t € [0,7] and z € x(0,¢). Moreover, we introduce the nonlinear operators (cf.

(3.6) - (3.7) and ##(3.27) - (3.28))##

- {Nj (M(W (k),H(k)) +w, H(k)) for j=1,2

Ni(k) = N; (MW (k), H(k)) + w, k) for j =3,4,5,6. (5:3)

We begin by estimating operator H defined in ##(3.17).##
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Lemma 5.1. Operator H maps continuously Wi’l(O,T) X W;’l((O,T);L2(0,€))
into W;’l((O,T); H'Y(0,4)) and satisfies the estimate
|| H (Ko, kl)”W)l\’l((o,T);Hl(O,K))
1 1
< & kollw o,y + L+ )2 IRl 01y:2200,00)
Proof. It is an immediate consequence of definition ##(3.17)## 1
We introduce now the bilinear operators B and C defined on

UP™® (T, Q) x Wyl ((0,T); H'(0,£))

(cf. (4.13)) by
B(v, h)(t,z,y) = /0 h(t — s,z)Bv(s,z,y) ds

t
C(v, h)(t,z,y) = / D.h(t —s,z)Cu(s,z,y)ds.
0
Lemma 5.2. The integral operators B and C are continuous from
L3((0,T); H () x Wy ((0,T); H'(0,£)) — Wy ((0,T); L*(Q)).
Moreover, the estimates

1D} B(v, h) 2 ((0,7);L2(2))
< C14{##j##||h(0a MNzco,e) + ||h||W>J\"1((O,T);H1(O,€))}”U”Ll((o T);H?(Q))
IDiC(v, Ml Ls 0.7):22 (@)

< 615{##]##||th( a')||L2(0,£) + ”h’“W;’l((O,T);Hl(O,Z))}HUHLI((U T);H?*(2)) )

(5.4)

hold true for j = 0,1 where c14 and c15 depend only on the norms in L () of the
coefficients b; j,b;, by and c;,co, respectively.

Proof. From the formulas
t
DzB('u,h)(t,m,y) #H#j#7#h(0,z)Bo(t, z,y +/DJh (t — s,x)Bu(s,z,y)ds
0

where j = 0,1 we deduce the estimates
1D B(v, h)(t, -, )220

< IBlle(mz(9);22(0)) {##J‘##Hh(O, Mre.)llvt; - )l 2o

/ ID{R(t = 5, )| Loe(0,0lv(s: -, )l 2 ds}
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for all ¢ € [0, T] which immediately imply (5.4);. Likewise, from
t
0

where j = 0,1 and from ##(4.16) and (4.17)#+# we deduce

IDC(v, h) (¢, )l z2(o)
< F##JH#H#] Deh(0, )| 220,00 [|CV (2, -5 ) 51 (92

t -
+ /0 ||Dtih(t — S, ')“L?((O,E)) ||C’U(S, ) )”HI(Q) ds

for all t € [0, T] which easily imply (5.4)2
JFrom now on we shall assume that our data belong the following metric space
D(p) (p € Ry) related to the space G defined by ##(4.18):##
(f; w0, ur, uz, 0,9) € G x UMH(T, (0,£)) x WHH(0,T) :

D(p) = (f,uo,u1,us, @, ) satisfies #+#(1.13) — (1.15) and (2.17)##
|(f, wo, w1, u2)llg + @l (r,0,0) + 1¥llwar o,y < p

(From the definition ##(3.16)#+# of hy and property #+#/(2.18)## we immediately
derive the estimate

lholl e (0,e) < my cie(p)

for all (f, uo,u1,us, @,%) € D(p), c16 being a continuous and non-decreasing function.
Consequently, from ##(4.26)## with p = 1 we derive

2

D IDjwliLy o,ryzr-s (@) < ea(T)pA™ (5.5)
i=0

for all (f7 Up, U1, U2, P, ’P) € D(p)
Lemma 5.3. Let (f, ug,u1,us, 9, %) € D(p) and let

A > max (co(T),c10(T)) [1 + p + c17(€)r] (5.6)

where ¢17(£) = max (£2, (1 + £3)2). Then operators j\7j (j = 1,2) defined by (5.3)1
satisfy the following estimates for any k, k', k* € K(\,r,T) and j = 1,2:

N‘ k —Q; [e%) <A_lc )‘_177.;T7
195 (k) = Byllineoiy < A eas( /) } (5.7

IN; (k) — Nj (") lica,00,m) < A ero(A 07, T, p) 162 = Kl
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where

8U2 )

B1(t,2) = ~Dio(t.2) - Didrp(t,z) — @1 [Di 572 (1,)] (2)
= ®afu(t,))(@) + SDS (1, )(@)

9 ’ (5.8)
Ba(t) = ~D}b(t) ~ 01 | Do 2 )]
_\112[,“)( 7"')]+\Il[Dt ( "7')] J

for allt € [0,T] and x € (0,£). The functions c1g and c19 are non-negative, continuous
and non-decreasing in each of their arguments.

Proof. First we notice that from estimates ##(4.20), (4.21), (4.23), (4.24)#+# and
definition (5.1) we easily derive the following estimates for any A satisfying (5.6) and

any (f, uo, u1,uz,p,%) € D(p):
MW (), H(R)) 2.1 .0
< eo() (14 o+ IHB w11 oyt 0,0) A IW Bz,
+ c14(T)p(L + p) (5.9)
<A1+ p){enn (Teo(T) (1+ p+ err (€)r)

< [1— @)1+ ptar®nA ] +eu®)
and

| MW (), H(K) — MW (R, H(E))|

U\ (r,Q)
< e[ (14 p+ max IH (k) s o,y 0.))
X ||W(k2) - W(kl)”ui’l(T,Q)

+ max |W (k i)”uivl(T,Q)”H(k2) - H(kl)||W;*1((0,T);H1(0,£))} (5.10)

< co(T)ATH|k? — kl“lc(/\,r,T){ClZ(T) (1+ p+ cir(@)r)err(€) (1 + p)p
« [1 = max (ea(T), (DA (L4 p+ ear(O)r)]

Fen@[1- @+ pt+ar®nr] @+ o)

for all k, k', k? € K(A\,7,T). Consider now the following equations (cf. (5.3)1), where
functions ¢, and @ are defined by (5.8):

Ni(k)(t,2) = Gu(t, @) — D [M(W (k), H(K)) (¢, )] (2)
— @[B(M(W (k), H(k)))(t, )] (x)
— [C(M(W (k), H(K)))(t,")] (=) (5.11)
— ®[B(w, H(k))(t,)](z) — ®[C(w, H(K))(¢,")] (z)
t,x

=: g1(t, ) + Ny (k) (1, 2)
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and

]\72(k)(t) = 62(75) — Wy [B(M(W(k)’ H(k))(t7 " )}

[
— wC(MW (), HE)) ()] (5.12)
[

for all t € [0, T] and all z € (0,£), ##as well as the identity##
I[E(M(W (k*), H(k*)), H(K?))] — TI[E (MW (k'), H(K")), H(k"))]
= H[é’ (M(W(k2), H(k?) — M(W(E'), H(k")), HW))} (5.13)
+ 11 (MWD, H(EY), HE) — H()) |
for all IT € {®, P2, ¥, Uy} and € € {B,C,Z}, T denoting the identity operator. Finally,

from ##(5.9) - (5.13),## (5.5), Lemma 5.2 and assumptions (2.4) and ##(2.8) -
(2.10)## we easily derive estimates (5.7)

Lemma 5.4. For any T € Ry the operator L defined by ##(3.24) ## belongs to
L(W(0,T): L2(0,); W (0, T); HY(0,4)))

and its norm does not exceed c20(p,m1‘1), coo being a continuous and non-decreasing
function in each of its arguments.

Proof. It immediately follows from definition ##(3.24)## 1

Lemma 5.5. The operators Nj (j = 3,4,5,6) defined by (5.3)2 satisfy the esti-
mates

INV; (k) = @5llc sy < A eao(A 7, T, p) } (5.14)
IV; (B%) = Nj (B[l a,00,m) < A rear W87, T, p) I = B lcoa ey

for all k, k', k* € K(\,r, T) ##with##

1 — -
P3(t, ) = W{Wl(ta z) — ®[Buol(z)Lo1(t, )}
Pa(t) = —VU[ps3(t,)Cuo] — V[1 * p3(t,-) Buo] + $2(t) \ (5.15)
@5 (t) = ma(uo) ™ @a(t)
P6(t, z) = Ji(uo)(x)ps(t) + p3(t, x). J

The functions cog and ca1 are non-negative, continuous and non-decreasing in each of
their arguments.
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Proof. From definitions (5.3)2, ##(3.27) - (3.29)## we easily deduce the following
relationships, where ¢ € [0, 7] and = € (0,£) (cf. ##(5.11) - (5.12) and (5.15)##):

)

Ny (v, k)(t, 2) = §a(t,2) + 5 {N2(k)(t, %) — ®[Buo)(z)LN: (k) (t, )}

1

N[Cuo](a:)
= (Eg(t, .’L’) + Ng(k) (t, .’L’)

Ny(k)(t) = @alt) — O[No(k)(t,-)Cuo] — U1 % No(k)(t,-) Buo] + Ng(k)(t)

~ ’
=: @4(t) + N1o(k)(t)
N5 (k) (t) = a(t) + ma(uo) " Nuo (k) (t) := Ps(t) + Nux (k) (2)
Ne (k) (t, z) = J1(uo) () N11 (k) (t) + No(k)(t, z). )

Finally, from these relationships, equations Nj(k) — @ = ]V6+j(k) (j = 1,2) and
Lemmas 5.1 - 5.4 we easily derive estimates (5.14) B

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. From ##definitions (5.8) and (5.15) and estimates (4.16)
and (4.17)#+# we easily deduce that functions @1, 93, s and @2, P4, p5 belong to
W, ((0,T); L2(0,£)) and W,''(0,T), respectively. We now observe that Lemma 5.5
easily implies

N5 (F) llw 22 0,y + [1V6 (B) |l w2 0,7y 22 (0,9)
~ ~ -1 -1
< ||‘P5||W§’1(0,T) + ||S06||W;’1((0,T);L2(o,e)) +2X e20(AT, 1, T, p)
< | @sllwrro,r) + 1B6llwrio,m):2(0,0) + 22 e2o(A, 7, T, p)

for all k € KK(\, 7, T) and
||N5(k2) - Ns(kl)”W;vl(o,T) + ||N6(k2) - N6(k1)||W;’1((0,T);L2(o,e))
<22 e (AN T p) |6 — leIC()\,r,T)
for all k1, k2 € K(\,r,T). Then for any fixed
r > 1o = ||@s|lwro,m) + @6l wrr(0,1);02(0,0))

choose A € Ry to be a solution to the system of inequalities

|@5llwra 0,1y + 1@sllwro,m):20,0) + A e2o(A 51, Ty p) <7
2)\_1621()\_1,7‘, T, p) <1 ‘

Then the vector operator N = (N},, JVG) maps K(A, 7, T) into itself and turns out to be
a contraction mapping in (A, r,T), for any fixed » > 7y and A large enough. Con-
sequently, problem #+#(5.2)#+# admits a unique solution in W;’I(O,T) X W;’l((O, T);
L%(0,4))1
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i

Outline of the proof of Theorem 2.2. We limit ourselves to stating that the
proof is a consequence of the techniques developed in Sections 4 and 5 if we take into
account the following fixed-point system (cf. (5.2))

k. k€ KO\, r, T)
Ko(t) — Fo(t) = N (k)(t) - N(R)(t) (¢t € [0,T)) (5.16)
ka(t @) — ka(t, ) = No(k) (1, @) — No(B)(t,2) (8, 2) € [0,T] x (0,2))
Consequently the basic task consists in estimating the right hand sides in (5.16) in terms

of the difference k — k in the weighted Banach space KA rT)NR
i

6. Analysing the specific additional conditions (1.11), (1.12)

In the case of the specific operators ® and ¥ (cf. (1.11) - (1.12)) the results in Theorem
2.1 hold true, if we assume that the functions A and p satisfy the properties

A p € C¥(Q) and D2) € C(9Q). (6.1)
Remark 6.1. We recall that (cf. remark 2.1) the further consistency conditions
(2.17) may occur when the vector valued function (a19,...,a1,) vanishes everywhere

on {0,4} x w and the operators ®g  (k = 0, 1) reduce to the null operator. The latter
property occurs when DA =0 on {0,/} x w, since

Boslo] = [ DAk dy (ki =0.1).

We observe now that, in the present case, conditions ##(2.18) and (2.19)## can
be rewritten in the explicit forms

[ 2@ nCustey dy‘ s (xe0,4)

and

_ Ju Az, y)Buo(z,m) dn (o

‘ /( 0 p(z,y) (Buo(a:,y) [ A(@,y)Cuol, ) an Ot ,y))
X exp ( - Ju A&, ) Buo (€, ) dn

0 fw A(.’L‘,’I])CUQ(&,’I]) d’)’]

d§> da:dy‘ > my

for some constants m; > 0 and My > 0.
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Lemma 6.1. Conditions (2.4)—(2.10) are satisfied under assumptions (2.1)—(2.3),
(6.1) and the following

1

vj(y)a(@,y) =0 (6.2)

n

<,
I

on (0,1) X 0w, v denoting the outward normal unit vector related to Ow.

Remark 6.2. Property (6.2) is trivially satisfied if we assume that the coefficients
a1, ( =2,...,n) vanish on (0,/) X dw. Consequently, Theorems 2.1 and 2.2 holds true
with conditions (2.4)-(2.10) being replaced with (6.1), (6.2).

Proof of Lemma 6.1. First we observe that the operator A admits the decompo-
sition

A=) 4
j=1
where
Ay = —Dglay,1(x)Dy] ‘
n—1
Ay = — Z Dx[al,l-i-j(x’ y)Dyj]
7=1

n—1
Az =— Z Dy, [a1yi1(x,y)Dy]
i=1

> (6.3)
n—1
Ay == Dylaryinsi(z,y) Dy,
ij=1
n—1
A5 = Cll(.T, y)Dw + Z 0,1+_7‘(CU, y)DyJ + Cl()(CU, y)
=1

J

Differentiating under the integral sign, integrating by parts and using the identity
9D, f = Dy(fg) — fDyg from definition (1.11) and assumptions (2.12), (6.1) and (6.2)
we easily get the equations for any w € H2(2), v standing for the outward normal unit
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vector related to Jw:

O[Aw](z) = A1 P[w](z) + 2a1,1(x) / DAz, y)Dyw(x,y) dy

+ [ [aa@)D2A @) + 51 (2) DaAe )l ) dy

n—1
B[ Ayw)(z) = - / A, y)ar.145(2, y) Dy, Daw(z, ) dy
j=17v

n—1
-y / (@, 9) Dyar,1+;(@, y) Dy, w(z, y) dy
i=17w

|
—
|

n

= /w[Dyj(al,w,\)(a:,y)wa(w,y)

<
Il

- )‘(377 y)Dmal,l-i-j('/Ea y)DyJw('/Ea y) dy

BAsule) = 3 [ a1111(0,0)Dy M) Dol ) dy

n—1

O[Agw](z) = - / Mz,y) Y viy)artiaei(@,y)Dyw(z,y) do(y)

Ouw i,j=1

n—1
+ Y [ osiass @) DA Dy () dy.

1,j=1 w

/

i From (6.4) we easily derive that ® admits decomposition (2.4), ®; and ®» being defined,

for z € L2(09) and w € H(Q), respectively, by

®fe) = -3 [ Mw)s(on) doto)
and
Pow](z)
:/{Qal,l(ac)Dm)\(a:,y)me(a:,y)

+ [a1,1(@) DEA(z, y) + a3 1 (#) Do A(z, y) | w(z, y)

n—1

+ Z [Dy] (a1,1+j)‘)($7 y)me(xa y) - )‘("B7 y)Dzal,l—i-j(:Ca y)Dij(:Ca y)

7j=1
n—1
+ ) artin (@, 9) Dy, Az, y) Dow(, y)
=1
n—1
+ Z Q144,145 (377 y)DyiA(‘T7 y)Dij(CUa y)
i,j=1
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+ A(xa y)a'l(xa y)Dzw(x, y)

n—1
£ 2(00) X 0140,0) Dy 0,0) + Ao ) 1) -
7=1
(From here we can easily check that ®; and ®, enjoy the properties in (2.4) - (2.9).

We now observe that the functional ¥ defined by (1.12) fulfil the properties in (2.4)
and (2.10) by virtue of (6.1). More exactly, for any z € L*(09) and w € H(Q),
respectively, we get

1

Wl = S0 [ plto)a(he. ) dy - z / )2(z, y) dudor(y)

k=0 Z)Xaw
and
n—1
Volw] = /pr z,y) [01 1(z) Dyw(z, y +Za1 1+; (2, y) Dy, w(z,y) | dedy
j=1

+/Q{§Dyip(a:,y) [a1+i,1($ay)Dzw($ay)

n—1
+ Z Cbl+i,1+j($7 y)Dij(a:, y)}
=1

+ p(.’l?, y) |:a1(377 y)Da:w(x, y)

n—1
+ > aryj(w,y)Dy,w(z, y) + ao(z, y)w(e, y)} }dwdy-
7=1

Thus the statement is proved il
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