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A Characterization
of a Two-Weight Inequality for
Discrete Two-Dimensional Hardy Operators

Y. Rakotondratsimba

Abstract. We obtain a characterization of non-negative double sequences V = (V(n1,712))n;,n,
and U = (U(n1,M2))n, n, for which the two-dimensional discrete Hardy operator H is bounded
from ¢7(V) into £9(U) whenever 1 < p < ¢ < oo.
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1. Introduction

The discrete two-dimensional Hardy operator is defined by

(HF)(n1,n2) = Z Z Fiyis (n1,n2 € No).

21=0122=0

For the sake of simplicity and as in the continuous case, the non-negative double se-
quence F;,;, is merely denoted by F(i1,42).
Our purpose in this work is to derive necessary and sufficient condition on non-

negative double sequences U(n1,n2) and V(nq,ng) for which there is a constant C' > 0
such that

(i i(Hf)q(nl,nz)u(m,nz)f gc(i i fp(nl,nz)V(nl,n2)>% (1.1)

n1=0mn.=0 n1=0mn.=0

for all double sequences F(-,-) > 0 and with 1 < p < ¢ < co. As in the continuous
setting, U(-,-) and V(-,-) will be called weights. As a rule, the boundedness (1.1) will
be also denoted by H : £, — £7,.

Inequality (1.1) is involved in many parts of Analysis as in questions of convergence
and summability of double series, and in analysis of random walks on infinite graphs [2,
5, 7].
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According to B. Pachpatte [7], the boundedness H : £}, — £7, is true for V(ni,ns) =
1 and U(nq,n2) = ny ’ny® with 1 < p < co. Later D. Y. Hwang [2] proved that H : £}, —
KZ whenever Z/I(nl, ng) = )\1(’111)A2(’ﬂ2)[)\1(1) 4+ ...+ Al(nl)]_p[Az(l) 4+ ...+ )\z(nz)]_p
and V(n1,n2) = [A1(n1)A2(n2)]* P with A1(n1) and A2(nz) > 0. So for this case the
inequality in question is a two-dimensional version of the well-known Copson inequality

> [i/\l(p(l)r 5 = (pfl)pi(pp(k))‘k (p(k) > 0).

k=1 Li1=1 A4+ AP k=1

Recently Z. Németh [6] proved that H : £, — £, whenever V(n1,n2) = v1(n1)vz(ne)
and vy (n1), v2(ng) are quasi-geometrically decreasing.

For all of these quoted results in [2, 6, 7] the weights are of product types in
the sense that V(ni,n2) = vi(n1)va(ne) and U(n1,n2) = ui(ni)us(ng). These two-
dimensional results with weights of product types are actually consequences of the
one-dimensional ones [4]. And the crux of the matter is about weights not of prod-
uct types like W(ni,ng) = (n1 + n2)3~™1172) and W(ny,na) = (n1 +no)~(m+72) A
first investigation in this direction was done by A. Kamaly and the author in [4].

In this work we find a necessary and sufficient condition on weights ¢(-,-) and V(, -)
for which H : £, — ¢},. Indeed, until this paper, a characterization result seems not
available in the literature. However, the analogue integral inequality

</0°° /Ooo [/Oml /:2 f(yl,yQ)dyldw] qu(x1,$2) dﬂ?1dx2>%

< C(/Oo /OO JP(x1, 2)v(21, 22) dﬂhdwz) ’
o Jo

was already solved fifteen years ago by E. Sawyer [8]. Consequently, the present work
aims to fill this gap between the discrete inequality (1.1) and its continuous version
(1.2). To derive the characterization for H : £, — £, as in [3] (see Section 3), our idea
will make use of the fact that there is some equivalence between (1.1) and (1.2) for some
judicious choice of the weights u(-,-) and v(,-).

vV f()=0)  (1.2)

Our results are stated in the next Section 2, and their proofs will be performed in
Section 3.

2. The results

Throughout this paper it is always assumed that
I<p<g<oo, pP=— ¢ =——

and
U(ni,n2),V(ni,ne) are weight functions defined on N3.

To simplify and avoid some inconsistencies, it will be supposed that V(ni,ng) # 0.
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Recall that our purpose in this work is to derive a characterization of weights
U(n1,nz2) and V(n1,n2) for which H : £5, — £],. This last means that for some constant
C>0

1

(i i(Hﬂf)q(nl,nz)U(nl,nQ))q g(](i i y:p(nl,n2)v(n1,n2)> (2.1)

n1=0 n2=0 n1=0 n2=0

3=

for all double sequences F(-,-) > 0.

Our main result reads as follows.

Theorem 2.1. Suppose that H : E{’, — 4}, Then for some constant A > 0 the three
conditions

1
'Y

(3% ) (35 3y mm)’

n1=N1 no=N> m1=0mo=0 (22)
< A for all integers N1, No > 0
Ri (R q :
(/ / [/ / yl,yz)dyldyz] u(z1, T2) dx1da:2>
(2.3)
R1  pR2 %
< A(/ / 3:1, SEQ) d.TldSCQ) fO’I” all Rl, R2 >0
[e’) p' %
(/ / [/ / u(y1, y2) dyldyz] v 7P (21, T2) d$1d$2)
R1 R2 1 )
. (2.4)
< A(/ / w(xy,x2) dmld:cg) ’ for all Ry, Ry > 0.
R, JR,
are satisfied with weights u(z1,z2) and v(x1,x3) defined by
o0 o0
u(z1,22) = Z Z UM, m2) T, my41)x[ma,ma+1) (T1, T2) (2.5)
m1:0 m2:O
v(71,T2) = Z Z V(ma, m2) U, my+1)x[ma,ma+1) (1, T2)- (2.6)
m1:0 m2:O

Here Wi, m,+1)x[m2,ma+1) denotes the characteristic function of the rectangle [mq, m;+
1)x[mga, ma+1). And actually in these conditions, A = C provided that C is the constant
involved in (2.1).

Conversely, the boundedness H : £5, — £}, does hold whenever all conditions (2.2) —
(2.4) are satisfied. Precisely, (2.1) remains true with C = ¢(p,q)A where c(p,q) > 0
depends only on the indexes p and q.
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However, it is still an open problem whether conditions (2.3) and (2.4) respectively
can be replaced by

(553 [ 35 55 vt s )

n1—0 n2—0 ml—O TYLQ_O

~ . (2.7)
( Z Z pi-v' (myq, mg)) for all integers N1, No > 0
mi1= OTI'LQ 0
and
00 () () (3] p' ’ ﬁ
(> > [ % uomma] v )
n1=Ni no=Na “mi1=n1 ma=nz (28)

Although a characterization result is theoretically of great interest, it would be noted
that a necessary and sufficient condition as the one obtained in Theorem 2.1 is not in
general easy to handle in explicit computations. It means that other investigations on
sufficient conditions (easily computable) for H : £}, — ¢}, deserve to be done. This will
be achieved by the author in a forthcoming paper.

For many problems in analysis in product spaces, it is useful to consider variants of
the operator H like

o0 o

(H**f ’17,1,’1?,2 Z Z f’&l,’LQ

7‘1 =ni 12 =n2

(H1,.F)(n1, ng) Z Z F(i1,12)

7,1 0z 12=—nN>2

(H,1F)(n1, na) Z Zle,zz

zl—nl 22 =0

A characterization for H,, : £, — £}, can be immediately obtained by using the above
Theorem 2.1. Indeed, by duality arguments, the former boundedness is equivalent to
H : £ — 4 where p1 = ¢/, g1 = p’ (s0 p1 < ¢1) and Vi(n1,n2) = U™ (ny,ns),
Uy (n1,ng) = yi-v (n1,n2).

Our next result is related to the boundedness Hy, : £, — £f,.

Theorem 2.2. Suppose that Hy, : 5, — 4},. Then for some constant A > 0 the
three conditions

1
'Y

(£ S (5 5 rsmm)’ o,

1=N1 n2=0 m1=0ms=N>

< A for all integers Ny, Ny > 0
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([ L1 o o] st ey )

R, B
< A(/ / .’L'l,.’Eg) d$1d$2> fO’I" all Rl,R2 >0
Ry

1

Ro P’ I
(/ / [/ / uw(y1,y2) dy1dyz] v P (x1,z2) d$1d$2>
R]_ 0 ] 0

o0 R2
< A(/ / w(zy, x2) d:cldxz) for all Ry, Ry > 0
Ry Jo

(2.10)

(2.11)

Qo

are satisfied with weights u(z1,z2) and v(z1,x2) defined as in (2.5) and (2.6). And
actually, in these conditions, A = C provided that C is the constant involved in Hy, :
£, — 1.

Conversely, the boundedness Hq, : E’;, — 4}, does hold whenever all the conditions
(2.9) — (2.11) are satisfied. Precisely, the constant involved in the boundedness takes the
form C = ¢(p, q) A where c(p,q) > 0 only depends on the indezes p and q.

A characterization for H,q : Ef, — EZ, can be deduced (by duality argument) from
this last result, since this boundedness is equivalent to Hy, : £5; — £} where p1, ¢ and
Ui (n1,n2), Vi(n1,ne) are defined as above.

3. Proofs of results

In this section we will give the details of the proof of Theorem 2.1 and sketch the
arguments for Theorem 2.2.

Proof of Theorem 2.1. For convenience the inequality

(/Ooo /Ooo [/Owl /OM f(yl,yz)dyldyz] qU(xlamz)dwld@)% 5)

< C(/oo /°° JP(z1,z2)v(21, 22) da:ldm2> ’ for all f(-,-) >0
o Jo

will be denoted by H : LY — L2. Our plan is to prove Theorem 2.1 as follows.

A) First we show that the boundedness H : £, — ¢, implies condition (2.2) and
H : LP — L2 where the weights u(z1,22) and v(x1,x2) are defined from U(nq,n2)
and V(n1,n2) as in identities (2.5) and (2.6). Thus conditions (2.3) and (2.4) follow
readily from the boundedness H : LY — L% as it is well-known in [8]. Consequently,
the necessary part in the theorem is verified.

B) Next we check that condition (2.2) implies

Rq Ro Py
(/ / .’131,.’E2 d.’l?ld:l?g) (/ / .’171,.’172) dmldlﬁg) S A (32)
Ry YRy

|-
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for all Ry, Ry > 0. Then, because of [8: Theorem 1], the boundedness H : L — L2
does hold under conditions (2.3), (2.4) and (3.2).

C) Finally, we prove that condition (2.2) and H : L? — L2 lead to the boundedness
H: E{’, — 4. Therefore steps B) and C) yield the proof of the sufficient part in the
theorem.

Proof of Part A. Suppose that H : £, — ¢/,. It means that inequality (2.1) is
true for some constant C > 0. Consider integers Ny, No > 0. Applying (2.1) for any
non-negative (double) sequence F(ni,ny) whose support is {0,..., N1} x {0,..., Na},
then

(% 3 Fomm) (33 )’

m1=0mo=0 n1=N1 n2=N>

< 0( i i fp(ml,mg)V(nl,n2)>%.

ma =0 mo =0

(3.3)

This last inequality implies immediately condition (2.2) (with A = C) by taking F(nq,
ns) = V1P (ny,ny) in its support {0,..., N1} x {0,..., N3} and by using the identity
Q=pp+1=(1-p).

Next the boundedness H : L — L% is implied by H : £}, — ¢/, as the following
chain of computation shows:

o0 > ni1+1 na+1 1 To q
- Z Z/ / {/ / f(y1,92) dy1dyz} (1, x2) dridTs
ni na 0 0

ni+1 n2+1 ni+1 na+1
[/ / fy1, 92 dyld’yz] (/ / u(z1, T2 d$1d£€2)
1

= i i [Z Z f(ml’m2)]qu(n1,"2)

n1:0 :0 mi1= OTH,Q 0

+1 +1
( using (2.5) and setting F(m1,mz2)= fml fm2 F(y1,92) dyldy2)

q

( Z fp(nl,m)l}(nl,ng)) ’

n1—0 n2 =0

MS

due to the boundedness H:£,—£], with the constant C>O)

(Z Z (/Tﬁ-1 /n2+1 [P (1, 22)v(21, T2) d:z:lda:2>

n1—0 n2 =0

ni+1 na+1 p—1
V(ni,no (/ / yla Y2) dyldy2> )

(by the definition of F(m1,m2) and using the Holder inequality)

LB TSY
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_ o ( / h / " (w20 (3,2) dwldsvz) 5
0 0

. +1 +1 g _
(since V(n1,ma)( S [ () dyadys)” t=1).

Proof of Part B. To check inequality (3.2), let us consider Ry, Ry > 0 such that
Ny < Ry < Nij+1and N; < Ry < Ny+1 for some integers Ny, Ny > 0. Then condition
(2.2), with the constant A > 0, leads to the test inequality (3.2) with the same constant
since

/ / u(a:l,xg)dxldacgg/ / u(z1, x2) dridasy
R, JR» N1 N

oo

ni+1 pna+1
= Z Z / / xl,.’Bg d.’171d£172

n1=N1 na=N>
)

= Z Z Z/{(nl,ng)

n1=N1 na=N2

R1 pR2 Ni+1 N2+1
/ / 1 (371,372 dSL‘ldCL'g / / ZE1,.€L‘2) dl‘ldl'z
0 0
1 ni+1 na+1
/ / $1,$2)d$1d.’132
ni

ny—= OTLQ 0

N1 Ny

= Z Z Vl_p’(nl,nZ).

1 =0 n2=0

and

Proof of Part C. First some remarks can be done. For instance, (2.2) implies
that for some A > 0

1

( i U(”laNﬂ)%(i Vl_p'(thz))F <A (3.4)

n1=N1 m1=0

e % N ﬁ
( 3 L{(Nl,n2)) (Z pi-p (Nl,m2)> <A (3.5)
’I'L2:N2 m2:0

for all N1, Ny € Ny. It is well-known that condition (3.4) implies the one-dimensional
discrete weighted Hady inequality

(3232 ertomy)] e W) < coA( 3 i, vy T )

1
Y

for all 1(-) > 0, where co = co(p,q) = (1 + 1%)5(1 + 2 )
(3.5) then

Similarly, from condition

Q=

1
7

(Z [ Z os(mo)| U Nl,n2)> < coA<§: gog(ng)V(Nhng)) ’ (3.7)

no =0 mo =0 n2 =0
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for all ¢y(-) > 0.

Next we are now in the position to derive the boundedness H : £}, — ¢}, by using
condition (2.2) and H : L? — Li. To do this let us split things as

oo

S (HF) (n, na)U (ny, o)

n1 =0 no9 =0

B ni Z [i i f(mlumz):|qz,{(n1,n2) (3.8)

n2 =0 m1=O ma =0

S1+ S92+ S35+ S,
with
Si = F4(0,0)U(0, 0)

n2

> F(o, m2)] U(0,n2)

0 mo=

So

o

n2

ni

I_l

F(maq, 0)] qu(nl, 0)

n1=0 1=

_ i [nz 3 f(ml,mg)]qZ/{(nl,n2).

ny= l’ng 1 m1=0 m2=0

&
I
BANE

Consequently, our task remains to estimate each of S; (i € {1,2,3,4}) by a term like

)q(i fj fp(nl,ng)V(nl,ng))%

ni =0 na =0

where ¢ > 0 is a constant which only depends on the indexes p and gq.

Estimate of S;. The conclusion follows from condition (2.2) since

S; = (fp(o,o)V(o, o))%

Ui (0,0) (Vl—l" (0, 0)) _] '

3

< Aq( ( ( )) (by condition (2.2) with N1=N3=0)

0)y
(i i (n1,m2) nl,n2)>

Estimate of S;. The main point is the Hardy inequality (3.7) (with N7 = 0).

Indeed, R
Sp= ) [i ]—'(O,mg)] qU(o,nQ)

SIS

’11,2_0 TH,Q_O
%
< (cpA)d (Z FP(0,n2)V(0, m))
n2—0

3

< (cpA)? (i i]‘—p (n1,n2) n1,n2)>

nl—O n2 =0
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Estimate of S3. As for Sy, the proof is based on the Hardy inequality (3.6) (with
N3 = 0). The details are left to the readers.

Estimate of S;. It can be noted that for some constant ¢; > 0, which depends
only on ¢, then

00 00 ni na q
Sy = Z Z [ Z Z f(m17m2):| U(ni,n2) < 1 (541 + Sa2 + Saz + 544)

The term S4; can be estimated just by using condition (2.2) since

e’} [e%e} L:|q
T

S41 = Z Z (Fp(nl,ng)l)(nl,ng)>% [L{%(nl,ng) (Vl_p’ (nl,n2)> P

ni=1no=1

(e ol o

< A9 Z Z (}“P(nl,n2)V(n1,n2)> (by (2.2))

ni=1lns=1

< A‘I(Z Z fp(n]_,TLQ)V(n]_,’nQ)) (since 2 > 1).

n1 =0 n9g =0

I

SIS

The estimate of Sys is essentially based on the Hardy inequality (3.7). Indeed,

[e’e) [e] na q
Sip < 2—21 z_:o[ Zof(nl,mz)] U(n1,n2)

< (C()A)q Z (Z fp(nl,n2)V(n1,n2)) (by (3.7) with Ni=n1)
TL1:1 n2:0

< (C()A)q< Z Z fp(nl,n2)V(n1,n2)> (since %21).

ni =0 n2=0

=3 b

The term S43 can be bounded similarly as Sy2 by using the Hardy inequality (3.6). The
estimate of S44 makes use of the boundedness H : LY — L%, say with the constant cp A
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where co > 0 depends only on the indexes p and ¢. Indeed,

e’} ni—1 no—1 q ni+1 na+1
Syq = Z Z [Z Z F( ml,mg)} / / u(xy, x2)dr1dre

ni=1neo=1"m1=0m2=0

(by the definition of w(zi,z2) in (2. 5))

i /’I'L1+1 /TL2-|-1 |:
= n1 m1—0 m2_0

m2+1 q
/ / Iy, yz)dyldyg} u(z1, z2)dx1dzy
m1

( here f(y1,y2)= Zk _OZOO F(k1,k2) Iy k1 +1) x[ks, k2+1)(y1,y2))

o ni+1 pns+l
Z / / [/ / f(y1, 92 dy1dyz} u(21, T2)dr1dTy
1=1ny,=1Y"11

S [/ / f ylay2)dy1dy2:| u(xy, x2)dr1dry

ny— 1’n,2 1

< (c24)? </ / a:1,$2)v(ac1,a:2)da:1dxg> ’ (since H:L€_>L;1L)

ni+l rna+l )%

= (cA)? <Z Z /nl . fP(z1,x2)v(21, T2)dr1d2o

n1 =0 77,2:0

= (c2A)1? <Z Z FP(nq,nz) nl,n2)>;

n1—0 ’n2—0
(by the definitions of f(z1,z2) and v(z1,z2) in (2.6)).
This way Theorem 2.1 is completely proved i

Proof of Theorem 2.2. We will restrict to outline the main lines of the proof,
since the arguments are the same as those used for Theorem 2.1. To do this, it can be
noted that the boundedness H;, : LV — L1, i.e.

(/OOO /Ooo {/Owl /: f(y, yz)dy1dyz} qu(m,mz)dg;ld%)%

. (3.9)
< C(/ / fp(3717$2)v(331,3?2)d$1d$2) " for all f() =0
o Jo

is equivalent to the three conditions

1

(/: /OR2 u(azl,x2)da:1da:2) (/R /R 331,332)da:1da:2)p’ (3.10)

<A forall R{,Ry >0
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( / " /R 2 { / / yl,yg)dyldyg]qu(xl,xg)darldxg)%

Ry +
< A(/ / 331,3:2)d:v1d332) for all R1,Rs >0
R>

1

0o Ro> oo o p' ,
(/ / [/ / ulor; y2)dy1dy2} v' P (1, 372)d331da:2)
Rl 0 1 0

1

o0 R2 q_l
< A(/ / u(xl,xg)dx1d$2) for all Ry, Ry > 0.
Ry Jo

The proof of Theorem 2.2 will be fulfilled after doing the following three steps.

(3.11)

(3.12)

A) First we have to show that the boundedness Hy, : £, — ¢, implies condition
(2.9) and Hy, : LP — L% where the weights u(z1,22) and v(z1,x2) are defined from
U(n1,n2) and V(n1,n2) as in (2.5) and (2.6). Thus conditions (2.10) and (2.11) follow
readily from (3.11) and (3.12), respectively. These last conditions are implied by Hj, :
L? — LY as it is noted above. And consequently the necessary part in the Theorem is
verified.

B) Next we have to check that condition (2.9) implies (3.10). Consequently, the
boundedness Hi, : L? — L% does hold because of (3.10), (2.10) and (2.11).

C) Finally, we have to show that condition (2.9) and Hi, : L? — L% lead to the
discrete boundedness Hy, : £, — £,

Therefore Steps B) and C) yield the proof of the sufficient part in Theorem 2.2.
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