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On Uniqueness Conditions for Decreasing Solutions
of Semilinear Elliptic Equations
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Abstract. For f € C([0,00)) N C'((0,00)) and b > 0, existence and uniqueness of radial
solutions u = u(r) of the problem Au + f(u4+) =0 in R® (n > 2), u(0) = b and v’(0) = 0 are
well known. The uniqueness for the above problem with boundary conditions u(R) = 0 and
u'(0) = 0 is less known beside the cases where lim, o, u(r) = 0. It is our goal to give some
sufficient conditions for the uniqueness of the solutions of the problem Dyu + f(uy) =0 (r >
0), u(p) = 0 and u'(0) = 0 based only on the evolution of the functions f(t) and % @
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1. Introduction
Let the function f € C([0,00)) N C!((0,00)) be such that it remains positive, or it

has a finite number of positive zeros and changes its sign accross any of them. For
a=n—-1>1 (n€N) and any ug > 0, the problem

Dyu:=u" + %u' = —f(uq)
u(0) = ug (E)
v (0) =0

is known to have a unique solution u € C?([0,00)) which is positive in some interval
[0, p) [3, 6]. For p > 0, finite or not, we will investigate some uniqueness conditions for
the associated problem

Dyu+ f(uy) =0 (r>0)
u(p) =0 (BV),
v’ (0) = 0.

For ease writing, the following notations will be used:

1) uy(r) = max{0,u(r)} and F(t) = f(f f(s) ds.
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fT={t>0] f(t) >0} and F* = {t > 0] F(t) > 0}.

_ df
1) =45

Y

U(t) =T, 97 = {t> 0] y(t) <0} and ¢ = {t > 0] () > 0}.

For connected components of 1, define ¢ = {(t;,tiz1) C ¥F[0 < t; < t;41 and

Y(t;) = ¥(tig1) = 0} and similarly f7.

6) For s #t, {s,t} will denote the elements lying between s and t.

7) f will be said to satisfy the condition |f’;9*| or | f/;4~| if there exists o’ and C > 0
or B > 0 such that |f/| > C and ¥+ > B or ¥~ < —B, respectively, in (0, a’].
|f'; 9|1 will have the same definition where I C R, replaces (0, o]

and A\ denotes any zero of 1.

2. Main results

Let p > 0 be finite or not.

Theorem 1. If f(t) is decreasing in t > 0, then problem (BV'), has at most one
solution.

Theorem 2. If %@ >0 ord fgt) < 0int >0, then problem (BV), has at most
one solution.

Theorem 3. Assume that % f(t) >0 in (0,A) and & fgt) <0in (A oo). If f' <0

in some interval (0, /] or condztwn |f'; 4| holds, then problem (BV), has at most one
solution.

Theorem 4.

(i) Assume that v~ = (0,)), ¥ = (X, 00), f is strictly monotone in (0, + k)
for some k > 0 and condition |f';1"| holds. Then problem (BV), has at most one
solution.

(ii) Assume that 1 has a finite number of zeros, f is strictly monotone in any f
and condition |f'; 9T | or|f';4~| holds. Then problem (BV), has at most one solution.

3. Preliminaries

Let u be a solution of problem (E), positive on I = (rg,r2). After multiplying the
equation in problem (E) by v/, integration on I leads to the identity

UI(?) + F(u(rs)) +a/ w(s) ds = F(u(rg)) + UI(QO) ) (1)

To

Lemma 1. Let u be a solution of problem (E), non-constant in some interval
(R,R+ 1) with R >0 and 7 > 0.

(i) Ir
W(R)=0 = u(r)#u(R) foralre (R,R+T), (2)
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then the solutions of problem (BV), are strictly decreasing in (0, p).

(ii) If u is a solution of problem (BV),, then F(u(0)) > 0 and u(0) € fT NFT.

Proof. (i) It suffices to notice that for 7o = R and r9 > R in (1), one cannot have
u(r) = u(R) for r > R. Let u be a solution of problem (BV'),. Then from (2), u has
to be decreasing in some interval (0,7), v’ < 0 and decreasing as long as f(u) > 0 in
(0,7). From the equation, if u/(r1) = 0 for some 71 > 0 (71 being the first such r),
u”(r1) = —f(u(ry)). Identity (1) and (2) imply that u(r1) cannot be a local minimun
and obviously nor a local maximun. This reaches a contradiction as f has only simple
zeros. Thus u/(r1) = 0 cannot hold.

Statement (ii) is a direct consequence of identity (1)

Lemma 2. Let u and v be two distinct solutions of problem (E) which are positive
in the interval I = (R, p). Then

{r“v(r)zgl}p = /ps“uv{‘lf(v) — U(u)}ds (3)
v IR '
R
Consequently, if u and v are two distinct solutions of problem (E) strictly positive in
I=(R,r), withu>v inI and (u'v—uv')(R) =0, then:
() w(Huv(I) Ccypt =
(i) w(HUuov(l) Cy- =

Note that the condition (u'v —uv')(R) = 0 can be replaced by (u'v—uv")(R) < 0 for the
case (i) and by (u'v — wv")(R) > 0 for the case (ii).

= us strickly decreasing on I
= us strickly increasing on I.

Proof. It is enough to notice that the function W = u'v — uwv’ = v?(%)’ satisfies

(r*w)" = r*uv{¥(v) — ¥(u)} = r*uv {@ B M}

v u

in (R, p). For statement (i), it is enough to notice that ¥(v) — ¥(u) < 0 on I by (3)
whence W < 0 on I. Statement (ii) follows from a similar argument B

Lemma 3. Let u and v be two distinct solutions of problem (E) which are non-
negative in I = (rq1,r2).

(i) If (v'v —wv')(r1) = (v'v —uv')(re) = 0 and v'v — uv’ # 0 in I, then either ¢
has a zero in {u(r),v(r)} for r € I or u(r) =v(r) has a solution in I.

(ii) If u(r1) = v(r1) and u(re) = v(ra), then ¥ has a zero in {u(r),v(r)} forr < ra.
Proof. (i) From identity (3),

changes the sign at some R € I and either u(R) = v(R) or there exist R, Ry € I such

that
fu(Ry) _ f(o(Ry)
U(Rl) U(R2) .
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The later case implies that ¢ has a zero in {u,v} for » € {R;, Rs} by the mean value

theorem.

(ii) Without loss of generality, suppose that u > v in I. For z(r)

there exists R; € I such that
ZI(Rl) == Ul(Rl) — ’Ul(Rl) = 0.
Asu>wv and v’/ < 0in I, we have

(u'v —uv')(Ry) = v/ (R1)(v — u)(Ry) >0

u(r) — v(r),

whence u(rq) = v(rq) holds only if there exists Re € (Ry,72) such that (v'v—uv’)(Rs) =

0. The conclusion follows from statement (i) as (u'v —uv')(0) =01

If u and v are two distinct solutions of problem (E) and s > 0 is such that

Ur)=u(r)+s, V(r)=v(r)+s, Zr)=u(r)—s, Y(r)

are positive, then
X”+EX’:—f(X—s) for X =U,V
r
<I>”+gd>’:—f(<1>+s) for ® =27)Y.
r

The next lemma is easy to verify.

Lemma 4. For 0 < s <t, define fos(t) = @ Then

0 _ (t+ )2 (t+s) —sf(t+s)
ol = 2
0 (=82t —s)+sf(t—s)
Ef‘S(t) - 2 '

Consequently, for Is(t) = [t,t +s| and I_4(t) = [t — s, ],

L) cytn{f <0} = 3%”%
I.(t)cy™n{f >0} = of 52@) >0
Lcwnifzo = 20,
I.(t)cy™n{f <0} = o 5§(t) <0

for0<s<r.

Lemma 5. Let u and v be two distinct solutions of problem (E) with meas{r >

0| u(r) =v(r) >0} =0.
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(i) As long as u and v remain in the same connected component of ¢, the problem
u(r) = v(r) > 0 has at most one solution.

(ii) Suppose that p* = (A, A) and v~ = (0,\). For u and v two solutions of
problem (E) with u(A) > v(A) > X and (uv'v —uv')(A) <0, if u(ry) =v(ry) < A, then
u(r) = v(r) > 0 does not hold for r > ri. If in addition f' > 0 in some interval [0, /],
then u(r) = v(r) > 0 cannot hold for r > ry1. Consequently, if 1 has a finite number of
components, then u(r) = v(r) > 0 has a finite number of solutions.

Proof. (i) The claim follows from the fact that remaining in the same component

%, if u — v has two distinct zeros, then ¥ is strictly monotone between them with the

same value 1 in both ends. That cannot hold.

(ii) Let w > v > X in some subset of ¥*. Suppose that u(R) = v(R) < X and
0 < u < v in some interval I = (R,r). Then

(v'v —uv")(R) = w(R)(u —v)'(R) <0

as u’ < v' at R. Therefore ¥ is increasing in some r > R with the value 1 at R. We
have v > u as long as u > 0. If u(p) = v(p) = 0 and f’ > 0 in some interval [0, /], then
with Z(r) = v(r) + s and Y (r) = u(r) + s for some small s >0and X =Y or X = Z
we have D, X + f(X — s) = 0 in some interval J = (R, p) and Y (p) = Z(p) = s. From
(4)q and (5)p, (£)’ > 0 in J conflicting with the fact that (£)(R) > 1 and Z(p) = 1.
Now statement (ii) follows from the fact that no component of ¥* neither any of ¢~
can have more than two solutions of the problem u(r) = v(r) > 01

Lemma 6. Let u and v be two distinct solutions of problem (E), A = u(I)Uv(I)
for I = (rg,7m1) and some J = [tg,t1] C A with top > inf A.

(i) Suppose that A C ¢+ and

(@) u>v and u'v—uv' <0 atrg
(B) f' <0 in J or condition |f';vT|; holds.

Then u(r) = v(r) > inf A has a solution ry in I with u'(r1) # v'(r1). If in addition
to =0, then u # v forr > r1 as long as u,v > 0 in A.

(ii) Suppose that A C ¢~ and

(@) u>v and u'v—uv' >0 atrg
(B) f' <0 in J or condition |f';v~|; holds.

Thenu>v>0inl.

Proof. (i) From identity (3), % is decreasing in 9" as long as u > v > 0 there.
Assume that u > v > X := inf9*. Let s > 0 and ¢t > 0 be such that ¢t + s € J and
let v(R') = s < u(R') for some R'. The functions Y = v — s and Z = u — s satisfy
Y(R') =0 and Z(R') > 0; for X =Y and X = Z we have D, X = —f(X + s) in
(ro, R'). From (5) and (5)4, if f/ < 0in J, then (2)fs(t) > 0. Applying Lemma 2 to Y’
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and Z we find that Z is decreasing in (rg, R') which conflicts with their values at R'.
The assumption cannot hold. So there is an R” € I such that u(R") = v(R"). As

(u'v —uw)(R") = u(R")(u —v) (R") <0,

we have u/(R") < v'(R").
The second part of statement (i) follows the same process as for s € (0, t2%) and
s€ (0,1,

0 o [.0B

Let u(r1) = v(r1) and u > v in (11, p). fu=v =0at p, for W =U with U = u+s and
W =V with V = v+ s we have D,W = —f(W —s) in (r1 + s,p) and Z(r1) = Z(p).
As condition |f’;4F|; holds, ¥ is monotone in (ry, p) and this cannot hold from their
values at the both ends.

(ii) Identity (3) implies that (%)’ > 0 as long as u > v in I whence they cannot
intersect there nor intersect at some 7y with u(r;) = v(r;) > 0. Assume that u(r;) =
v(r1) = 0. Let s > 0 and ¢ > 0 such that t—s € J. The functions U = u+sand V = v+s
satisfy for some Ry > r1 and W = U or W = V the relation D,W = —f(W — s) in
(R1,m1) = K with W(r1) = s. If f <0in J, ¥ is increasing in K with a value greater
than 1 at R;. This conflicts with their values at r;.

The last part follows the same process as before. In fact, for s € (0, %),

(t— )0t — )+ 5t — ) < 22 ssup|f!

and it suffices to take s € (0,t>2) for (5) and (5)4 to apply B

Lemma 7. Let A < A < B, ¢y = (A, N), ¥ = (\,B), u and v two distinct
solutions of problem (E) such that for some 0 < ry < rqy

(i) u(r1),v(r1) > A and (u'v —uv')(r1) <0

(ii) u(re) = v(re) < A with u > v in (r1,72).
Then if f' is strictly monotone in 1y , we have u'(rg) < v'(rg).

Proof. Let v(ry) = A Asvw/'v—uwv' = v (v—u)+u(u—v), (u—v)" < 0 and strictly
decreasing in (r1,7)) (see (3)). If (u — v)’(r2) = 0, then by the mean value theorem,

there is R € (rx,72) such that (u — v)"”(R) = 0. In that case, from the equations of u
and v,

a(u—v)'(R) = R{f(v(R)) — f(u(R))} <O
and this cannot hold if f* < 0 in ¢; whence (v — v)'(rz) < 0 in this case. If f' > 0 in
¥y , then (r*(u—v)") < 0in (R,72) and (v — v)'(R) < 0 which leads to (v —v)'(R3) <
(u—v)(R) <0l
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4. Proof of the theorems

The lemmae established in Section 3 enable us to prove now the theorems.

Proof of Theorem 1. Let u and v be two solutions of problem (E), with u > v
in some interval [0, 7), say. From the equations,

r

(u— ) (r) :/(g)a{f(v)—f(u)}dsz 0

0

whence u(r) —v(r) > u(0) —v(0) > 0. Therefore they cannot intersect as long asv > 0l

Proof of Theorem 2. 1. In any of the cases, if u > v in [0, p) and u(p) = v(p) = 0,
then the left-hand side of identity (3) is O while the right-hand side is non-zero as the
integrand there does not change sign. So u(p) # v(p) = 0.

2. If there is R € (0, p) with u(R) = v(R) > 0 and R € (R, p] with u(R;) = v(Ry),
then there is Ry € (R, Ry) with (u'v — uv’)(R2) = 0 and this cannot hold following
similar an argument as in part 1 il

Proof of Theorem 3. Let u and v be two distinct solutions of problem (E). If
there is 7 < p such that u(r) = v(r), then u(r) < A\. Lemma 6/(i) implies that r # p i

Proof of Theorem 4. 1. Let u and v be two distinct solutions of problem (E).
The problem u(r) = v(r) > A has at most one solution by Lemma 5/(i). Lemmae 6/(ii)
and 7 imply that u(p) # v(p).

2. Lemmae 6/(i) and 7 imply that uw — v changes sign accross any r where u(r) =
v(r) > 0. The ends of Theorems 2 and 3 complete the proof
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