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On the Hilbert Inequality

Gao Mingzhe

Abstract. It is shown that the Hilbert inequality for double series can be improved by in-

2 2
troducing the positive real number W—12(‘T|a(”“2) + le(”bg) where s(z) = >0 2 and ||z||* =
Yoo z2 (z = a,b). The coefficient 7 of the classical Hilbert inequality is proved not to be the
best possible if ||a|| or ||| is finite. A similar result for the Hilbert integral inequality is also

proved.
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1. Introduction

Let (ap)n>1 and (bp)n>1 be arbitrary real sequences. Then the Hilbert inequality for
double series can be written as

(2 ) = (Z4) () 2

m,n=1 n=1

Additionally,

(Z o) <#(Ee)(2%) @

m,n=1 n=1
m#n

is also called Hilbert inequality. Furthermore, if f,g € L2(R,) where R, = (0,0), then
the inequality analogous to (1)

(/Ri f&LJrgf(rt) det)2 = ”2< o (@) dt) (/R+ g (t) dt) (3)

is called the Hilbert integral inequality. The constant 7 contained in these inequalities,
especially in (1), was proved to be the best possible (see [3]). However, if 0 < > °7 . a2 <

n=1"n

oo or 0 < Y% b2 < oo, then we can select a number r > 0 such that the right-hand

n=1"n

side of (1) can be replaced by

w2(1—r)(g:1a3)< wlbi),

n—=
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i.e. an improvement of (1) will be obtained. Similarly, an improvement of (3) will be
established. Namely, the right-hand side of (3) can be written as

(1 — R)( [ s dt) (/R+ 22(1) dt)

with a number R > 0. The main purpose of the present paper is to prove the existence
of such numbers » and R and to find expressions for them.

We first introduce some notations and functions.

If « and 3 are elements of an inner product space F, then its inner product is denoted
by (a, ) and the norm of « is given by ||a| = y/(o, ). Further, if a = (an)n>1 and
b= (bn)n>1 are two real sequences, then its inner product (a,b) and the norm |/al| of a
are defined by

(a,0) = anbn and la| = V/(a, a). (4)

Analogously, for functions f,g € L?(a,b) its inner product (f,g) and the norm || f|| of
f are defined by

b b %
o= [ s a1 ( [ Poa) 5
We next introduce a binary quadratic form F(-,-) defined by

F(z,y) = llaf*z® — 2(a, B)zy + |81y (6)

where z = (8,v) and y = («,7y) for v € E. We further denote

G, B,7) = F((B:7), (7). (7)

The results involve G(«, 3,v) with a and f specified beforehand, and 7 to be chosen
for maximum felicity. It is obvious that if + is orthogonal to both a and B, then
G(a, B,7) = 0. Tt will turn out that if (a,v)% + (B,7)? > 0 (see Lemma 1). Therefore,
it is shrewd in every case to choose v not orthogonal to both o and f.

For convenience, we introduce yet the notations

. by . ambn =z,
u(a,b): Z m_|_na U(aab): Z m—n’ S(.TJ):ZZ
m,n:]_ m,n=1 n=1
m#n

We shall frequently use these notations below.
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2. Lemmas

To prove our theorems, we need the following results.

Lemma 1. Let G(, ,7) be defined as in (7). If a, B € E are linearly independent
and (a,v)% + (8,7)% > 0, then G(a, B,7) > 0.

Lemma 2. Let G(a, 3,7) be defined as defined in (7). If o, € E are linearly
dependent, then G(a, ,v) = 0.

Lemma 3. Let G(o, 3,v) be defined as defined in (7). If o, € E are arbitrary
and v € E with ||v|| = 1, then

(@, 8) < [lal?lIBII” - G(e, B,7), (8)

and equality holds in (8) if and only if o, B,y are linearly dependent.

The proofs of Lemmas 1 and 2 have been given in our previous paper [1]. Lemma 3
is actually a sharpening of the Cauchy-Schwarz inequality. This result has been given
also in the paper [1], and in [5]. Hence the proofs of all lemmas are omitted.

Using the inner product defined by (5) and Lemma 3, we have the following result.
Corollary 1. If f,g € L*(a,b), then

(f,9)* < IfIPllgll* = F(z,y) (9)

where F(z,y) = || f|?z® = 2(f, 9)zy + ||g||*y* with x = (g9,7) andy = (f,7), v € L*(a,b)
with ||v|| = 1.

3. Main results

In this section we will combine the two forms (1) and (2) of the Hilbert inequality into
one similar form, and make inequalities (1) - (3) relaize significant improvements. The
following theorems are the main results in this paper.

Theorem 1. If a = (a,,) and b = (by,) are real sequences with non-negative terms,
with 0 < ||a]| < oo or 0 < ||b]| < oo, then

u’(a,b) +v*(a,b) < (L —7)l|a]l?[]p]* (10)

_ s*(a) | s%(b)
where r = ﬂ—lg( Tal? W)'

Proof. Let us define two real functions f, g : (0,27) — R by
o0 o0
f@t)= Z anV/tsin(nt) and g(t) = Z bnV/t cos(nt).
n=1 n=1

It is easily to deduce that, with the notations of the space L2(0,27),

[u(a, b) +v(a,b)| = 2(f,9)]. (11)



1120 Gao Mingzhe

According to (5) and (6) we have (f,9)? < [|f|Pllg]2 — F(z,y) where |[f|* = 2]all?,
g2 = x2[b]|? and

F(z,y) = |fI*2* = 2(f, 9)zy + l9lI*y* = (Ifllz — llglly)* = 7*(lallz — 1blly)*.
Hence
(f,9)% < 7*{lall?llbl* = =*(lallz — [|b]ly)* (12)
where z = (g,7) and y = (f,v), v € L*(0,27) with ||y|| = 1. We can choose v = % 2t.
Then z =0and y = —v/2Y.27 , % = —/25(a). Hence

n=1 n
(lallz = 1I8lly)* = 2[[b]|*s*(a). (13)
In virtue of (11) - (13) we obtain
[u(a, b) +v(a,b)]* < 7al?|1B]]* — 2[[b]|*s* (a). (14)

Since the vectors f, g, are linearly independent, by Lemma 3, it is impossible to take
equality in (14). Hence we have

[u(a,b) + v(a,b)|* < *[lal*[[b]|* — 2[[b]|*s* (a). (15)

Notice that u(b,a) = u(a,b) and v(b,a) = —wv(a,b). Interchanging a and b in (11),
similarly we obtain

[u(a, b) — v(a, b)]* < 7*[lal*[b]]* - 2lla]|*s* (). (16)

Adding (15) and (16), inequality (10) is yielded after some simplifications. Thus the
proof of the theorem is completed B

Remark. Since a = (a,) and b = (b,) are real sequences with non-negative terms,
with 0 < [|a|| < oo or 0 < ||b|| < oo, it follows that » > 0. Hence inequality (10) is a
significant refinement of the paper [4].

Corollary 2. Ifa = (a,) is a real sequence with non-negative terms and 0 < ||a|| <
o0, then
u?(a,a) +v*(a,a) < 7*(1 —7)a||* (17)

2 s°(a)
w2 |la]|?*

where T =
If v?(a,b) in (10) is replaced by 0, then we have the following
Corollary 3. With the assumptions of Theorem 1, then
u?(a,b) < 7*(1 = r)|lal/?[|0]|? (18)

s%(a s2(b
where r = 25 ( ”a(”z) + ”b—(”z))

We see from the above Remark that inequality (18) is a significant improvement of
(1). According to Corollary 2 we obtain at once the following



On the Hilbert Inequality 1121

Corollary 4. Ifa = (a,) is a real sequence with non-negative terms and 0 < ||a|| <
oo, then
u?(a,a) < 7?(1 —7)|al* (19)

2
~ 2 s°(a)
where 7 = = .
72 la]l?

Similarly, we can establish an improvement of the Hilbert integral inequality. For
this we need the integral

e(t):/R ::tds (t € R,)

called exponential integral with parameter t.

Theorem 2. Let f,g € LZ(R+) be positive. Then

F990) N\ .
(/ o ddt) <72 (1= R)I/IP]g] (20)

where R = (”2” ”?”) with z = (2 )%(g, e) and y = (2m)2(f,e~*), e being the

exponential mtegml with parameter.
Proof. Define functions F' and G by

F(s,t) = 1(s) (E>% and G(s,t) = 9(®) (£>Z

(s+1)z \t

Using inequality (9) we have in L? (R2 )
f(s)g(t) 2
D gsdt) = (F,G)
R2 8
< |FIAIGI? - F(z,y) 1)

<|IFIPIGI? = (IF[lz — |G ly)?
where z = (G,v) and y = (F,v), v € L*>(R%) with ||y|| = 1. We can choose

o= () ()

Hence we get

N

z=(2)%(ge) and y=(2m)>(f,e7). (22)
It is easy to deduce that
IFI* ==lfI*  and  [G]* = =llg]l*. (23)
Substituting (22) and (23) into (21) we obtain
(F,G)* < 7lIfIIPllgll* = = (I fll= = llglly)*. (24)

Since F,G,~ are linearly independent, it is impossible to have equality in (24). Con-
sequently, inequality (20) is obtained from (24) after some simplifications. Thus the
theorem is proved I
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Corollary 5. If f € L?>(Ry) is positive, then

(/R2 % dsdt>2 <731 - R)|f|*

(M

(f,e) and y = (27)2(f,e~%), e being the exponential

where R = 1 (wn;ﬁ’f with z = (2)

integral with parameter.

Obviously, this is an immediate consequence of Theorem 2.

4. Conclusions

Some classical reasults concerning the Hilbert inequality show that the constant 7 in
(1) is the best possible (see, i.e., [1, 2, 5, 6]). We see from (18) that inequality in (1)
can be obtained only if » = 0. However, to change r into 0, it is necessary to take both
|la|| and ||b|| infinite. Therefore, generally, the constant 7 in (1) is not the best possible
because the constant r contained in (18) is not equal to 0 if ||a|| or ||b]| is finite. In other
words, the factor 7 in (1) can be decreased if 0 < ||a|| < oo or 0 < [|b]| < co.

Similarly, we see from (20) that strong inequality in (3) can be obtained only if
R = 0. In other words, the factor m in (3) is also not the best possible if || f|| or ||g|| is
finite.
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